The Role of Resistin in Macrovascular and Microvascular Complications of Type 2 Diabetes
Abstract
:1. Introduction
2. Macrovascular Complications
2.1. Hypertension
2.2. Atherosclerosis and Coronary Heart Disease (CHD)
2.3. Acute Myocardial Infarction and Myocardial Ischemia Reperfusion Injury
2.4. Heart Failure
3. Microvascular Complications
3.1. Diabetic Nephropathy
3.2. Diabetic Retinopathy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
Abbreviations
T2D | Type 2 Diabetes |
IR | Insulin Resistance |
CHD | Coronary Heart Disease |
HTN | Hypertension |
NO | Nitric Oxide |
ROS | Reactive Oxygen Species |
ET-1 | Endothelin-1 |
MAPK | Mitogen-Activated Protein Kinase |
VCAM-1 | Vascular Cell Adhesion Molecule-1 |
VSMCs | Vascular Smooth Muscle Cells |
MCP-1 | Monocyte Chemoattractant Protein-1 |
HFUS | High-Frequency Ultrasonography |
HF | Heart Failure |
LVMI | Left Ventricular Mass Index |
NYHA | New York Heart Association |
ESRD | End-Stage Renal Disease |
DN | Diabetic Nephropathy |
CKD | Chronic Kidney Disease |
GFR | Glomerular Filtration Rate |
BMI | Body Mass Index |
SD | Standard Deviation |
DR | Diabetic Retinopathy |
VEGFR2 | Vascular Endothelial Growth Factor Receptor 2 |
AGEs | Advanced Glycation End Products |
hsCRP | High-Sensitivity C-Reactive Protein |
tHcy | Total Plasma Homocysteine |
Sol TNF-R2 | Soluble Tumor Necrosis Factor Receptor 2 |
Lp-PLA2 | Lipoprotein-Associated Phospholipase A2 |
SR-A | Scavenger Receptor Class A |
PAI-1 | Plasminogen Activator Inhibitor 1 |
tPA | Tissue Plasminogen Activator |
CK | Creatine Kinase |
LDH | Lactate Dehydrogenase |
PKC | Protein Kinase C |
RISK | Reperfusion Injury Salvage Kinase |
PI3K | Phosphoinositide 3-kinase |
HUVECs | Human Umbilical Vein Endothelial Cells |
STEMI | Acute ST Segment Elevation Myocardial Infarction |
MACE | Major Adverse Cardiovascular Events |
MIRI | Myocardial Ischemia/Reperfusion Injury |
References
- Acquarone, E.; Monacelli, F.; Borghi, R.; Nencioni, A.; Odetti, P. Resistin: A reappraisal. Mech. Ageing Dev. 2019, 178, 46–63. [Google Scholar] [PubMed]
- Deb, A.; Deshmukh, B.; Ramteke, P.; Bhati, F.K.; Bhat, M.K. Resistin: A journey from metabolism to cancer. Transl. Oncol. 2021, 14, 101178. [Google Scholar] [PubMed]
- Steppan, C.M.; Bailey, S.T.; Bhat, S.; Brown, E.J.; Banerjee, R.R.; Wright, C.M.; Patel, H.R.; Ahima, R.S.; Lazar, M.A. The hormone resistin links obesity to diabetes. Nature 2001, 409, 307–312. Available online: www.nature.com (accessed on 4 December 2024).
- Onalan, E.; Yakar, B.; Barım, A.O.; Gursu, M.F. Serum apelin and resistin levels in patients with impaired fasting glucose, impaired glucose tolerance, type 2 diabetes, and metabolic syndrome. Endokrynol. Polska 2020, 71, 319–324. [Google Scholar]
- Abudalo, R.; Alqudah, A.; Qnais, E.; Athamneh, R.Y.; Oqal, M.; Alnajjar, R. Interplay of adiponectin and resistin in type 2 diabetes: Implications for insulin resistance and atherosclerosis. Pharmacia 2024, 71, 1–8. [Google Scholar]
- Chung, C.M.; Lin, T.H.; Chen, J.W.; Leu, H.B.; Yin, W.H.; Ho, H.Y.; Sheu, S.; Tsai, W.; Chen, J.; Lin, S.; et al. Common quantitative trait locus downstream of RETN gene identified by genome-wide association study is associated with risk of type 2 diabetes mellitus in Han Chinese: A Mendelian randomization effect. Diabetes/Metabolism Res. Rev. 2014, 30, 232–240. [Google Scholar]
- Su, K.-Z.; Li, Y.-R.; Zhang, D.; Yuan, J.-H.; Zhang, C.-S.; Liu, Y.; Song, L.-M.; Lin, Q.; Li, M.-W.; Dong, J. Relation of Circulating Resistin to Insulin Resistance in Type 2 Diabetes and Obesity A Systematic Review and Meta-Analysis. Front. Physiol. 2019, 10, 1399. [Google Scholar]
- Jha, J.C.; Ho, F.; Dan, C.; Jandeleit-Dahm, K. A causal link between oxidative stress and inflammation in cardiovascular and renal complications of diabetes. Clin. Sci. 2018, 132, 1811–1836. [Google Scholar]
- Dal Canto, E.; Ceriello, A.; Rydén, L.; Ferrini, M.; Hansen, T.B.; Schnell, O.; Standl, E.; Beulens, J.W. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur. J. Prev. Cardiol. 2019, 26 (Suppl. S2), 25–32. [Google Scholar]
- Biscetti, F.; Nardella, E.; Cecchini, A.L.; Flex, A.; Landolfi, R. Biomarkers of vascular disease in diabetes: The adipose-immune system cross talk. Intern. Emerg. Med. 2020, 15, 381–393. [Google Scholar]
- Recinella, L.; Orlando, G.; Ferrante, C.; Chiavaroli, A.; Brunetti, L.; Leone, S. Adipokines: New Potential Therapeutic Target for Obesity and Metabolic, Rheumatic, and Cardiovascular Diseases. Front. Physiol. 2020, 11, 578966. [Google Scholar]
- Petrie, J.R.; Guzik, T.J.; Touyz, R.M. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can. J. Cardiol. 2018, 34, 575–584. [Google Scholar] [PubMed]
- Yang, W.; Li, Y.; Wang, J.Y.; Han, R.; Wang, L. Circulating levels of adipose tissue-derived inflammatory factors in elderly diabetes patients with carotid atherosclerosis: A retrospective study. Cardiovasc. Diabetol. 2018, 17, 75. [Google Scholar] [PubMed]
- Zhang, Y.; Li, Y.; Yu, L.; Zhou, L. Association between serum resistin concentration and hypertension: A systematic review and meta-analysis. Oncotarget 2017, 8, 41529. [Google Scholar]
- Jiang, Y.; Lu, L.; Hu, Y.; Li, Q.; An, C.; Yu, X.; Shu, L.; Chen, A.; Niu, C.; Zhou, L.; et al. Resistin Induces Hypertension and Insulin Resistance in Mice via a TLR4-Dependent Pathway. Sci. Rep. 2016, 6, 22193. [Google Scholar]
- Chen, C.; Jiang, J.; Lü, J.M.; Chai, H.; Wang, X.; Lin, P.H.; Yao, Q. Resistin decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells. Am. J. Physiol. Circ. Physiol. 2010, 299, 193–201. Available online: www.ajpheart.org (accessed on 4 December 2022).
- Jamaluddin, M.S.; Yan, S.; Lü, J.; Liang, Z.; Yao, Q.; Chen, C. Resistin increases monolayer permeability of human coronary artery endothelial cells. PLoS ONE 2013, 8, e84576. [Google Scholar]
- Al-Taie, M.; Baban, R.; Hamed, M. The correlation between serum resistin and toll-like receptor-4 with insulin resistance in hypertensive subjects with or without type 2 diabetes mellitus. Appl. Biol. Sci. 2021, 2, 203–217. [Google Scholar]
- Takata, Y.; Osawa, H.; Kurata, M.; Kurokawa, M.; Yamauchi, J.; Ochi, M.; Nishida, W.; Okura, T.; Higaki, J.; Makino, H. Hyperresistinemia is associated with coexistence of hypertension and type 2 diabetes. Hypertension 2008, 51, 534–539. [Google Scholar]
- Frąk, W.; Wojtasińska, A.; Lisińska, W.; Młynarska, E.; Franczyk, B.; Rysz, J. Pathophysiology of Cardiovascular Diseases: New Insights into Molecular Mechanisms of Atherosclerosis, Arterial Hypertension, and Coronary Artery Disease. Biomedicines 2022, 10, 1938. [Google Scholar] [CrossRef]
- Jebari-Benslaiman, S.; Galicia-García, U.; Larrea-Sebal, A.; Olaetxea, J.R.; Alloza, I.; Vandenbroeck, K.; Benito-Vicente, A.; Martín, C. Pathophysiology of Atherosclerosis. Int. J. Mol. Sci. 2022, 23, 3346. [Google Scholar] [CrossRef] [PubMed]
- Björkegren, J.L.M.; Lusis, A.J. Atherosclerosis: Recent developments. Cell 2022, 185, 1630–1645. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Shi, Z.; Ji, X.; Zhang, W.; Luan, J.; Zahr, T.; Qiang, L. Adipokines, adiposity, and atherosclerosis. Cell. Mol. Life Sci. 2022, 79, 272. [Google Scholar] [CrossRef] [PubMed]
- Van De Voorde, J.; Pauwels, B.; Boydens, C.; Decaluwé, K. Adipocytokines in relation to cardiovascular disease. Metabolism 2013, 62, 1513–1521. [Google Scholar] [CrossRef]
- Cho, Y.; Lee, S.E.; Lee, H.C.; Hur, J.; Lee, S.; Youn, S.W.; Lee, J.; Lee, H.J.; Lee, T.K.; Park, J.; et al. Adipokine resistin is a key player to modulate monocytes, endothelial cells, and smooth muscle cells, leading to progression of atherosclerosis in rabbit carotid artery. J. Am. Coll. Cardiol. 2011, 57, 99–109. [Google Scholar]
- Lee, T.S.; Lin, C.Y.; Tsai, J.Y.; Wu, Y.L.; Su, K.H.; Lu, K.Y.; Hsiao, S.-H.; Pan, C.-C.; Kou, Y.R.; Hsu, Y.-P.; et al. Resistin increases lipid accumulation by affecting class A scavenger receptor, CD36 and ATP-binding cassette transporter-A1 in macrophages. Life Sci. 2009, 84, 97–104. [Google Scholar]
- Zhou, J.; Zhou, S. Inflammation: Therapeutic targets for diabetic neuropathy. Mol. Neurobiol. 2013, 49, 536–546. [Google Scholar]
- Kougias, P.; Chai, H.; Lin, P.H.; Lumsden, A.B.; Yao, Q.; Chen, C. Adipocyte-derived cytokine resistin causes endothelial dysfunction of porcine coronary arteries. J. Vasc. Surg. 2005, 41, 691–698. [Google Scholar]
- Reilly, M.P.; Lehrke, M.; Wolfe, M.L.; Rohatgi, A.; Lazar, M.A.; Rader, D.J. Resistin is an inflammatory marker of atherosclerosis in humans. Circulation 2005, 111, 932–939. [Google Scholar]
- On, Y.K.; Park, H.K.; Hyon, M.S.; Jeon, E.S. Serum Resistin as a Biological Marker for Coronary Artery Disease and Restenosis in Type 2 Diabetic Patients. Circ. J. 2007, 71, 868–873. [Google Scholar] [CrossRef]
- Wang, L.K.; Wu, X.L.; Shi, L.; Yang, R.M.; Liu, W.L.; Hu, Z.S.; Zhang, Z.-H.; Wang, Y.-C. Evaluation of Vascular Remodeling in Carotid Atherosclerosis among Type 2 Diabetes Mellitus Patients Using High-Frequency Ultrasonography Combined with Serum Resistin. Exp. Clin. Endocrinol. Diabetes 2018, 6, 41–49. [Google Scholar]
- Dullaart, R.P.F.; de Vries, R.; van Tol, A.; Sluiter, W.J. Lower plasma adiponectin is a marker of increased intimamedia thickness associated with type 2 diabetes mellitus and with male gender. Eur. J. Endocrinol. 2007, 156, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Liu, Y.; Li, Y.; Xu, F.; Liu, Y. Type 2 Diabetes and Myocardial Infarction: Recent Clinical Evidence and Perspective. Front. Cardiovasc. Med. 2021, 8, 644189. [Google Scholar]
- Fuster, V.; Moreno, P.R.; Fayad, Z.A.; Corti, R.; Badimon, J.J. Atherothrombosis and high-risk plaque: Part I: Evolving concepts. J. Am. Coll. Cardiol. 2005, 46, 937–954. [Google Scholar]
- Mezil, S.A.; Ahmed, B. Complication of Diabetes Mellitus. Ann. Rom. Soc. Cell Biol. 2021, 25, 1546–1556. Available online: http://annalsofrscb.ro (accessed on 25 February 2025).
- Bobbert, P.; Eisenreich, A.; Weithäuser, A.; Schultheiss, H.P.; Rauch, U. Leptin and resistin induce increased procoagulability in diabetes mellitus. Cytokine 2011, 56, 332–337. [Google Scholar]
- Carr, M.E. Diabetes mellitus. A hypercoagulable state. J. Diabetes Complicat. 2001, 15, 44–54. [Google Scholar]
- Maida, C.D.; Daidone, M.; Pacinella, G.; Norrito, R.L.; Pinto, A.; Tuttolomondo, A. Diabetes and Ischemic Stroke: An Old and New Relationship an Overview of the Close Interaction between These Diseases. Int. J. Mol. Sci. 2022, 23, 2397. [Google Scholar] [CrossRef]
- Gerald, M. Resistin Structure, Function and Role in Disease; Nova Science Publishers: Hauppauge, NY, USA, 2019. [Google Scholar]
- Qiu, W.; Chen, N.; Zhang, Q.; Zhuo, L.; Wang, X.; Wang, D.; Jin, H. Resistin increases platelet P-selectin levels via p38 MAPK signal pathway. Diabetes Vasc. Dis. Res. 2014, 11, 121–124. [Google Scholar]
- Cabrera De León, A.; Almeida González, D.; González Hernández, A.; Juan, J.; Sánchez, A.; Brito Díaz, B.; Coello, S.D.; Rodríguez, I.M.; García, J.G.; Jaime, A.A.; et al. The Association of Resistin with Coronary Disease in the General Population. J. Atheroscler. Thromb. 2014, 21, 273–281. Available online: http://www.cdcdecanarias.org (accessed on 22 February 2025).
- Yaseen, F.; Jaleel, A.; Aftab, J.; Zuberi, A.; Alam, E. Circulating levels of resistin, IL-6 and lipid profile in elderly patients with ischemic heart disease with and without diabetes. Biomarkers Med. 2012, 6, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Erer, H.B.; Sayar, N.; Guvenc, T.S.; Aksaray, S.; Yilmaz, H.; Altay, S.; Turer, A.; Oz, T.K.; Karadeniz, F.O.; Oz, D.; et al. Prognostic value of serum resistin levels in patients with acute myocardial infarction. Kardiol. Pol. 2014, 72, 181–186. [Google Scholar] [PubMed]
- Korah, T.E.; Badr, E.A.E.; Elshafie, M.K. Serum resistin in acute myocardial infarction patients with and without diabetes mellitus. Egypt. Heart J. 2012, 64, 27–33. [Google Scholar] [CrossRef]
- He, J.; Liu, D.; Zhao, L.; Zhou, D.; Rong, J.; Zhang, L.; Xia, Z. Myocardial ischemia/reperfusion injury: Mechanisms of injury and implications for management (Review). Exp. Ther. Med. 2022, 23, 430. [Google Scholar]
- Han, R.; Huang, H.; Zhu, J.; Jin, X.; Wang, Y.; Xu, Y.; Xia, Z. Adipokines and their potential impacts on susceptibility to myocardial ischemia/reperfusion injury in diabetes. Lipids Health Dis. 2024, 23, 372. [Google Scholar]
- Gao, J.; Chang Chua, C.; Chen, Z.; Wang, H.; Xu, X.; Hamdy, R.C.; McMullen, J.R.; Shioi, T.; Izumo, S.; Chua, B.H. Resistin, an adipocytokine, offers protection against acute myocardial infarction. J. Mol. Cell. Cardiol. 2007, 43, 601–609. [Google Scholar] [CrossRef]
- Rothwell, S.E.; Richards, A.M.; Pemberton, C.J. Resistin worsens cardiac ischaemia-reperfusion injury. Biochem. Biophys. Res. Commun. 2006, 349, 400–407. [Google Scholar]
- Smith, C.C.T.; Lim, S.Y.; Wynne, A.M.; Sivaraman, V.; Davidson, S.M.; Mocanu, M.M.; Hausenloy, D.J.; Yellon, D.M. Failure of the adipocytokine, resistin, to protect the heart from ischemia-reperfusion injury. J. Cardiovasc. Pharmacol. Ther. 2011, 16, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Miyoshi, T.; Yoshida, M.; Akagi, S.; Saito, Y.; Ejiri, K.; Matsuo, N.; Ichikawa, K.; Iwasaki, K.; Naito, T.; et al. Pathophysiology and Treatment of Diabetic Cardiomyopathy and Heart Failure in Patients with Diabetes Mellitus. Int. J. Mol. Sci. 2022, 23, 3587. [Google Scholar] [CrossRef]
- Packer, M. Heart Failure: The most important, preventable, and treatable cardiovascular complication of type 2 diabetes. Diabetes Care 2018, 41, 11–13. [Google Scholar]
- Rajbhandari, J.; Fernandez, C.J.; Agarwal, M.; Yeap, B.X.Y.; Pappachan, J.M. Diabetic heart disease: A clinical update. World J. Diabetes 2021, 12, 383–406. [Google Scholar] [CrossRef] [PubMed]
- Park, J.J. Epidemiology, pathophysiology, diagnosis and treatment of heart failure in diabetes. Diabetes Metab. J. 2021, 45, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Samanidis, G.; Gkogkos, A.; Bousounis, S.; Alexopoulos, L.; Perrea, D.N.; Perreas, K. Blood Plasma Resistin and Atrial Fibrillation in Patients with Cardiovascular Disease. Cardiol. Res. 2020, 11, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.W.; Zheng, X.; Cheng, G.C.; Ye, Q.H.; Deng, Y.Z.; Wu, L. Resistin-induced cardiomyocyte hypertrophy is inhibited by apelin through the inactivation of extracellular signal-regulated kinase signaling pathway in H9c2 embryonic rat cardiomyocytes. Biomed. Rep. 2016, 5, 473–478. [Google Scholar] [CrossRef]
- Singh, R.; Moreno, P.; Hajjar, R.J.; Lebeche, D. A role for calcium in resistin transcriptional activation in diabetic hearts. Sci. Rep. 2018, 8, 15633. [Google Scholar] [CrossRef]
- Graveleau, C.; Zaha, V.G.; Mohajer, A.; Banerjee, R.R.; Dudley-Rucker, N.; Steppan, C.M.; Rajala, M.W.; Scherer, P.E.; Ahima, R.S.; Lazar, M.A.; et al. Mouse and human resistins impair glucose transport in primary mouse cardiomyocytes, and oligomerization is required for this biological action. J. Biol. Chem. 2005, 280, 31679–31685. [Google Scholar] [CrossRef]
- Ghanem, S.E.; Abdel-Samiee, M.; Torky, M.H.; Gaafar, A.; Mohamed, S.M.; Salah Eldin, G.M.M.; Awad, S.M.; A Diab, K.; Elsabaawy, D.M.; Yehia, S.A.; et al. Role of resistin, IL-6 and NH2-terminal portion proBNP in the pathogenesis of cardiac disease in type 2 diabetes mellitus. BMJ Open Diabetes Res. Care 2020, 8, e001206. [Google Scholar] [CrossRef]
- Takeishi, Y.; Niizeki, T.; Arimoto, T.; Nozaki, N.; Hirono, O.; Nitobe, J.; Watanabe, T.; Takabatake, N.; Kubota, I. Serum Resistin is Associated with High Risk in Patients. Circ. J. 2007, 71, 460–464. [Google Scholar] [CrossRef]
- Osawa, H.; Ochi, M.; Kato, K.; Yamauchi, J.; Nishida, W.; Takata, Y.; Kawamura, R.; Onuma, H.; Takasuka, T.; Shimizu, I.; et al. Serum resistin is associated with the severity of microangiopathies in type 2 diabetes. Biochem. Biophys. Res. Commun. 2007, 355, 342–346. [Google Scholar] [CrossRef]
- Li, M.; Fan, R.; Peng, X.; Huang, J.; Zou, H.; Yu, X.; Yang, Y.; Shi, X.; Ma, D. Association of ANGPTL8 and Resistin with Diabetic Nephropathy in Type 2 Diabetes Mellitus. Front. Endocrinol. 2021, 12, 695750. [Google Scholar] [CrossRef]
- Pelle, M.C.; Provenzano, M.; Busutti, M.; Porcu, C.V.; Zaffina, I.; Stanga, L.; Arturi, F. Up-Date on Diabetic Nephropathy. Life 2022, 12, 1202. [Google Scholar] [CrossRef] [PubMed]
- Samsu, N. Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. BioMed Res. Int. 2021, 2021, 1497449. [Google Scholar] [CrossRef] [PubMed]
- Al-Rubeaan, K.; Siddiqui, K.; Al-Ghonaim, M.A.; Youssef, A.M.; Al-Sharqawi, A.H.; Alnaqeb, D. Assessment of the diagnostic value of different biomarkers in relation to various stages of diabetic nephropathy in type 2 diabetic patients. Sci. Rep. 2017, 7, 2684. [Google Scholar] [CrossRef] [PubMed]
- Monjezi, A.; Khedri, A.; Zakerkish, M.; Mohammadzadeh, G. Resistin, TNF-α, and microRNA 124-3p expressions in peripheral blood mononuclear cells are associated with diabetic nephropathy. Int. J. Diabetes Dev. Ctries. 2022, 42, 62–69. [Google Scholar] [CrossRef]
- Calças, R.; Borges, H.; Afonso, R.; Soares, J.; Carias, E.; Carrasqueira, H.; Silva, A.P. Resistin in Early Diabetic Chronic Kidney Disease: Exploring the Link with Nutritional Status and Cardiovascular Outcome. In Chronic Kidney Disease-Novel Insights into Pathophysiology and Treatment; IntechOpen: London, UK, 2024; Available online: www.intechopen.com (accessed on 22 January 2025).
- Moreno, L.O.; Salvemini, L.; Mendonca, C.; Copetti, M.; De Bonis, C.; De Cosmo, S.; Doria, A.; Trischitta, V.; Menzaghi, C. Serum resistin and glomerular filtration rate in patients with type 2 diabetes. PLoS ONE 2015, 10, e0119529. [Google Scholar] [CrossRef]
- Tofangchiha, S.; Rahimi, S.; Mirzaii-Dizgah, I.; Isazadeh, M.; Mansournia, N.; Taghavi, Y.; Larijani, A.M. The Relationship Between Serum Resistin Levels and Diabetic Nephropathy in Type 2 Diabetic Patients. Ann. Mil. Health Sci. Res. 2020, 18, e107878. [Google Scholar] [CrossRef]
- Huang, J.; Peng, X.; Dong, K.; Tao, J.; Yang, Y. The association between insulin resistance, leptin, and resistin and diabetic nephropathy in type 2 diabetes mellitus patients with different body mass indexes. Diabetes Metab. Syndr. Obes. Targets Ther. 2021, 14, 2357–2365. [Google Scholar] [CrossRef]
- Bonito, B.; Silva, A.P.; Rato, F.; Santos, N.; Neves, P.L. Resistin as a predictor of cardiovascular hospital admissions and renal deterioration in diabetic patients with chronic kidney disease. J. Diabetes Complicat. 2019, 33, 107422. [Google Scholar] [CrossRef]
- Cohen, G.; Hörl, W.H. Resistin as a cardiovascular and atherosclerotic risk factor and uremic toxin. Semin. Dial. 2009, 22, 373–377. [Google Scholar] [CrossRef]
- Bayliss, G.; Weinrauch, L.A.; D’Elia, J.A. Pathophysiology of obesity-related renal dysfunction contributes to diabetic nephropathy. Curr. Diabetes Rep. 2012, 12, 440–446. [Google Scholar] [CrossRef]
- Mbata, O.; El-Magd, N.F.A.; El-Remessy, A.B. Obesity, metabolic syndrome and diabetic retinopathy: Beyond hyperglycemia. World J. Diabetes 2017, 8, 317–329. [Google Scholar] [PubMed]
- Antonetti, D.A.; Silva, P.S.; Stitt, A.W. Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat. Rev. Endocrinol. 2021, 17, 195–206. [Google Scholar] [PubMed]
- Gurlevik, U.; Ozdamar Erol, Y.; Yasar, E. Serum and vitreous resistin levels in patıents with proliferative diabetic retinopathy. Diabetes Res. Clin. Pr. 2019, 155, 107803. [Google Scholar]
- Rubio-Guerra, A.F.; Cabrera-Miranda, L.J.; Vargas-Robles, H.; MacEda-Serrano, A.; Lozano-Nuevo, J.J.; Escalante-Acosta, B.A. Correlation between levels of circulating adipokines and adiponectin/resistin index with carotid inti-ma-media thickness in hypertensive type 2 diabetic patients. Cardiology 2013, 125, 150–153. [Google Scholar]
- Rubio-Guerra, A.F.; Vargas-Robles, H.; Suárez-Cuenca, J.A.; Lozano-Nuevo, J.J.; Rodríguez-López, L.; Durán-Salgado, M.B.; Escalante-Acosta, B.A. Concentraciones de adipocitocinas en pacientes diabéticos tipo 2, normotensos e hipertensos. Med. Interna México 2014, 3, 146–151. [Google Scholar]
- Giandalia, A.; Alibrandi, A.; Giorgianni, L.; Lo Piano, F.; Consolo, F.; Longo Elia, G.; Asztalos, B.; Cucinotta, D.; Squadrito, G.; Russo, G.T. Resistin levels and inflammatory and endothelial dysfunction markers in obese postmenopausal women with type 2 diabetes mellitus. Diabetol. Metab. Syndr. 2021, 13, 1–10. [Google Scholar]
- Azab, N.; Abdel-Aziz, T.; Ahmed, A.; El-deen, I.M. Correlation of serum resistin level with insulin resistance and severity of retinopathy in type 2 diabetes mellitus. J. Saudi Chem. Soc. 2016, 20, 272–277. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reynoso-Roa, A.S.; Gutiérrez-Rubio, S.A.; Magallón-Gastélum, E.; García-Iglesias, T.; Suárez-Rico, D.O.; García-Cobián, T.A. The Role of Resistin in Macrovascular and Microvascular Complications of Type 2 Diabetes. Life 2025, 15, 585. https://doi.org/10.3390/life15040585
Reynoso-Roa AS, Gutiérrez-Rubio SA, Magallón-Gastélum E, García-Iglesias T, Suárez-Rico DO, García-Cobián TA. The Role of Resistin in Macrovascular and Microvascular Complications of Type 2 Diabetes. Life. 2025; 15(4):585. https://doi.org/10.3390/life15040585
Chicago/Turabian StyleReynoso-Roa, Africa Samantha, Susan Andrea Gutiérrez-Rubio, Ezequiel Magallón-Gastélum, Trinidad García-Iglesias, Daniel Osmar Suárez-Rico, and Teresa Arcelia García-Cobián. 2025. "The Role of Resistin in Macrovascular and Microvascular Complications of Type 2 Diabetes" Life 15, no. 4: 585. https://doi.org/10.3390/life15040585
APA StyleReynoso-Roa, A. S., Gutiérrez-Rubio, S. A., Magallón-Gastélum, E., García-Iglesias, T., Suárez-Rico, D. O., & García-Cobián, T. A. (2025). The Role of Resistin in Macrovascular and Microvascular Complications of Type 2 Diabetes. Life, 15(4), 585. https://doi.org/10.3390/life15040585