Air Pollution and Endurance Exercise: A Systematic Review of the Potential Effects on Cardiopulmonary Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Information Search and Extraction Strategy
2.3. Study Selection: Inclusion and Exclusion Criteria
2.4. The Characteristics of the Studies
2.5. Characteristics of Participants/Interventions
2.6. Study Design
2.7. Air Pollution Variables and Cardiopulmonary Health Variables
3. Results
Results of Studies
4. Discussion
4.1. Practical Applications
4.2. Limitations and Future Lines of Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviations | Definition |
PM2.5/PM10/PM1/PM0.1 | Particulate matter with diameter ≤ 2.5 μm/10 μm/1 μm/0.1 μm |
NO2 | Nitrogen dioxide |
NO/NOx | Nitric oxide/nitrogen oxides |
CO | Carbon monoxide |
CO2 | Carbon dioxide |
O3 | Ozone |
DE | Diesel exhaust |
BC | Black carbon |
UFPM | Ultrafine particulate matter |
HR | Heart rate |
HRV | Heart rate variability |
SBP/DBP | Systolic/diastolic blood pressure |
VO2/VO2max/VO2peak | Oxygen Uptake/Maximal Oxygen Uptake/Peak Oxygen Uptake |
VCO2 | Carbon Dioxide Output |
VT | Tidal volume |
VE | Minute Ventilation |
FVC | Forced vital capacity |
FEV1 | Forced expiratory volume in 1 second |
PEF/PEFR | Peak expiratory flow/peak expiratory flow rate |
FEF25–75 | Forced expiratory flow at 25–75% of the pulmonary volume |
RV | Residual volume |
SpO2 | Peripheral Oxygen Saturation |
FeNO/eNO | Fraction of Exhaled Nitric Oxide |
NO3− | Nitrate |
IL-xx | Interleukins (e.g., IL-1β, IL-6, IL-8) |
VEGF | Vascular Endothelial Growth Factor |
TNF-α | Tumor Necrosis Factor Alpha |
GM-CSF | Granulocyte–macrophage colony-stimulating factor |
NE | Norepinephrine |
MVF/FMD | Microvascular function/flow-mediated dilation |
sICAM-1/sVCAM-1/sP-Selectin | Soluble Intercellular/Vascular Cell Adhesion Molecules/Selectin P |
EBC | Exhaled breath condensate |
CRAE/CRVE | Central retinal arteriolar/venular equivalents |
FBF | Forearm blood flow |
AMC | Airway macrophage carbon |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
PICO | Patient, Intervention, Comparison, Outcome (framework for research questions) |
References
- Brugha, R.; Grigg, J. Urban air pollution and respiratory infections. Paediatr. Respir. Rev. 2014, 15, 194–199. [Google Scholar] [PubMed]
- Sierra-Vargas, M.P.; Teran, L.M. Air pollution: Impact and prevention. Respirology 2012, 17, 1031–1038. [Google Scholar]
- Orru, H.; Ebi, K.L.; Forsberg, B. The Interplay of Climate Change and Air Pollution on Health. Curr. Environ. Health Rep. 2017, 4, 504–513. [Google Scholar] [PubMed]
- Chen, J.; Hoek, G. Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-analysis. Environ. Int. 2020, 143, 105974. [Google Scholar] [PubMed]
- Huang, K.; Chung, K.F.; Yang, T.; Xu, J.; Yang, L.; Zhao, J.; Zhang, X.; Bai, C.; Kang, J.; Ran, P.; et al. Chronic Obstructive Pulmonary Disease With Asthma-Like Features in the General Population in China. Front. Med. 2022, 9, 876240. [Google Scholar]
- Milani, G.P.; Cafora, M.; Favero, C.; Luganini, A.; Carugno, M.; Lenzi, E.; Pistocchi, A.; Pinatel, E.; Pariota, L.; Ferrari, L.; et al. PM2.5, PM10 and bronchiolitis severity: A cohort study. Pediatr. Allergy Immunol. 2022, 33, e13853. [Google Scholar]
- Pfeffer, P.E.; Mudway, I.S.; Grigg, J. Air Pollution and Asthma: Mechanisms of Harm and Considerations for Clinical Interventions. Chest 2021, 159, 1346–1355. [Google Scholar]
- Bhatnagar, A. Cardiovascular Effects of Particulate Air Pollution. Annu. Rev. Med. 2022, 73, 393–406. [Google Scholar]
- Afsar, B.; Elsurer Afsar, R.; Kanbay, A.; Covic, A.; Ortiz, A.; Kanbay, M. Air pollution and kidney disease: Review of current evidence. Clin. Kidney J. 2019, 12, 19–32. [Google Scholar]
- Glencross, D.A.; Ho, T.-R.; Camiña, N.; Hawrylowicz, C.M.; Pfeffer, P.E. Air pollution and its effects on the immune system. Free Radic. Biol. Med. 2020, 151, 56–68. [Google Scholar] [CrossRef]
- Feng, J.; Cavallero, S.; Hsiai, T.; Li, R. Impact of air pollution on intestinal redox lipidome and microbiome. Free Radic. Biol. Med. 2020, 151, 99–110. [Google Scholar] [PubMed]
- Yang, B.-Y.; Fan, S.; Thiering, E.; Seissler, J.; Nowak, D.; Dong, G.-H.; Heinrich, J. Ambient air pollution and diabetes: A systematic review and meta-analysis. Environ. Res. 2020, 180, 108817. [Google Scholar]
- Buoli, M.; Grassi, S.; Caldiroli, A.; Carnevali, G.S.; Mucci, F.; Iodice, S.; Cantone, L.; Pergoli, L.; Bollati, V. Is there a link between air pollution and mental disorders? Environ. Int. 2018, 118, 154–168. [Google Scholar] [PubMed]
- Pope, C.A.; Coleman, N.; Pond, Z.A.; Burnett, R.T. Fine particulate air pollution and human mortality: 25+ years of cohort studies. Environ. Res. 2020, 183, 108924. [Google Scholar]
- Copat, C.; Cristaldi, A.; Fiore, M.; Grasso, A.; Zuccarello, P.; Signorelli, S.S.; Conti, G.O.; Ferrante, M. The role of air pollution (PM and NO2) in COVID-19 spread and lethality: A systematic review. Environ. Res. 2020, 191, 110129. [Google Scholar] [PubMed]
- Khan, Y.A. Risk of mortality due to COVID-19 and air pollution in Pakistan. Environ. Sci. Pollut. Res. Int. 2022, 29, 2063–2072. [Google Scholar]
- Travaglio, M.; Yu, Y.; Popovic, R.; Selley, L.; Leal, N.S.; Martins, L.M. Links between air pollution and COVID-19 in England. Environ. Pollut. 2021, 268, 115859. [Google Scholar]
- Woodby, B.; Arnold, M.M.; Valacchi, G. SARS-CoV-2 infection, COVID-19 pathogenesis, and exposure to air pollution: What is the connection? Ann. N. Y. Acad. Sci. 2021, 1486, 15–38. [Google Scholar]
- Silveira, A.C.; Hasegawa, J.S.; Cruz, R.; Matsuda, M.; Marquezini, M.V.; Lima-Silva, A.E.; Giles, L.V.; Saldiva, P.; Koehle, M.S.; Bertuzzi, R. Effects of air pollution exposure on inflammatory and endurance performance in recreationally trained cyclists adapted to traffic-related air pollution. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2022, 322, R562–R570. [Google Scholar]
- Tainio, M.; Jovanovic Andersen, Z.; Nieuwenhuijsen, M.J.; Hu, L.; de Nazelle, A.; An, R.; Garcia, L.M.T.; Goenka, S.; Zapata-Diomedi, B.; Bull, F.; et al. Air pollution, physical activity and health: A mapping review of the evidence. Environ. Int. 2021, 147, 105954. [Google Scholar]
- Giorgini, P.; Rubenfire, M.; Bard, R.L.; Jackson, E.A.; Ferri, C.; Brook, R.D. Air Pollution and Exercise: A review of the cardiovascular implications for health care professionals. J. Cardiopulm. Rehabil. Prev. 2016, 36, 84–95. [Google Scholar] [CrossRef]
- Cruz, R.; Pasqua, L.; Silveira, A.; Damasceno, M.; Matsuda, M.; Martins, M.; Marquezini, M.V.; Lima-Silva, A.E.; Saldiva, P.; Bertuzzi, R. Traffic-related air pollution and endurance exercise: Characterizing nontargeted serum metabolomics profiling. Environ. Pollut. 2021, 291, 118204. [Google Scholar] [CrossRef]
- Liang, D.; Moutinho, J.L.; Golan, R.; Yu, T.; Ladva, C.N.; Niedzwiecki, M.; Walker, D.I.; Sarnat, S.E.; Chang, H.H.; Greenwald, R.; et al. Use of high-resolution metabolomics for the identification of metabolic signals associated with traffic-related air pollution. Environ. Int. 2018, 120, 145–154. [Google Scholar] [CrossRef]
- Cole, C.A.; Carlsten, C.; Koehle, M.; Brauer, M. Particulate matter exposure and health impacts of urban cyclists: A randomized crossover study. Environ. Health 2018, 17, 78. [Google Scholar] [CrossRef]
- Naidenova, I.; Parshakov, P.; Suvorov, S. Air pollution and individual productivity: Evidence from the Ironman Triathlon results. Econ. Hum. Biol. 2022, 47, 101159. [Google Scholar] [CrossRef]
- Kim, S.R.; Choi, S.; Kim, K.; Chang, J.; Kim, S.M.; Cho, Y.; Oh, Y.H.; Lee, G.; Son, J.S.; Kim, K.H.; et al. Association of the combined effects of air pollution and changes in physical activity with cardiovascular disease in young adults. Eur. Heart J. 2021, 42, 2487–2497. [Google Scholar] [CrossRef]
- Münzel, T.; Hahad, O.; Daiber, A. Running in polluted air is a two-edged sword—Physical exercise in low air pollution areas is cardioprotective but detrimental for the heart in high air pollution areas. Eur. Heart J. 2021, 42, 2498–2500. [Google Scholar] [CrossRef]
- Marr, L.C.; Ely, M.R. Effect of air pollution on marathon running performance. Med. Sci. Sports Exerc. 2010, 42, 585–591. [Google Scholar] [CrossRef]
- Carlisle, A.J.; Sharp, N.C. Exercise and outdoor ambient air pollution. Br. J. Sports Med. 2001, 35, 214–222. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Strak, M.; Boogaard, H.; Meliefste, K.; Oldenwening, M.; Zuurbier, M.; Brunekreef, B.; Hoek, G. Respiratory health effects of ultrafine and fine particle exposure in cyclists. Occup. Environ. Med. 2010, 67, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Weichenthal, S.; Kulka, R.; Dubeau, A.; Martin, C.; Wang, D.; Dales, R. Traffic-Related Air Pollution and Acute Changes in Heart Rate Variability and Respiratory Function in Urban Cyclists. Environ. Health Perspect. 2011, 119, 1373–1378. [Google Scholar]
- Weichenthal, S.; Hatzopoulou, M.; Goldberg, M.S. Exposure to traffic-related air pollution during physical activity and acute changes in blood pressure, autonomic and microvascular function in women: A crossover study. Part. Fiber Toxicol. 2014, 11, 70. [Google Scholar]
- Sehlstedt, M.; Behndig, A.F.; Boman, C.; Blomberg, A.; Sandström, T.; Pourazar, J. Airway inflammatory response to diesel exhaust generated at urban cycle running conditions. Inhal. Toxicol. 2010, 22, 1144–1150. [Google Scholar] [PubMed]
- Pasqua, L.A.; Damasceno, M.V.; Cruz, R.; Matsuda, M.; Martins, M.A.G.; Marquezini, M.V.; Lima-Silva, A.E.; Saldiva, P.H.N.; Bertuzzi, R. Exercising in the urban center: Inflammatory and cardiovascular effects of prolonged exercise under air pollution. Chemosphere. 2020, 254, 126817. [Google Scholar] [PubMed]
- Park, H.-Y.; Gilbreath, S.; Barakatt, E. Respiratory outcomes of ultrafine particulate matter (UFPM) as a surrogate measure of near-roadway exposures among bicyclists. Environ. Health 2017, 16, 6. [Google Scholar] [CrossRef]
- Kubesch, N.; De Nazelle, A.; Guerra, S.; Westerdahl, D.; Martinez, D.; Bouso, L.; Carrasco-Turigas, G.; Hoffmann, B.; Nieuwenhuijsen, M. Arterial blood pressure responses to short-term exposure to low and high traffic-related air pollution with and without moderate physical activity. Eur. J. Prev. Cardiol. 2015, 22, 548–557. [Google Scholar]
- Kubesch, N.J.; De Nazelle, A.; Westerdahl, D.; Martinez, D.; Carrasco-Turigas, G.; Bouso, L.; Guerra, S.; Nieuwenhuijsen, M.J. Respiratory and inflammatory responses to short-term exposure to traffic-related air pollution with and without moderate physical activity. Occup. Environ. Med. 2015, 72, 284–293. [Google Scholar]
- Koch, S.; Zelembaba, A.; Tran, R.; Laeremans, M.; Hives, B.; Carlsten, C.; De Boever, P.; Koehle, M.S. Vascular effects of physical activity are not modified by short-term inhaled diesel exhaust: Results of a controlled human exposure study. Environ. Res. 2020, 183, 109270. [Google Scholar] [CrossRef]
- Jacobs, L.; Nawrot, T.S.; De Geus, B.; Meeusen, R.; Degraeuwe, B.; Bernard, A.; Sughis, M.; Nemery, B.; Panis, L.I. Subclinical responses in healthy cyclists briefly exposed to traffic-related air pollution: An intervention study. Environ. Health 2010, 9, 64. [Google Scholar]
- Hernández, M.A.; Ramírez, O.; Benavides, J.A.; Franco, J.F. Urban cycling and air quality: Characterizing cyclist exposure to particulate-related pollution. Urban Clim. 2021, 36, 100767. [Google Scholar]
- Giles, L.V.; Tebbutt, S.J.; Carlsten, C.; Koehle, M.S. Effects of low-intensity and high-intensity cycling with diesel exhaust exposure on soluble P-selectin, E-selectin, I-CAM-1, VCAM-1 and complete blood count. BMJ Open Sport Exerc. Med. 2019, 5, e000625. [Google Scholar] [PubMed]
- Giles, L.V.; Tebbutt, S.J.; Carlsten, C.; Koehle, M.S. The effect of low and high-intensity cycling in diesel exhaust on flow-mediated dilation, circulating NOx, endothelin-1 and blood pressure. PLoS ONE 2018, 13, e0192419. [Google Scholar]
- Giles, L.V.; Carlsten, C.; Koehle, M.S. The pulmonary and autonomic effects of high-intensity and low-intensity exercise in diesel exhaust. Environ. Health 2018, 17, 87. [Google Scholar] [CrossRef]
- Elliott, L.; Loomis, D. Respiratory effects of road pollution in recreational cyclists: A pilot study. Arch. Environ. Occup. Health 2021, 76, 94–102. [Google Scholar] [PubMed]
- Barath, S.; Mills, N.L.; Lundbäck, M.; Törnqvist, H.; Lucking, A.J.; Langrish, J.P.; Söderberg, S.; Boman, C.; Westerholm, R.; Löndahl, J.; et al. Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions. Part. Fiber Toxicol. 2010, 7, 19. [Google Scholar]
- Aydın, S.; Cingi, C.; San, T.; Ulusoy, S.; Orhan, İ. The effects of air pollutants on nasal functions of outdoor runners. Eur. Arch. Otorhinolaryngol. 2014, 271, 713–717. [Google Scholar]
- Jarjour, S.; Jerrett, M.; Westerdahl, D.; De Nazelle, A.; Hanning, C.; Daly, L.; Lipsitt, J.; Balmes, J. Cyclist route choice, traffic-related air pollution, and lung function: A scripted exposure study. Environ. Health 2013, 12, 14. [Google Scholar]
- Giles, L.V.; Carlsten, C.; Koehle, M.S. The effect of preexercise diesel exhaust exposure on cycling performance and cardio-respiratory variables. Inhal. Toxicol. 2012, 24, 783–789. [Google Scholar] [CrossRef]
- Giles, L.V.; Brandenburg, J.P.; Carlsten, C.; Koehle, M.S. Physiological Responses to Diesel Exhaust Exposure Are Modified by Cycling Intensity. Med. Sci. Sports Exerc. 2014, 46, 1999–2006. [Google Scholar]
- Cutrufello, P.T.; Rundell, K.W.; Smoliga, J.M.; Stylianides, G.A. Inhaled whole exhaust and its effect on exercise performance and vascular function. Inhal. Toxicol. 2011, 23, 658–667. [Google Scholar] [PubMed]
- Gomes, E.C.; Stone, V.; Florida-James, G. Investigating performance and lung function in a hot, humid and ozone-polluted environment. Eur. J. Appl. Physiol. 2010, 110, 199–205. [Google Scholar]
- Nwokoro, C.; Ewin, C.; Harrison, C.; Ibrahim, M.; Dundas, I.; Dickson, I.; Mushtaq, N.; Grigg, J. Cycling to work in London and inhaled dose of black carbon. Eur. Respir. J. 2012, 40, 1091–1097. [Google Scholar] [CrossRef]
- Rundell, K.W.; Slee, J.B.; Caviston, R.; Hollenbach, A.M. Decreased Lung Function After Inhalation of Ultrafine and Fine Particulate Matter During Exercise is Related to Decreased Total Nitrate in Exhaled Breath Condensate. Inhal. Toxicol. 2008, 20, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ghio, A.J.; Carraway, M.S.; Madden, M.C. Composition of Air Pollution Particles and Oxidative Stress in Cells, Tissues, and Living Systems. J. Toxicol. Environ. Health B 2012, 15, 1–21. [Google Scholar]
- Mantecca, P.; Farina, F.; Moschini, E.; Gallinotti, D.; Gualtieri, M.; Rohr, A.; Sancini, G.; Palestini, P.; Camatini, M. Comparative acute lung inflammation induced by atmospheric PM and size-fractionated tire particles. Toxicol. Lett. 2010, 198, 244–254. [Google Scholar]
- Xu, X.; Deng, F.; Guo, X.; Lv, P.; Zhong, M.; Liu, C.; Wang, A.; Tzan, K.; Jiang, S.Y.; Lippmann, M.; et al. Association of systemic inflammation with marked changes in particulate air pollution in Beijing in 2008. Toxicol. Lett. 2012, 212, 147–156. [Google Scholar] [CrossRef]
- Araneda, O.F.; Kosche-Cárcamo, F.; Verdugo-Marchese, H.; Tuesta, M. Pulmonary Effects Due to Physical Exercise in Polluted Air: Evidence from Studies Conducted on Healthy Humans. Appl. Sci. 2021, 11, 2890. [Google Scholar] [CrossRef]
- Cheng, J.; Wu, Y.; Wang, X.; Yu, H. Objectively measured the impact of ambient air pollution on physical activity for older adults. BMC Public Health 2024, 24, 821. [Google Scholar]
- Cusick, M.; Rowland, S.T.; DeFelice, N. Impact of air pollution on running performance. Sci. Rep. 2023, 13, 1832. [Google Scholar]
- You, Y.; Wang, D.; Liu, J.; Chen, Y.; Ma, X.; Li, W. Physical Exercise in the Context of Air Pollution: An Emerging Research Topic. Front. Physiol. 2022, 13, 784705. [Google Scholar]
- Naghavi, M.; Abajobir, A.A.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abera, S.F.; Aboyans, V.; Adetokunboh, O.; Afshin, A.; Agrawal, A.; et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1151–1210. [Google Scholar]
- Pryor, J.T.; Cowley, L.O.; Simonds, S.E. The Physiological Effects of Air Pollution: Particulate Matter, Physiology and Disease. Front. Public Health 2022, 10, 882569. [Google Scholar]
- Liao, M.; Braunstein, Z.; Rao, X. Sex differences in particulate air pollution-related cardiovascular diseases: A review of human and animal evidence. Sci. Total Environ. 2023, 884, 163803. [Google Scholar]
- Shin, H.H.; Maquiling, A.; Thomson, E.M.; Park, I.-W.; Stieb, D.M.; Dehghani, P. Sex-difference in air pollution-related acute circulatory and respiratory mortality and hospitalization. Sci. Total Environ. 2022, 806, 150515. [Google Scholar]
- Zhang, C.; Wang, Y.; Xie, W.; Zhang, J.; Tian, T.; Zhu, Q.; Fang, X.; Sui, J.; Pan, D.; Xia, H.; et al. Sex differences and dietary patterns in the association of air pollutants and hypertension. BMC Public Health 2024, 24, 1134. [Google Scholar]
- Li, N.; Chen, G.; Liu, F.; Mao, S.; Liu, Y.; Liu, S.; Mao, Z.; Lu, Y.; Wang, C.; Guo, Y.; et al. Associations between long-term exposure to air pollution and blood pressure and effect modifications by behavioral factors. Environ. Res. 2020, 182, 109109. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar]
- Rojas, G.A.; Saavedra, N.; Morales, C.; Saavedra, K.; Lanas, F.; Salazar, L.A. Modulation of the Cardiovascular Effects of Polycyclic Aromatic Hydrocarbons: Physical Exercise as a Protective Strategy. Toxics 2023, 11, 844. [Google Scholar] [CrossRef]
- Lawal, A.O. Air particulate matter induced oxidative stress and inflammation in cardiovascular disease and atherosclerosis: The role of Nrf2 and AhR-mediated pathways. Toxicol. Lett. 2017, 270, 88–95. [Google Scholar] [CrossRef]
- Lin, H.; Guo, Y.; Di, Q.; Zheng, Y.; Kowal, P.; Xiao, J.; Liu, T.; Li, X.; Zeng, W.; Howard, S.W.; et al. Ambient PM2.5 and Stroke: Effect Modifiers and Population Attributable Risk in Six Low- and Middle-Income Countries. Stroke 2017, 48, 1191–1197. [Google Scholar] [CrossRef] [PubMed]
- Mai, A.S.; Dos Santos, A.B.; Beber, L.C.C.; Basso, R.D.B.; Sulzbacher, L.M.; Goettems-Fiorin, P.B.; Frizzo, M.N.; Rhoden, C.R.; Ludwig, M.S.; Heck, T.G. Exercise Training under Exposure to Low Levels of Fine Particulate Matter: Effects on Heart Oxidative Stress and Extra-to-Intracellular HSP70 Ratio. Oxid. Med. Cell. Longev. 2017, 2017, 9067875. [Google Scholar] [CrossRef]
- Orellano, P.; Reynoso, J.; Quaranta, N.; Bardach, A.; Ciapponi, A. Short-term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environ. Int. 2020, 142, 105876. [Google Scholar] [CrossRef]
- Rojas, G.A.; Saavedra, N.; Saavedra, K.; Hevia, M.; Morales, C.; Lanas, F.; Salazar, L.A. Polycyclic Aromatic Hydrocarbons (PAHs) Exposure Triggers Inflammation and Endothelial Dysfunction in BALB/c Mice: A Pilot Study. Toxics 2022, 10, 497. [Google Scholar] [CrossRef]
- Klein, S.G.; Cambier, S.; Hennen, J.; Legay, S.; Serchi, T.; Nelissen, I.; Chary, A.; Moschini, E.; Krein, A.; Blömeke, B.; et al. Endothelial responses of the alveolar barrier in vitro in a dose-controlled exposure to diesel exhaust particulate matter. Part. Fiber Toxicol. 2017, 14, 7. [Google Scholar] [CrossRef] [PubMed]
- Gan, W.Q.; FitzGerald, J.M.; Carlsten, C.; Sadatsafavi, M.; Brauer, M. Associations of Ambient Air Pollution with Chronic Obstructive Pulmonary Disease Hospitalization and Mortality. Am. J. Respir. Crit. Care Med. 2013, 187, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Zhang, Z.; Lau, A.K.H.; Lin, C.Q.; Chuang, Y.C.; Chan, J.; Jiang, W.K.; Tam, T.; Yeoh, E.-K.; Chan, T.-C.; et al. Effect of long-term exposure to fine particulate matter on lung function decline and risk of chronic obstructive pulmonary disease in Taiwan: A longitudinal, cohort study. Lancet Planet. Health 2018, 2, e114–e125. [Google Scholar] [CrossRef]
- Bhatnagar, A. Environmental Cardiology: Studying Mechanistic Links Between Pollution and Heart Disease. Circ. Res. 2006, 99, 692–705. [Google Scholar] [CrossRef]
- Harrison, R.M.; Yin, J. Particulate matter in the atmosphere: Which particle properties are important for its effects on health? Sci. Total Environ. 2000, 249, 85–101. [Google Scholar] [CrossRef]
- Hoek, G.; Brunekreef, B.; Fischer, P.; Van Wijnen, J. The Association between Air Pollution and Heart Failure, Arrhythmia, Embolism, Thrombosis, and Other Cardiovascular Causes of Death in a Time Series Study. Epidemiology 2001, 12, 355–357. [Google Scholar] [CrossRef]
- Pope, C.A.; Burnett, R.T.; Thurston, G.D.; Thun, M.J.; Calle, E.E.; Krewski, D.; Godleski, J.J. Cardiovascular Mortality and Long-Term Exposure to Particulate Air Pollution: Epidemiological Evidence of General Pathophysiological Pathways of Disease. Circulation 2004, 109, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J. Air pollution and blood markers of cardiovascular risk. Environ. Health Perspect. 2001, 109, 405–409. [Google Scholar]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate Matter Air Pollution and Cardiovascular Disease: An Update to the Scientific Statement From the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [PubMed]
- Nemerson, Y. My life with tissue factor. J. Thromb. Hemost. 2007, 5, 221–223. [Google Scholar] [CrossRef]
- Stieb, D.; Shutt, R.H.; Kauri, L.M.; Kauri, L.M.; Mason-Renton, S.; Chen, L.; Szyszkowicz, M.; Dobbin, N.A.; Rigden, M.; Jovic, B.; et al. Associations between air pollution and cardio-respiratory physiological measures in older adults exercising outdoors. Int. J. Environ. Health Res. 2021, 31, 901–914. [Google Scholar] [PubMed]
- Cole-Hunter, T.; de Nazelle, A.; Donaire-Gonzalez, D.; Kubesch, N.; Carrasco-Turigas, G.; Matt, F.; Foraster, M.; Martínez, T.; Ambros, A.; Cirach, M.; et al. Estimated effects of air pollution and space-time-activity on cardiopulmonary outcomes in healthy adults: A repeated measures study. Environ. Int. 2018, 111, 247–259. [Google Scholar]
- Guan, W.J.; Zheng, X.Y.; Chung, K.F.; Zhong, N.S. Impact of air pollution on the burden of chronic respiratory diseases in China: Time for urgent action. Lancet 2016, 388, 1939–1951. [Google Scholar]
- Laeremans, M.; Dons, E.; Avila-Palencia, I.; Carrasco-Turigas, G.; Orjuela, J.P.; Anaya, E.; Cole-Hunter, T.; de Nazelle, A.; Nieuwenhuijsen, M.; Standaert, A.; et al. Short-term effects of physical activity, air pollution and their interaction on the cardiovascular and respiratory system. Environ. Int. 2018, 117, 82–90. [Google Scholar] [CrossRef]
- Batterman, S.; Du, L.; Mentz, G.; Mukherjee, B.; Parker, E.; Godwin, C.; Chin, J.-Y.; O’Toole, A.; Robins, T.; Rowe, Z.; et al. Particulate matter concentrations in residences: An intervention study evaluating stand-alone filters and air conditioners. Indoor Air 2012, 22, 235–252. [Google Scholar]
- Chen, R.; Zhao, A.; Chen, H.; Zhao, Z.; Cai, J.; Wang, C.; Yang, C.; Li, H.; Xu, X.; Ha, S.; et al. Cardiopulmonary Benefits of Reducing Indoor Particles of Outdoor Origin. J. Am. Coll. Cardiol. 2015, 65, 2279–2287. [Google Scholar]
- Rosário Filho, N.A.; Urrutia-Pereira, M.; D’Amato, G.; Cecchi, L.; Ansotegui, I.J.; Galán, C.; Pomés, A.; Murrieta-Aguttes, M.; Caraballo, L.; Rouadi, P.; et al. Air pollution and indoor settings. World Allergy Organ. J. 2021, 14, 100499. [Google Scholar] [PubMed]
- Yoda, Y.; Tamura, K.; Adachi, S.; Otani, N.; Nakayama, S.F.; Shima, M. Effects of the Use of Air Purifier on Indoor Environment and Respiratory System among Healthy Adults. Int. J. Environ. Res. Public Health 2020, 17, 3687. [Google Scholar] [CrossRef] [PubMed]
- Goeminne, P.C.; Bijnens, E.; Nemery, B.; Nawrot, T.S.; DuPont, L.J. Impact of traffic related air pollution indicators on noncystic fibrosis bronchiectasis mortality: A cohort analysis. Respir. Res. 2014, 15, 108. [Google Scholar]
- Hahad, O.; Kuntic, M.; Frenis, K.; Chowdhury, S.; Lelieveld, J.; Lieb, K.; Daiber, A.; Münzel, T. Physical Activity in Polluted Air-Net Benefit or Harm to Cardiovascular Health? A Comprehensive Review. Antioxidants 2021, 10, 1787. [Google Scholar] [CrossRef]
- Yorifuji, T.; Kashima, S.; Doi, H. Fine-particulate Air Pollution from Diesel Emission Control and Mortality Rates in Tokyo: A Quasiexperimental Study. Epidemiology 2016, 27, 769–778. [Google Scholar]
- Boogaard, H.; Patton, A.P.; Atkinson, R.W.; Brook, J.R.; Chang, H.H.; Crouse, D.L.; Fussell, J.C.; Hoek, G.; Hoffmann, B.; Kappeler, R.; et al. Long-term exposure to traffic-related air pollution and selected health outcomes: A systematic review and meta-analysis. Environ. Int. 2022, 164, 107262. [Google Scholar]
- Debelu, D.; Mengistu, D.A.; Aschalew, A.; Mengistie, B.; Deriba, W. Global Public Health Implications of Traffic Related Air Pollution: Systematic Review. Environ. Health Insights 2024, 18, 11786302241272403. [Google Scholar]
- Lepeule, J.; Litonjua, A.A.; Coull, B.; Koutrakis, P.; Sparrow, D.; Vokonas, P.S.; Schwartz, J. Long-Term Effects of Traffic Particles on Lung Function Decline in the Elderly. Am. J. Respir. Crit. Care Med. 2014, 190, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Feil, R.; Fraga, M.F. Epigenetics and the Environment: Emerging Patterns and Implications. Nat. Rev. Genet. 2012, 13, 97–109. [Google Scholar]
- Kinyanjui, B.K.; Gakidou, E.; Douwes, J.; Stanaway, J.D.; Kassa, G.M.; Kumar, G.A.; Misganaw, A.; Wiysonge, C.S.; Kosen, S.; Burkart, K.; et al. Global, Regional, and National Burden of Household Air Pollution, 1990–2021: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet 2025, 405, 1091–1104. [Google Scholar]
Inclusion |
Original scientific articles Studies on endurance exercise (e.g., cycling, running, triathlon) and performed under air pollution English language publications Include population between the age of 18 to 65 years old Include that the study contains pre and post assessment of air pollution related variables (PM2.5, O3, NO2, CO2, or other air pollution-related variables) Articles assessing cardiovascular health (resting heart rate, systolic volume, spirometry, or other) Research available in full text Publications from 2004 to date (August 2024) Include articles that include assessments of physiological changes Include all types of populations that engage in physical activity for health |
Exclusion |
Papers that are incomplete or low-evidence types of articles (e.g., opinion, editorials) Studies involving people with NCDs not related to cardiovascular health Research that has not yet been published (preprints) Studies that cannot be referenced Studies that have not been conducted on humans Studies involving mobility activities such as motorcycling, bus, subway, walking, or other nonresistance exercise |
Authors/ Year | City/ Country | Aim | Type/Design Study | Participants | Protocol | Air Pollution Markers | Cardiorespiratory Markers | Major Findings |
---|---|---|---|---|---|---|---|---|
Strak et al., 2010 [31] | Utrecht, Netherlands | To compare lung function after cycling in low vs. high vehicular traffic | Comparative study | 12 healthy adults ♂ and ♀ | Cycling for 60 min × 16 d at moderate intensity | PM10 | FEV1, FVC, PEF | Elevated [PM10] from traffic does not affect respiratory function either immediately or 6 h after cycling |
Weichenthal et al., 2011 [32] | Ottawa (ON), Canada | To compare the effects of exercise in low and high levels of vehicular traffic on HRV | Comparative and crossover study | 42 healthy adults ♂ and ♀ | Cycling for 60 min at moderate intensity (chronic exposure) | PM0,1 PM2.5, BC | HRV | Short-term exposure to high traffic ↓ parasympathetic activity 3 h pos-cycling |
Weichenthal et al., 2014 [33] | Montreal (QC), Canada | To compare effects of exercise in low and high levels of vehicular traffic on BP, HRV, and MVF | Comparative and crossover study | 53 healthy adults ♀ | Cycling for 120 min × 3 d at moderate intensity | PM2.5, NO2, O3 | BP, HRV, MVF | Short-term (2 h) to traffic pollution during physical activity affects cardiovascular function (↑ SBP and DBP, ↓ HRV, ↓ MVF) in healthy young women |
Sehlstedt et al., 2010 [34] | Wellington, Australia | To investigate the inflammatory effects of diesel exhaust exposure during exercise on airway inflammation | Experimental comparative study | 15 healthy adults ♂ and ♀ | 15 min intervals of cycloergometry during one-hour for two days at light to moderate intensity inside an exposure chamber | DE | Bronchial adhesion molecules (sP-Selectin, sICAM-1, sVCAM-1) | A higher bronchial concentration of sP-Selectin and sVCAM-1 were observed after cycling, without poststudy effects |
Pasqua et al., 2020 [35] | São Paulo, Brazil | To investigate the urban air pollution on inflammatory and cardiorespiratory responses during exercise | Experimental design | 10 healthy young people ♂ | Cycling for 90 min at moderate intensity in both conditions, filtered and polluted air | PM2.5, PMT, NO, NO2 | BP, inflammatory serum cytokines (IL-6, VEGF) | Cycling in atmospheric pollution elicits inflammatory responses (↑ IL-6, ↑ VEGF) and ↑ BP |
Park et al., 2017 [36] | Sacramento (CA), USA | To compare the exposure to high and low vehicular emissions during cycling | Comparative and crossover study | 32 healthy adults ♂ and ♀ (urban cyclists) | Cycling at moderate intensity for high (12 km) and low (10 km) vehicular traffic route | PM2.5, NOX, NO2, NO, O3 | FVC, FEV1 | >levels of UFPM (<0.1 μm) are associated with ↓ lung function (FVC and FEV1) |
Kubesch et al., 2015a [37] | Barcelona, Spain | To investigate how short-term exposure to traffic-related air pollution affects respiratory and inflammatory responses | Crossover study | 28 healthy adults ♂ and ♀ | Cycling for 120 min × 4 d at moderate intensity in air polluted by vehicle traffic | BC, NO, PM10, PM2.5 | FeNO, NØ, WBC, FEV1, FVC, FEF | Cycling in polluted air induces systemic (↑ NØ, WBC) and airway inflammatory processes (↑ FeNO), but increases lung function (↑ FEV1, ↑ FVC, ↑ FEF) |
Kubesch et al., 2015b [38] | Barcelona, Spain | To compare blood pressure when cycling in low and high pollution from vehicular traffic | Crossover study | 28 healthy adults ♂ and ♀ | Cycling for 120 min × 1 d at moderate intensity in air polluted by vehicle traffic | BC, NO, PM10, PM2.5 | SBP, DBP | Cycling in polluted air ↑ SBP and ↑ DBP |
Koch et al., 2020 [39] | Vancouver (BC), Canada | To assess the vascular response to physical activity after β2-agonist use while breathing diesel exhaust in individuals with EIB | Experimental design | 18 healthy adults ♂ and ♀ | Cycling for 30 min × 4 d at moderate intensity in air polluted by DE | DE | FMD, BP, HR, CRVE, CRAE | Inhalation of diesel fumes does not significantly compromise micro and macro vascular function |
Jacobs et al., 2010 [40] | Antwerp, Belgium | To observe changes in biomarkers of lung inflammation in high level vehicular traffic | Experimental design | 38 healthy adults ♂ and ♀ | Cycling during 5.7 km × 1 d at moderate intensity with high vehicular traffic | NO, PM1.0, PM2.5, PM10 | IL-6, platelet function, serum protein levels, WBC | Biomarkers did not change after physical activity |
Hernández et al., 2021 [41] | Bogota, Colombia | To evaluate the cyclist’s exposure to particle-related air pollution on selected bicycle lanes in Bogota | Experimental design | 10 ♂ and ♀ | Cycling for 30 min × 6 d to moderate intensity with high vehicular traffic | PM2.5, BC | VR, HR, SpO2, RR | There was no increase in both oxygen demand and inhaled air volume was identified |
Giles et al., 2019 [42] | Vancouver (BC), Canada | To determine the effects of DE exposure during exercise of different intensities on adhesion molecules and inflammatory cells | Experimental design | 18 adults ♂ | Cycling for 30 min × 7 d at moderate intensity in high and low DE exposure | DE | sP-Selectin, sE-Selectin, sICAM-1, sVCAM-1, WBC | There was no change in blood adhesion protein or WBC |
Giles, Tebbutt et al., 2018 [43] | Vancouver (BC), Canada | To determine the effects of high vs. low intensity cycling due to DE exposure | Experimental design | 18 adults ♂ | Low and high intensity cycling for 30 min × 7 d during exposure to high and low concentrations of DE | DE | Endothelin-1, NOx, FMD, BP | There was no change in endothelin-1, plasma NOx, FMD, or BP after exercise |
Giles, Carlsten et al., 2018 [44] | Vancouver (BC), Canada | To determine the effects on pulmonary function and inflammation of high vs. low intensity cycling due to exposure to DE | Experimental design | 18 adults ♂ | Cycling for 30 min × 6 d at high and moderate intensity during exposure to filtered air vs. DE | DE | PEFR, FeNO, NE | There was no difference in lung function (PEFR) and inflammation (FeNO and NE) by exercise in DE vs. filtered air |
Elliott and Loomis, 2021 [45] | Nevada (NV), USA | To assess lung function after exposure to fine particulate matter during exercise | Pilot study | 31 urban cyclists ♂ and ♀ | Cycling for 60 min × 7 d at moderate intensity and exposure to fine airborne particles | PM10, PM2.5, NO, O3, CO | FEV1, FVC, PEFR, MMEFR | Airborne particulate matter is associated with short-term decreases in lung function (↓ FEV1, ↓ FVC, ↓ PEFR) |
Barath et al., 2010 [46] | Umeå, Sweden | To evaluate the vascular effects of diesel exhaust exposure | Crossover study | 18 healthy adults ♂ | Outdoor running for 120 min × 5 d of moderate intensity with exposure to particulate pollutants | DE, PM2.5, PM10 | FBF, tPA | Exposure to diesel exhaust in urban areas can significantly impair vascular function |
Aydın et al., 2014 [47] | Istanbul, Turkey | To evaluate nasal functions due to exposure to vehicular traffic | Crossover study | 20 healthy adults ♂ | Outdoor running for 60 min × 2 d at moderate intensity in high vs. low vehicular traffic | PM2.5, PM10, NO2, O3, CO | Nasal functions | Experienced more nasal irritation, congestion, and respiratory problems in polluted air than in cleaner air |
Jarjour et al., 2013 [48] | Berkeley (CA), USA | To assess lung function due to exposure to fine particulate matter from high vehicular traffic | Experimental design | 15 healthy adults ♂ and ♀ | Cycling for 8 to 9.5 km × 2 d at moderate intensity in a high vs. low vehicular traffic environment | PM total, CO | FEV1, FVC | High exposure to pollutants may not acutely affect healthy cyclists (↔ FEV1, ↔ FVC) |
Giles et al., 2012 [49] | Vancouver (VC), Canada | To determine the effect of pre-exercise exposure to DE on pulmonary function and cardio-respiratory variables during exercise | Experimental design | 8 endurance-trained ♂ | 20 km cycling at moderate intensity pos-exposure to filtered air vs. DE for 60 min × 3 days | DE | FEV1, SpO2, CVF, HRmean | Prior exposure to DE reduced the exercise-induced bronchodilation effect and increased average heart rate during exercise |
Giles et al., 2014 [50] | Vancouver (VC), Canada | To evaluate the respiratory and metabolic effects of diesel exposure in high and low intensity cycling | Experimental design | 18 recreationally active ♂ | Low intensity cycling (30% VO2peak) vs. high intensity (60% VO2peak) for 30 min × 6 d with exposure to DE or filtered air | DE | VE, VO2, VCO2, O2 cost of exercise | Low intensity cycling with DE exposure presented higher VE, VO2, VCO2, and O2 cost than filtered air |
Cutrufello et al., 2011 [51] | Pennsylvania (PA),USA | To examine the effect of newly generated whole exhaust gases on exercise performance | Randomized crossover study | 16 collegiate athletes ♂ | 20 min plus 6 min to moderate and heavy intensity cycloergometry, respectively, with exposure to high and low PM concentrations | PM | PP, FMD | ↓ FMD and ↑ PP with ↓ of exercise performance |
Gomes et al., 2010 [52] | Colinton, Scotland | To investigate the impact on lung function of exposure to a hot, humid, O3-polluted environment | Randomized crossover study | 10 athletes ♂ | Outdoor running of high intensity with exposure to clean environment vs. high O3 levels for 8 km | O3 | HRmean, expired volume, VO2 | ↓ expired volume and ↓ VO2 during exercise in warm environment plus O3 |
Nwokoro et al., 2012 [53] | London, United Kingdom | To compare the impact on pulmonary inflammation and AMC due to exposure to polluted environment between cyclists and noncyclists | Experimental study | 14 cyclists ♂ and ♀ 14 noncyclists ♂ and ♀ | Cycling of 5–10 km × 7 d at moderate intensity with exposure to environmental pollution from road traffic between cyclists vs. noncyclists | BC | Serum IL-1b, IL-2, IL-6, IL-8, TNF-a, GM-CSF, AMC | Cyclists had more AMC in airway macrophages than noncyclists |
Rundell et al., 2008 [54] | Pennsylvania (CA), USA | To investigate the impact on lung function, oxidative stress, and pulmonary inflammation after a race with exposure to a polluted versus a clean environment | Comparative study | 12 physically fit adults ♂ | Outdoor running 30 min × 2 d at high intensity (85–90% HRmax) in high ambient vs. low vehicle traffic | PM1, NO3, NO | FEV1, FEF25-75, FeNO, NO3 (EBC), MDA | ↓ FEV1, ↓ FEF25-75, ↓NO3, and ↓ eNO after exercise in high PM1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Rojas, S.; Yáñez-Sepúlveda, R.; Tuesta, M.; Sánchez-Ureña, B.; Trejos-Montoya, J.; Olivares-Arancibia, J.; López-Gil, J.F.; Rojas-Valverde, D. Air Pollution and Endurance Exercise: A Systematic Review of the Potential Effects on Cardiopulmonary Health. Life 2025, 15, 595. https://doi.org/10.3390/life15040595
González-Rojas S, Yáñez-Sepúlveda R, Tuesta M, Sánchez-Ureña B, Trejos-Montoya J, Olivares-Arancibia J, López-Gil JF, Rojas-Valverde D. Air Pollution and Endurance Exercise: A Systematic Review of the Potential Effects on Cardiopulmonary Health. Life. 2025; 15(4):595. https://doi.org/10.3390/life15040595
Chicago/Turabian StyleGonzález-Rojas, Sofía, Rodrigo Yáñez-Sepúlveda, Marcelo Tuesta, Braulio Sánchez-Ureña, José Trejos-Montoya, Jorge Olivares-Arancibia, José Francisco López-Gil, and Daniel Rojas-Valverde. 2025. "Air Pollution and Endurance Exercise: A Systematic Review of the Potential Effects on Cardiopulmonary Health" Life 15, no. 4: 595. https://doi.org/10.3390/life15040595
APA StyleGonzález-Rojas, S., Yáñez-Sepúlveda, R., Tuesta, M., Sánchez-Ureña, B., Trejos-Montoya, J., Olivares-Arancibia, J., López-Gil, J. F., & Rojas-Valverde, D. (2025). Air Pollution and Endurance Exercise: A Systematic Review of the Potential Effects on Cardiopulmonary Health. Life, 15(4), 595. https://doi.org/10.3390/life15040595