Development of a Tool for Comprehensive Balance Assessment Based on Artificial Intelligence and Anomaly Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Data Collection
2.3. Procedures
2.4. Anomaly-Detection Structure
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- James, S.L.; Lucchesi, L.R.; Bisignano, C.; Castle, C.D.; Dingels, Z.V.; Fox, J.T.; Hamilton, E.B.; Henry, N.J.; Krohn, K.J.; Liu, Z.; et al. The global burden of falls: Global, regional and national estimates of morbidity and mortality from the Global Burden of Disease Study 2017. Inj. Prev. J. Int. Soc. Child Adolesc. Inj. Prev. 2020, 26, i3–i11. [Google Scholar] [CrossRef] [PubMed]
- Cabo, C.A.; Fernandes, O.; Santos, S.; Parraca, J.A. Assessment of spatiotemporal characteristics of gait, trough the Phyphox® app: A case series. J. Med. Case Rep. 2023, 17, 535. [Google Scholar] [CrossRef] [PubMed]
- Dykes, P.C.; Burns, Z.; Adelman, J.; Benneyan, J.; Bogaisky, M.; Carter, E.; Ergai, A.; Lindros, M.E.; Lipsitz, S.R.; Scanlan, M.; et al. Evaluation of a Patient-Centered Fall-Prevention Tool Kit to Reduce Falls and Injuries: A Nonrandomized Controlled Trial. JAMA Netw. Open 2020, 3, e2025889. [Google Scholar] [CrossRef]
- Patla, A.E.; Ishac, M.G.; Winter, D.A. Anticipatory control of center of mass and joint stability during voluntary arm movement from a standing posture: Interplay between active and passive control. Exp. Brain Res. 2002, 143, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Winter, D.A.; Patla, A.E.; Ishac, M.; Gage, W.H. Motor mechanisms of balance during quiet standing. J. Electromyogr. Kinesiol. 2003, 13, 49–56. [Google Scholar] [CrossRef]
- MacKinnon, C.D.; Winter, D.A. Control of whole body balance in the frontal plane during human walking. J. Biomech. 1993, 26, 633–644. [Google Scholar] [CrossRef]
- Neto, A.F.D.A.; Castro, A.; Crozara, L.F.; Goethel, M.F.; Moreira, P.V.S.; Gonçalves, M.; Cardozo, A.C. The analysis of COP and joint position sense in university soccer players with and without ankle instability. Rev. Bras. Educ. Fís. Esporte 2016, 30, 601–609. [Google Scholar] [CrossRef]
- Uiga, L.; Cheng, K.C.; Wilson, M.R.; Masters, R.S.W.; Capio, C.M. Acquiring visual information for locomotion by older adults: A systematic review. Ageing Res. Rev. 2015, 20, 24–34. [Google Scholar] [CrossRef]
- Kelty-Stephen, D.G.; Lee, J.; Cole, K.R.; Shields, R.K.; Mangalam, M. Multifractal Nonlinearity Moderates Feedforward and Feedback Responses to Suprapostural Perturbations. Percept. Mot. Skills 2023, 130, 622–657. [Google Scholar] [CrossRef]
- Roman-Liu, D. Age-related changes in the range and velocity of postural sway. Arch. Gerontol. Geriatr. 2018, 77, 68–80. [Google Scholar] [CrossRef]
- Ihlen, E.A.F.; van Schooten, K.S.; Bruijn, S.M.; van Dieën, J.H.; Vereijken, B.; Helbostad, J.L.; Pijnappels, M. Improved Prediction of Falls in Community-Dwelling Older Adults Through Phase-Dependent Entropy of Daily-Life Walking. Front. Aging Neurosci. 2018, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Amirpourabasi, A.; Lamb, S.E.; Chow, J.Y.; Williams, G.K.R. Nonlinear Dynamic Measures of Walking in Healthy Older Adults: A Systematic Scoping Review. Sensors 2022, 22, 4408. [Google Scholar] [CrossRef] [PubMed]
- Vieira, T.M.M.; Oliveira, L.F.; Nadal, J. Estimation procedures affect the center of pressure frequency analysis. Braz. J. Med. Biol. Res. 2009, 42, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Quijoux, F.; Nicolaï, A.; Chairi, I.; Bargiotas, I.; Ricard, D.; Yelnik, A.; Oudre, L.; Bertin-Hugault, F.; Vidal, P.P.; Vayatis, N.; et al. A review of center of pressure (COP) variables to quantify standing balance in elderly people: Algorithms and open-access code. Physiol. Rep. 2021, 9, e15067. [Google Scholar] [CrossRef]
- Pastor-Mira, M.A.; López-Roig, S.; Martínez-Zaragoza, F.; León, E.; Abad, E.; Lledó, A.; Peñacoba, C. Goal preferences, affect, activity patterns and health outcomes in women with fibromyalgia. Front. Psychol. 2019, 10, 1912. [Google Scholar] [CrossRef]
- Horak, F.B. Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age Ageing 2006, 35 (Suppl. S2), ii7–ii11. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef]
- Machrowska, A.; Karpiński, R.; Maciejewski, M.; Jonak, J.; Krakowski, P. Application of Eemd-Dfa Algorithms and Ann Classification for Detection of Knee Osteoarthritis Using Vibroarthrography. Appl. Comput. Sci. 2024, 20, 90–108. [Google Scholar] [CrossRef]
- Józwik, J.; Zawada-Michałowska, M.; Kulisz, M.; Tomiło, P.; Barszcz, M.; Pieśko, P.; Leleń, M.; Cybul, K. Modeling the Optimal Measurement Time with a Probe on the Machine Tool Using Machine Learning Methods. Appl. Comput. Sci. 2024, 20, 43–59. [Google Scholar] [CrossRef]
- Schlegl, T.; Seeböck, P.; Waldstein, S.M.; Schmidt-Erfurth, U.; Langs, G. Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery BT—Information Processing in Medical Imaging; Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D., Eds.; Springer: Cham, Switzerland, 2017; pp. 146–157. [Google Scholar]
- Duarte, M.; Freitas, S.M.S.F. Revision of posturography based on force plate for balance evaluation. Rev. Bras. Fisioter. 2010, 14, 183–192. [Google Scholar] [CrossRef]
- Santos, D.A.; Duarte, M. A public data set of human balance evaluations. PeerJ 2016, 4, e2648. [Google Scholar] [CrossRef]
- Sibley, K.M.; Beauchamp, M.K.; Van Ooteghem, K.; Straus, S.E.; Jaglal, S.B. Using the systems framework for postural control to analyze the components of balance evaluated in standardized balance measures: A scoping review. Arch. Phys. Med. Rehabil. 2015, 96, 122–132.e29. [Google Scholar] [CrossRef]
- Cappello, A.; Bagalà, F.; Cedraro, A.; Chiari, L. Non-linear re-calibration of force platforms. Gait Posture 2011, 33, 724–726. [Google Scholar] [CrossRef]
- Burden, F.; Winkler, D. Bayesian regularization of neural networks. Methods Mol. Biol. 2008, 458, 25–44. [Google Scholar] [CrossRef]
- Parolini, F.; Goethel, M.; Becker, K.; Fernandes, C.; Fernandes, R.J.; Ervilha, U.F.; Santos, R.; Vilas-Boas, J.P. Breaking Barriers: Artificial Intelligence Interpreting the Interplay Between Mental Illness and Pain as Defined by the International Association for the Study of Pain. Biomedicines 2023, 11, 2042. [Google Scholar] [CrossRef]
- Winter, D.A. Three-Dimensional Kinematics and Kinetics. In Biomechanics and Motor Control of Human Movement; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 176–199. ISBN 9780470549148. [Google Scholar]
- Avanzino, L.; Gueugneau, N.; Bisio, A.; Ruggeri, P.; Papaxanthis, C.; Bove, M. Motor cortical plasticity induced by motor learning through mental practice. Front. Behav. Neurosci. 2015, 9, 105. [Google Scholar] [CrossRef]
- Carel, C.; Loubinoux, I.; Boulanouar, K.; Manelfe, C.; Rascol, O.; Celsis, P.; Chollet, F. Neural substrate for the effects of passive training on sensorimotor cortical representation: A study with functional magnetic resonance imaging in healthy subjects. J. Cereb. Blood Flow Metab. 2000, 20, 478–484. [Google Scholar] [CrossRef]
- Zhuang, P.; Dang, N.; Warzeri, A.; Gerloff, C.; Cohen, L.G.; Hallett, M. Implicit and explicit learning in an auditory serial reaction time task. Acta Neurol. Scand. 1998, 97, 131–137. [Google Scholar] [CrossRef]
- Power, R.P. The dominance of touch by vision: Occurs with familiar objects. Perception 1981, 10, 29–33. [Google Scholar] [CrossRef]
- Rock, I.; Victor, J. Vision and Touch: An Experimentally Created Conflict Between the Two Senses. Science 1964, 143, 594–596. [Google Scholar] [CrossRef] [PubMed]
- Soto-Faraco, S.; Lyons, J.; Gazzaniga, M.; Spence, C.; Kingstone, A. The ventriloquist in motion: Illusory capture of dynamic information across sensory modalities. Cogn. Brain Res. 2002, 14, 139–146. [Google Scholar] [CrossRef]
- Fillit, H.M.; Butler, R.N.; O’Connell, A.W.; Albert, M.S.; Birren, J.E.; Cotman, C.W.; Greenough, W.T.; Gold, P.E.; Kramer, A.F.; Kuller, L.H.; et al. Achieving and maintaining cognitive vitality with aging. Mayo Clin. Proc. 2002, 77, 681–696. [Google Scholar] [CrossRef]
- Williams, K.N.; Kemper, S. Interventions to reduce cognitive dfecline in aging. J. Psychosoc. Nurs. Ment. Health Serv. 2010, 48, 42–51. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goethel, M.F.; Becker, K.M.; Parolini, F.C.S.; Ervilha, U.F.; Vilas-Boas, J.P. Development of a Tool for Comprehensive Balance Assessment Based on Artificial Intelligence and Anomaly Detection. Life 2025, 15, 632. https://doi.org/10.3390/life15040632
Goethel MF, Becker KM, Parolini FCS, Ervilha UF, Vilas-Boas JP. Development of a Tool for Comprehensive Balance Assessment Based on Artificial Intelligence and Anomaly Detection. Life. 2025; 15(4):632. https://doi.org/10.3390/life15040632
Chicago/Turabian StyleGoethel, Márcio Fagundes, Klaus Magno Becker, Franciele Carvalho Santos Parolini, Ulysses Fernandes Ervilha, and João Paulo Vilas-Boas. 2025. "Development of a Tool for Comprehensive Balance Assessment Based on Artificial Intelligence and Anomaly Detection" Life 15, no. 4: 632. https://doi.org/10.3390/life15040632
APA StyleGoethel, M. F., Becker, K. M., Parolini, F. C. S., Ervilha, U. F., & Vilas-Boas, J. P. (2025). Development of a Tool for Comprehensive Balance Assessment Based on Artificial Intelligence and Anomaly Detection. Life, 15(4), 632. https://doi.org/10.3390/life15040632