Outcome Predictor Differences in Infratentorial and Supratentorial Ischemic Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Setting
Infratentorial Stroke (n = 80) | Supratentorial Stroke (n = 330) | p | |
---|---|---|---|
Baseline characteristic or predefined outcome risk factor | |||
Age (years) | 70 (58–76) | 71 (59–78) | 0.25 |
Male/female n (%) | 65 (82%):15 (18%) | 230 (70%):110 (30%) | 0.054 |
NIHSS score at entry | 2 (IQR 1–4; range 0–37) | 3 (IQR 1–7; range 0–27) | 0.04 |
Body mass index (kg/m2) | 25.9 (24.2–28.4) | 25.7 (23.1–28.7) | 0.33 |
Cardiac LVEF (%) | 60 (55–64) | 60 (55–64) | 0.32 |
Arterial hypertension (%) | 34 (42%) | 131 (39%) | 0.60 |
Diabetes mellitus (%) | 24 (30%) | 77 (23%) | 0.24 |
Dyslipidemia (%) | 62 (77%) | 258 (78%) | 0.88 |
Actual smoking (%) | 18 (22.5%) | 81 (24.5%) | 0.66 |
Atrial fibrillation (%) | 8 (10%) | 57 (17%) | 0.12 |
Ischemic heart disease (%) | 9 (11%) | 70 (21%) | 0.04 |
Metabolic syndrome (%) | 9 (11%) | 42 (13%) | 0.85 |
Intravenous thrombolysis (%) | 18 (22.5%) | 120 (36%) | 0.01 |
Mechanical thrombectomy (%) | 7 (8%) | 61 (18%) | 0.03 |
Hs-cTnT (ng/L) Median >14 (%) | 10.5 (8–16) 23 (30%) | 11 (6–20) 122 (37%) | 0.77 0.19 |
eGFR (mL/min/1.73 m2) Median <60 (%) | 83.5 (68–91) 15 (19%) | 81 (66–90) 60 (19%) | 0.11 0.87 |
TOAST classification of stroke (%) Cardio-embolism Large vessel disease Lacunar Others definite Unknown | 15 (19%) 28 (35%) 18 (23%) 1 (1%) 18 (23%) | 106 (32%) 53 (16%) 57 (18%) 9 (2%) 105 (31%) | 0.02 0.0005 0.33 0.69 0.39 |
Outcome mRs 3 months Median ≤2:>2 | 1 (0–1) 70:10 | 1(0–2) 270:60 | 0.50 0.25 |
2.3. Statistics
3. Results
3.1. Patients
3.2. Outcome-Relevant Factors
3.2.1. Relevance of the Predefined ORFs in the Outcome in the Total Stroke Population
3.2.2. Relevance of the Predefined ORFs in the Outcome in Patients with Infratentorial and Supratentorial Strokes
3.2.3. Relevance of the Predefined ORFs in the Outcome in Patients with Supratentorial Strokes with or Without Mechanical Thrombectomy
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saver, J.L.; Goyal, M.; Bonafe, A.; Diener, H.C.; Levy, E.I.; Pereira, V.M.; Albers, G.W.; Cognard, C.; Cohen, D.J.; Hacke, W.; et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N. Engl. J. Med. 2015, 372, 2285–2295. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B.C.; Mitchell, P.J.; Kleinig, T.J.; Dewey, H.M.; Churilov, L.; Yassi, N.; Yan, B.; Dowling, R.J.; Parsons, M.W.; Oxley, T.J.; et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl. J. Med. 2015, 372, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.; Menon, B.K.; van Zwam, W.H.; Dippel, D.W.; Mitchell, P.J.; Demchuk, A.M.; Dávalos, A.; Majoie, C.B.; van der Lugt, A.; de Miquel, M.A.; et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 2016, 387, 1723–1731. [Google Scholar] [CrossRef] [PubMed]
- Albers, G.W.; Marks, M.P.; Kemp, S.; Christensen, S.; Tsai, J.P.; Ortega-Gutierrez, S.; McTaggart, R.A.; Torbey, M.T.; Kim-Tenser, M.; Leslie-Mazwi, T.; et al. Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging. N. Engl. J. Med. 2018, 378, 708–718. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nogueira, R.G.; Jadhav, A.P.; Haussen, D.C.; Bonafe, A.; Budzik, R.F.; Bhuva, P.; Yavagal, D.R.; Ribo, M.; Cognard, C.; Hanel, R.A.; et al. Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct. N. Engl. J. Med. 2018, 378, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Ng, A.C. Posterior Circulation Ischaemic Stroke. Am. J. Med. Sci. 2022, 363, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Markus, H.S.; Michel, P. Treatment of posterior circulation stroke: Acute management and secondary prevention. Int. J. Stroke. 2022, 17, 723–732. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Knapen, R.R.M.M.; Frol, S.; van Kuijk, S.M.J.; Oblak, J.P.; van der Leij, C.; van Oostenbrugge, R.J.; van Zwam, W.H. Intravenous thrombolysis for ischemic stroke in the posterior circulation: A systematic review and meta-analysis. J. Stroke. Cerebrovasc Dis. 2024, 33, 107641. [Google Scholar] [CrossRef] [PubMed]
- Alawieh, A.M.; Eid, M.; Anadani, M.; Sattur, M.; Maier, I.L.; Feng, W.; Goyal, N.; Starke, R.M.; Rai, A.; Fargen, K.M.; et al. Thrombectomy Technique Predicts Outcome in Posterior Circulation Stroke-Insights from the STAR Collaboration. Neurosurgery 2020, 87, 982–991. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, V.S.; Jarolim, P. How to interpret elevated cardiac troponin levels. Circulation 2011, 124, 2350–2354. [Google Scholar] [CrossRef]
- McCarthy, C.P.; Yousuf, O.; Alonso, A.; Selvin, E.; Calkins, H.; McEvoy, J.W. High-Sensitivity Troponin as a Biomarker in Heart Rhythm Disease. Am. J. Cardiol. 2017, 119, 1407–1413. [Google Scholar] [CrossRef] [PubMed]
- Scheitz, J.F.; Erdur, H.; Haeusler, K.G.; Audebert, H.J.; Roser, M.; Laufs, U.; Endres, M.; Nolte, C.H. Insular cortex lesions, cardiac troponin, and detection of previously unknown atrial fibrillation in acute ischemic stroke: Insights from the troponin elevation in acute ischemic stroke study. Stroke 2015, 46, 1196–1201. [Google Scholar] [CrossRef]
- Yaghi, S.; Chang, A.D.; Ricci, B.A.; Jayaraman, M.V.; McTaggart, R.A.; Hemendinger, M.; Narwal, P.; Dakay, K.; Mac Grory, B.; Cutting, S.M.; et al. Early Elevated Troponin Levels After Ischemic Stroke Suggests a Cardioembolic Source. Stroke 2018, 49, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.H.; Lee, J.S.; Yun, M.S.; Han, J.H.; Kim, S.Y.; Kim, Y.H.; Lee, S.H.; Park, M.G.; Park, K.P.; Kang, D.W.; et al. Explanatory Power and Prognostic Implications of Factors Associated with Troponin Elevation in Acute Ischemic Stroke. J. Stroke 2023, 25, 141–150. [Google Scholar] [CrossRef]
- Kuczynski, A.M.; Rzyczniak, G.; Cheong, G.H.L.; Famiyeh, P.; Vyas, M.V. Association Between Stroke Severity and Serum Troponin in Acute Stroke. Can. J. Neurol. Sci. 2024, 51, 848–850. [Google Scholar] [CrossRef]
- Broersen, L.H.A.; Stengl, H.; Nolte, C.H.; Westermann, D.; Endres, M.; Siegerink, B.; Scheitz, J.F. Association Between High-Sensitivity Cardiac Troponin and Risk of Stroke in 96 702 Individuals: A Meta-Analysis. Stroke 2020, 51, 1085–1093. [Google Scholar] [CrossRef]
- AnPommier, T.; Lafont, A.; Didier, R.; Garnier, L.; Duloquin, G.; Meloux, A.; Sagnard, A.; Graber, M.; Dogon, G.; Laurent, G.; et al. Factors associated with patent foramen ovale-related stroke: SAFAS study. Rev. Neurol. 2024, 180, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Sigurdsson, S.; Aspelund, T.; Kjartansson, O.; Gudmundsson, E.; Jonsson, P.V.; van Buchem, M.A.; Gudnason, V.; Launer, L.J. Cerebrovascular Risk-Factors of Prevalent and Incident Brain Infarcts in the General Population: The AGES-Reykjavik Study. Stroke 2022, 53, 1199–1206. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kleindorfer, D.O.; Towfighi, A.; Chaturvedi, S.; Cockroft, K.M.; Gutierrez, J.; Lombardi-Hill, D.; Kamel, H.; Kernan, W.N.; Kittner, S.J.; Leira, E.C.; et al. 2021 Guideline for the Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack: A Guideline From the American Heart Association/American Stroke Association. Stroke 2021, 52, e364–e467. [Google Scholar] [CrossRef] [PubMed]
- Lyden, P.; Brott, T.; Tilley, B.; Welch, K.M.; Mascha, E.J.; Levine, S.; Haley, E.C.; Grotta, J.; Marler, J. Improved reliability of the NIH Stroke Scale using video training. NINDS TPA Stroke Study Group. Stroke 1994, 25, 2220–2226. [Google Scholar] [CrossRef]
- van Swieten, J.C.; Koudstaal, P.J.; Visser, M.C.; Schouten, H.J.; van Gijn, J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke 1988, 19, 604–607. [Google Scholar] [CrossRef]
- Adams, H.P., Jr.; Bendixen, B.H.; Kappelle, L.J.; Biller, J.; Love, B.B.; Gordon, D.L.; Marsh, E.E., 3rd. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10,172 in Acute Stroke Treatment. Stroke 1993, 24, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Kisialiou, A.; Grella, R.; Carrizzo, A.; Pelone, G.; Bartolo, M.; Zucchella, C.; Rozza, F.; Grillea, G.; Colonnese, C.; Formisano, L.; et al. Risk factors and acute ischemic stroke subtypes. J. Neurol. Sci. 2014, 339, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Hornig, C.R.; Lammers, C.; Büttner, T.; Hoffmann, O.; Dorndorf, W. Long-term prognosis of infratentorial transient ischemic attacks and minor strokes. Stroke 1992, 23, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Kameda, W.; Kawanami, T.; Kurita, K.; Daimon, M.; Kayama, T.; Hosoya, T.; Kato, T.; Study Group of the Association of Cerebrovascular Disease in Tohoku. Lateral and medial medullary infarction: A comparative analysis of 214 patients. Stroke 2004, 35, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Kang, Z.; Qiu, W.; Hu, B.; Wu, A.M.; Dai, Y.; Hu, X.; Luo, J.; Zhang, B.; Lu, Z. Hemoglobin A1C is independently associated with severity and prognosis of brainstem infarctions. J. Neurol. Sci. 2012, 317, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Hu, B.; Wei, L.; Zhou, L.; Zhang, L.; Lin, Y.; Qin, B.; Dai, Y.; Lu, Z. Non-alcoholic fatty liver disease is associated with stroke severity and progression of brainstem infarctions. Eur. J. Neurol. 2018, 25, 577-e34. [Google Scholar] [CrossRef] [PubMed]
- Medrano-Martorell, S.; Capellades, J.; Jiménez-Conde, J.; González-Ortiz, S.; Vilas-González, M.; Rodríguez-Campello, A.; Ois, Á.; Cuadrado-Godia, E.; Avellaneda, C.; Fernández, I.; et al. Risk factors analysis according to regional distribution of white matter hyperintensities in a stroke cohort. Eur. Radiol. 2022, 32, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, R.C.; Aries, M.; Minhas, J.S.; HPetersen, N.; Xiong, L.; Kainerstorfer, J.M.; Castro, P. Review of studies on dynamic cerebral autoregulation in the acute phase of stroke and the relationship with clinical outcome. J. Cereb. Blood Flow Metab. 2022, 42, 430–453. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, H.; Dai, Y.; Wu, H.; Luo, L.; Wei, L.; Zhou, L.; Lin, Y.; Wang, Q.; Lu, Z. Predictors of Early Neurologic Deterioration in Acute Pontine Infarction. Stroke 2020, 51, 637–640. [Google Scholar] [CrossRef] [PubMed]
- Debette, S.; Compter, A.; Labeyrie, M.A.; Uyttenboogaart, M.; Metso, T.M.; Majersik, J.J.; Goeggel-Simonetti, B.; Engelter, S.T.; Pezzini, A.; Bijlenga, P.; et al. Epidemiology, pathophysiology, diagnosis, and management of intracranial artery dissection. Lancet Neurol. 2015, 14, 640–654. [Google Scholar] [CrossRef] [PubMed]
- Anadani, M.; Orabi, M.Y.; Alawieh, A.; Goyal, N.; Alexandrov, A.V.; Petersen, N.; Kodali, S.; Maier, I.L.; Psychogios, M.N.; Swisher, C.B.; et al. Blood Pressure and Outcome After Mechanical Thrombectomy With Successful Revascularization. Stroke 2019, 50, 2448–2454. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, S.A.; Uniken Venema, S.M.; Mulder, M.J.H.L.; Treurniet, K.M.; Samuels, N.; Lingsma, H.F.; Goldhoorn, R.B.; Jansen, I.G.H.; Coutinho, J.M.; Roozenbeek, B.; et al. Admission Blood Pressure in Relation to Clinical Outcomes and Successful Reperfusion After Endovascular Stroke Treatment. Stroke 2020, 51, 3205–3214. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van den Berg, S.A.; Uniken Venema, S.M.; LeCouffe, N.E.; Postma, A.A.; Lycklama, À.; Nijeholt, G.J.; Rinkel, L.A.; Treurniet, K.M.; Kappelhof, M.; Bruggeman, A.E.; et al. Admission blood pressure and clinical outcomes in patients with acute ischaemic stroke treated with intravenous alteplase and endovascular treatment versus endovascular treatment alone: A MR CLEAN-NO IV substudy. Eur. Stroke. J. 2023, 8, 647–654. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Median (IQR) or Presence of (n) Odds Ratio | 95% CI | p | ROCAUC | |
---|---|---|---|---|
Age (years) | 71 (59–58) 1.04 | 1.02–1.07 | <0.0001 | 0.658 |
Sex (female/male) | 115:295 1.53 | 0.89–2.26 | 0.11 | 0.546 |
NIHSS score at entry | 3 (1–7) 1.22 | 1.17–1.29 | <0.0001 | 0.857 |
Arterial hypertension | 244 1.95 | 1.11–3.42 | 0.01 | 0.577 |
Diabetes mellitus | 101 1.76 | 1.02–3.10 | 0.04 | 0.558 |
Metabolic syndrome | 51 1.58 | 0.78–3.23 | 0.19 | 0.528 |
Dyslipidemia | 320 1.02 | 0.54–1.91 | 0.94 | 0.502 |
Actual smoking | 99 1.20 | 0.64–2.26 | 0.54 | 0.517 |
Body mass index (kg/m2) | 25.8 (23.5–28.7) 1.01 | 0.95–1.07 | 0.60 | 0.522 |
Atrial fibrillation | 65 2.13 | 1.15–3.98 | 0.01 | 0.559 |
Ischemic heart disease | 79 2.45 | 1.39–4.48 | 0.001 | 0.581 |
Cardiac LVEF (%) | 60 (55–64) 1.02 | 0.99–1.05 | 0.06 | 0.541 |
eGFR (mL/min/1.73 m2) | 82 (66–90) 0.98 | 0.96–0.99 | 0.001 | 0.398 |
Hs-cTnT (ng/L) | 11 (7–19) 0.99 | 0.99–1.01 | 0.35 | 0.668 |
TOAST classification of stroke | CE 121 LVD 81 Lac 75 Others 10 Unknown 123 0.74 | 0.61–0.88 | 0.0008 | 0.371 |
Intravenous thrombolysis | 138 1.85 | 1.11–3.17 | 0.01 | 0.572 |
Mechanical thrombectomy | 68 7.24 | 4.06–13.16 | <0.0001 | 0.683 |
Hs-cTnT (ng/L) >14:≤14 | 145:265 2.77 | 1.64–4.69 | <0.0001 | 0.622 |
eGFR (mL/min/1.73 m2) ≤60:>60 | 75:335 2.69 | 1.51–4.84 | <0.0001 | 0.587 |
Hs-cTnT (ng/L) >14 vs. ≤14 Combined with eGFR (mL/min/1.73 m2) ≤60 vs. >60 | Both normal 242 One of the two pathological 116 Both pathological 52 2.11 | 1.51–2.99 | <0.0001 | 0.635 |
Infratentorial Stroke (n = 80) | Supratentorial Stroke (n = 330) | |||||||
---|---|---|---|---|---|---|---|---|
Median (IQR) or Presence of (n) Odds Ratio | 95% CI | p | ROCAUC | Median (IQR) or Presence of (n) Odds Ratio | 95% CI | p | ROCAUC | |
Age (years) | 70 (58–76) 1.07 | 1.01–1.15 | 0.01 | 0.696 | 71 (59–78) 1.04 | 1.01–1.06 | <0.0001 | 0.646 |
Sex (female/male) | 15:65 2.05 | 0.45–9.39 | 0.35 | 0.564 | 100:230 1.41 | 0.79–2.56 | 0.23 | 0.538 |
NIHSS score at entry | 2 (1–4) 0.98 | 0.84–1.12 | 0.69 | 0.545 | 3 (1–7) 1.31 | 1.23–1.40 | <0.0001 | 0.913 |
Arterial hypertension | 45 4.66 | 0.92–23.54 | 0.06 | 0.679 | 199 1.66 | 0.91–3.07 | 0.08 | 0.559 |
Diabetes mellitus | 24 4.30 | 1.07–17.49 | 0.03 | 0.671 | 77 1.52 | 0.82–2.86 | 0.18 | 0.540 |
Metabolic syndrome | 9 2.24 | 0.38–13.11 | 0.38 | 0.550 | 42 1.47 | 0.68–3.23 | 0.32 | 0.524 |
Dyslipidemia | 62 1.17 | 0.22–6.31 | 0.83 | 0.514 | 258 0.99 | 0.50–1.96 | 0.52 | 0.499 |
Actual smoking | 18 0.63 | 0.14–2.82 | 0.54 | 0.542 | 81 1.36 | 0.69–2.77 | 0.35 | 0.471 |
Body mass index (kg/m2) | 25.9 (24.2–28.4) 1.04 | 0.86–1.15 | 0.66 | 0.516 | 27.5 (23.1–28.7) 0.98 | 0.91–1.04 | 0.50 | 0.476 |
Atrial fibrillation | 8 10.91 | 2.12–56.92 | 0.004 | 0.671 | 57 1.58 | 0.80–3.15 | 0.18 | 0.536 |
Ischemic heart disease | 9 8.58 | 1.78–42.19 | 0.006 | 0.664 | 70 1.97 | 1.06–3.72 | 0.03 | 0.563 |
Cardiac LVEF (%) | 60 (55–64) 0.94 | 0.86–1.01 | 0.09 | 0.350 | 60 (55–64) 0.99 | 0.95–1.00 | 0.20 | 0.479 |
eGFR (mL/min/1.73 m2) | 83 (68–91) 0.96 | 0.92–0.98 | 0.001 | 0.207 | 81 (66–90) 0.990 | 0.96–0.999 | 0.05 | 0.438 |
Hs-cTnT (ng/L) | 10 (8–16) 1.03 | 1.01–1.06 | 0.004 | 0.795 | 11 (6–20) 1.00 | 0.99–1.001 | 0.45 | 0.644 |
TOAST classification of stroke | CE 15 LVD 28 Lac 18 Others 1 Unknown 18 0.69 | 0.39–1.23 | 0.17 | 0.376 | 106 53 57 9 105 0.74 | 0.61–0.89 | 0.001 | 0.373 |
Intravenous thrombolysis | 18 | 120 | ||||||
All with good outcome | 0.371 | 2.22 | 1.33–4.17 | 0.002 | 0.603 | |||
Mechanical thrombectomy | 7 | 61 | ||||||
All with good outcome | 0.450 | 9.77 | 5.17–18.73 | <0.0001 | 0.722 | |||
Hs-cTnT (ng/L) >14:≤14 | 23:57 7.84 | 1.78–34.80 | 0.005 | 0.735 | 122:208 2.27 | 1.29–4.03 | 0.004 | 0.600 |
eGFR (mL/min/1.73 m2) ≤60:>60 | 15:65 10.07 | 2.34–44.15 | 0.001 | 0.735 | 60:270 2.07 | 1.08–4.00 | 0.03 | 0.562 |
Hs-cTnT (ng/L) >14 vs. ≤14 Combined with eGFR (ml/min/1.73 m2) ≤60 vs. >60 | 5.58 | Both normal 51 One pathological 20 Both pathological 9 2.04–15.18 | 0.0006 | 0.802 | 191 96 43 1.80 | 1.23–2.60 | 0.001 | 0.603 |
Odds Ratio | 95% CI | p | |
---|---|---|---|
Age | 1.01 | 0.94–1.09 | 0.65 |
Diabetes mellitus | 7.69 | 0.96–62.63 | 0.05 |
Atrial fibrillation | 13.73 | 1.05–181.89 | 0.04 |
Ischemic heart disease | 9.97 | 0.57–169.54 | 0.10 |
Hs-cTnT (ng/L) | 1.01 | 0.97–1.04 | 0.46 |
eGFR (mL/min/1.73 m2) | 0.96 | 0.91–0.99 | 0.02 |
Hs-cTnT (ng/L) >14 vs. ≤14 combined with eGFR (mL/min/1.73 m2) ≤60 vs. >60 | 4.05 | 1.17–14.05 | 0.02 |
Odds Ratio | 95% CI | p | |
---|---|---|---|
Age | 1.04 | 1.01–1.08 | 0.01 |
NIHSS score at entry | 1.32 | 1.22–1.44 | <0.0001 |
Ischemic heart disease | 1.66 | 0.66–4.18 | 0.27 |
TOAST | 0.99 | 0.77–1.26 | 0.93 |
Intravenous thrombolysis | 0.59 | 0.25–1.38 | 0.22 |
Mechanical thrombectomy | 1.50 | 0.95–2.41 | 0.07 |
Hs-cTnT (ng/L) >14 vs. ≤14 | 1.10 | 0.44–2.71 | 0.83 |
eGFR (mL/min/1.73m2) ≤60 vs. >60 | 0.81 | 0.28–2.24 | 0.67 |
Hs-cTnT (ng/L) >14 vs. ≤14 combined with eGFR (mL/min/1.73 m2) ≤60 vs. >60 | 0.96 | 0.52–1.72 | 0.88 |
Supratentorial Stroke Without MT (n = 269) | Supratentorial Stroke with MT (n = 61) | |||||||
---|---|---|---|---|---|---|---|---|
Median (IQR) or Presence of (n) Odds Ratio | 95% CI | p | ROCAUC | Median (IQR) or Presence of (n) Odds Ratio | 95% CI | p | ROCAUC | |
Age | 71 (59–78) 1.03 | 1.00–1.07 | 0.02 | 0.629 | 73 (61–81) 1.05 | 1.00–1.09 | 0.02 | 0.675 |
Sex (female/male) | 82:187 2.15 | 0.97–4.79 | 0.06 | 0.589 | 17:44 0.98 | 0.31–3.18 | 0.96 | 0.497 |
NIHSS score at entry per scale point | 2 (1–5) 1.51 | 1.33–1.72 | <0.0001 | 0.915 | 14 (8–18) 1.20 | 1.07–1.34 | 0.0006 | 0.786 |
Arterial hypertension | 165 1.64 | 0.69–3.92 | 0.25 | 0.556 | 40 2.91 | 1.00–8.64 | 0.04 | 0.629 |
Diabetes mellitus | 61 1.15 | 0.46–2.87 | 0.75 | 0.513 | 15 3.12 | 0.84–11.68 | 0.08 | 0.600 |
Metabolic syndrome | 33 1.20 | 0.39–3.78 | 0.73 | 0.5113 | 9 1.91 | 0.41–8.81 | 0.37 | 0.540 |
Dyslipidemia | 213 0.94 | 0.36–2.45 | 0.90 | 0.506 | 44 1.68 | 0.52–5.49 | 0.37 | 0.551 |
Actual smoking | 70 0.93 | 0.37–2.30 | 0.49 | 0.507 | 11 0.68 | 0.17–2.59 | 0.56 | 0.471 |
Body mass index (kg/m2) | 25.7 (23–28.7) 0.96 | 0.87–1.04 | 0.34 | 0.446 | 25.0 (24.0–28.7) 1.01 | 0.90–1.14 | 0.74 | 0.511 |
Atrial fibrillation | 44 2.74 | 1.15–6.61 | 0.02 | 0.587 | 13 0.46 | 0.12–1.67 | 0.23 | 0.435 |
Ischemic heart disease | 57 1.95 | 0.82–4.61 | 0.12 | 0.563 | 13 3.78 | 0.89–16.01 | 0.06 | 0.602 |
Cardiac LVEF (%) | 60 (55–63) 0.97 | 0.92–1.00 | 0.10 | 0.337 | 60 (51–65) 1.01 | 0.96–1.05 | 0.56 | 0.532 |
eGFR (mL/min/1.73 m2) | 81 (67–90) 0.99 | 0.95–1.00 | 0.09 | 0.411 | 78 (58–90) 1.00 | 0.97–1.02 | 0.94 | 0.518 |
Hs-cTnT (ng/L) | 11 (6–19) 1.003 | 1.0002–1.006 | 0.02 | 0.633 | 14 (7–26) 1.00 | 0.98–1.00 | 0.47 | 0.591 |
TOAST classification of stroke | CE 76 LVD 37 Lac 57 Others 3 Unknown 96 0.76 | 0.58–0.98 | 0.03 | 0.380 | 29 16 7 0 9 0.96 | 0.67–1.36 | 0.81 | 0.501 |
Intravenous thrombolysis | 81 1.85 | 0.83–4.17 | 0.12 | 0.571 | 0.93 | 38 0.31–2.71 | 0.88 | 0.491 |
Hs-cTnT (ng/L) >14:≤14 | 92:117 2.43 | 1.11–5.43 | 0.02 | 0.608 | 1.29 | 30:31 0.46–3.69 | 0.60 | 0.533 |
eGFR (mL/min/1.73 m2) ≤60:>60 | 45:224 2.69 | 1.12–6.45 | 0.03 | 0.586 | 1.00 | 16:45 0.30–3.30 | 0.99 | 0.500 |
Hs-cTnT (ng/L) >14 vs. ≤14 Combined with eGFR (mL/min/1.73 m2) ≤60 vs. >60 | Both normal 162 One pathological 77 Both pathological 30 2.03 | 1.22–3.42 | 0.006 | 0.624 | 1.10 | 28 20 13 0.57–2.15 | 0.74 | 0.517 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolognese, M.; Österreich, M.; Müller, M.; von Hessling, A.; Karwacki, G.M.; Lakatos, L.-B. Outcome Predictor Differences in Infratentorial and Supratentorial Ischemic Stroke. Life 2025, 15, 633. https://doi.org/10.3390/life15040633
Bolognese M, Österreich M, Müller M, von Hessling A, Karwacki GM, Lakatos L-B. Outcome Predictor Differences in Infratentorial and Supratentorial Ischemic Stroke. Life. 2025; 15(4):633. https://doi.org/10.3390/life15040633
Chicago/Turabian StyleBolognese, Manuel, Mareike Österreich, Martin Müller, Alexander von Hessling, Grzegorz Marek Karwacki, and Lehel-Barna Lakatos. 2025. "Outcome Predictor Differences in Infratentorial and Supratentorial Ischemic Stroke" Life 15, no. 4: 633. https://doi.org/10.3390/life15040633
APA StyleBolognese, M., Österreich, M., Müller, M., von Hessling, A., Karwacki, G. M., & Lakatos, L.-B. (2025). Outcome Predictor Differences in Infratentorial and Supratentorial Ischemic Stroke. Life, 15(4), 633. https://doi.org/10.3390/life15040633