Redox Regulation of cAMP-Dependent Protein Kinase and Its Role in Health and Disease
Abstract
:1. Introduction
2. The cAMP-Dependent Protein Kinase (PKA)
3. PKA-C Isoforms
4. Activation of PKA
5. PKA in Disease
6. Reactive Oxygen Species and Redox-Dependent Signaling
7. Redox Modification of Proteins
8. Cysteine Oxidation
9. Redox Modification of PKA
10. Redox Regulation of Type I and Type II PKA Holoenzymes
11. Redox-Dependent Modulation of PKA-C
12. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
cAMP | 3′,5′-cyclic adenosine monophosphate |
PKA | cAMP-dependent protein kinase |
PKA-R | PKA regulatory subunit |
PKA-C | PKA catalytic subunit |
CBD | cAMP binding domain |
RS | Recognition sequence |
AC | Adenylyl cyclase |
PDE | Phosphodiesterase |
GPCR | G protein-coupled receptor |
AKAP | A-kinase anchoring protein |
SR | Sarcoplasmic reticulum |
AD | Alzheimer’s disease |
PD | Parkinson’s disease |
ROS | Reactive oxygen species |
O2− | Superoxide |
H2O2 | Hydrogen peroxide |
R-SOH | Sulfenic acid |
R-SO2H | Sulfinic acid |
R-SO3H | Sulfonic acid |
GSH | Reduced glutathione |
GSSG | Oxidized glutathione (glutathione disulfide) |
SOD | Superoxide dismutase |
oxPTM | Oxidative posttranslational modification |
PDK1 | Phosphoinositide-dependent kinase |
DTT | Dithiothreotol |
References
- Wang, Z.; Cole, P.A. Chapter One-Catalytic Mechanisms and Regulation of Protein Kinases; Shokat, K.M., Ed.; Meth. Enzymol. Academic Press: Cambridge, MA, USA, 2014; pp. 1–21. [Google Scholar] [CrossRef]
- Adam, K.; Hunter, T. Histidine kinases and the missing phosphoproteome from prokaryotes to eukaryotes. Mod. Pathol. 2018, 93, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Reinhardt, R.; Leonard, T.A. A critical evaluation of protein kinase regulation by activation loop autophosphorylation. eLife 2023, 12, e88210. [Google Scholar] [CrossRef]
- Chowdhury, I.; Dashi, G.; Keskitalo, S. CMGC Kinases in Health and Cancer. Cancers 2023, 15, 3838. [Google Scholar] [CrossRef]
- Morris, R.; Black, K.A.; Stollar, E.J. Uncovering protein function: From classification to complexes. Essays Biochem. 2022, 66, 255–285. [Google Scholar] [CrossRef] [PubMed]
- Newman, R.H.; Zhang, J. Chapter Five-Integrated Strategies to Gain a Systems-Level View of Dynamic Signaling Networks. In Methods in Enzymology; Thompson, R.B., Fierke, C.A., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 133–170. [Google Scholar] [CrossRef]
- Nishi, H.; Hashimoto, K.; Panchenko, A.R. Phosphorylation in protein-protein binding: Effect on stability and function. Structure 2011, 19, 1807–1815. [Google Scholar] [CrossRef]
- Pang, K.; Wang, W.; Qin, J.; Shi, Z.; Hao, L.; Ma, Y.; Xu, H.; Wu, Z.; Pan, D.; Chen, Z.; et al. Role of protein phosphorylation in cell signaling, disease, and the intervention therapy. Medcomm 2022, 3, e175. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pérez, D.; Santos-Argumedo, L.; Rodríguez-Alba, J.C.; López-Herrera, G. Role of Protein Kinase A Activation in the Immune System with an Emphasis on Lipopolysaccharide-Responsive and Beige-like Anchor Protein in B Cells. Int. J. Mol. Sci. 2023, 24, 3098. [Google Scholar] [CrossRef]
- Puri, P.; Little-Ihrig, L.; Chandran, U.; Law, N.C.; Hunzicker-Dunn, M.; Zeleznik, A.J. Protein Kinase A: A Master Kinase of Granulosa Cell Differentiation. Sci. Rep. 2016, 6, 28132. [Google Scholar] [CrossRef]
- Newman, R.H. From Cellular Mechanisms to Physiological Responses. Cell. Signal Transduct. Toxicol. Pharmacol. Data Collect. Anal. Interpret. 2019, 49–72. [Google Scholar] [CrossRef]
- Brognard, J.; Hunter, T. Protein kinase signaling networks in cancer. Curr. Opin. Genet. Dev. 2011, 21, 4–11. [Google Scholar] [CrossRef]
- Khakha, N.; Khan, H.; Kaur, A.; Singh, T.G. Therapeutic implications of phosphorylation- and dephosphorylation-dependent factors of cAMP-response element-binding protein (CREB) in neurodegeneration. Pharmacol. Rep. 2023, 75, 1152–1165. [Google Scholar] [CrossRef] [PubMed]
- Östman, A.; Frijhoff, J.; Sandin, Å.; Böhmer, F.-D. Regulation of protein tyrosine phosphatases by reversible oxidation. J. Biochem. 2011, 150, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, A.; Cotter, T.G. Redox regulation of protein kinases. FEBS J. 2013, 280, 1944–1965. [Google Scholar] [CrossRef] [PubMed]
- Heppner, D.E.; van der Vliet, A. Redox-dependent regulation of epidermal growth factor receptor signaling. Redox Biol. 2016, 8, 24–27. [Google Scholar] [CrossRef]
- Ditch, S.; Paull, T.T. The ATM Protein Kinase and Cellular Redox Signaling: Beyond the DNA Damage Response. Trends Biochem. Sci. 2012, 37, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Giannoni, E.; Taddei, M.L.; Chiarugi, P. Src redox regulation: Again in the front line. Free Radic. Biol. Med. 2010, 49, 516–527. [Google Scholar] [CrossRef] [PubMed]
- Burgoyne, J.R.; Oka, S.-I.; Ale-Agha, N.; Eaton, P. Hydrogen Peroxide Sensing and Signaling by Protein Kinases in the Cardiovascular System. Antioxid. Redox Signal. 2012, 18, 1042–1052. [Google Scholar] [CrossRef]
- Piwkowska, A. Role of Protein Kinase G and Reactive Oxygen Species in the Regulation of Podocyte Function in Health and Disease. J. Cell. Phys. 2017, 232, 691–697. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, X.; Liu, Y.; Dong, S.; Wen, Z.; He, W.; Zhang, S.; Huang, Q.; Shi, M. ROS signaling under metabolic stress: Cross-talk between AMPK and AKT pathway. Mol. Cancer 2017, 16, 79. [Google Scholar] [CrossRef]
- Byrne, D.P.; Shrestha, S.; Galler, M.; Cao, M.; Daly, L.A.; Campbell, A.E.; Eyers, C.E.; Veal, E.A.; Kannan, N.; Eyers, P.A. Aurora A Regulation by Reversible Cysteine Oxidation Reveals Evolutionarily Conserved Redox Control of Ser/Thr Protein Kinase Activity. Sci.Signal. 2020, 13, eaax2713. [Google Scholar] [CrossRef]
- Dustin, C.M.; E Heppner, D.; Lin, M.-C.J.; van der Vliet, A. Redox regulation of tyrosine kinase signalling: More than meets the eye. J. Biochem. 2019, 167, 151–163. [Google Scholar] [CrossRef]
- Heppner, D.E.; Dustin, C.M.; Liao, C.; Hristova, M.; Veith, C.; Little, A.C.; Ahlers, B.A.; White, S.L.; Deng, B.; Lam, Y.-W.; et al. Direct cysteine sulfenylation drives activation of the Src kinase. Nat. Commun. 2018, 9, 4522. [Google Scholar] [CrossRef]
- Keyes, J.D.; Parsonage, D.; Yammani, R.D.; Rogers, L.C.; Kesty, C.; Furdui, C.M.; Nelson, K.J.; Poole, L.B. Endogenous, regulatory cysteine sulfenylation of ERK kinases in response to proliferative signals. Free Radic. Biol. Med. 2017, 112, 534–543. [Google Scholar] [CrossRef]
- Nelson, K.J.; Bolduc, J.A.; Wu, H.; Collins, J.A.; Burke, E.A.; Reisz, J.A.; Klomsiri, C.; Wood, S.T.; Yammani, R.R.; Poole, L.B.; et al. H2O2 oxidation of cysteine residues in c-Jun N-terminal kinase 2 (JNK2) contributes to redox regulation in human articular chondrocytes. J. Biol. Chem. 2018, 293, 16376–16389. [Google Scholar] [CrossRef] [PubMed]
- Delva-Wiley, J.; Ekhator, E.S.; Adams, L.L.; Patwardhan, S.; Dong, M.; Newman, R.H. Redox Modification of PKA-Cα Differentially Affects Its Substrate Selection. Life 2023, 13, 1811. [Google Scholar] [CrossRef] [PubMed]
- Postiglione, A.E.; Adams, L.L.; Ekhator, E.S.; Odelade, A.E.; Patwardhan, S.; Chaudhari, M.; Pardue, A.S.; Kumari, A.; LeFever, W.A.; Tornow, O.P.; et al. Hydrogen Peroxide-Dependent Oxidation of ERK2 Within Its D-Recruitment Site Alters Its Substrate Selection. iScience 2023, 26, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Burgoyne, J.R.; Madhani, M.; Cuello, F.; Charles, R.L.; Brennan, J.P.; Schröder, E.; Browning, D.D.; Eaton, P. Cysteine Redox Sensor in PKGIa Enables Oxidant-Induced Activation. Science 2007, 317, 1393–1397. [Google Scholar] [CrossRef]
- Humphries, K.M.; Juliano, C.; Taylor, S.S. Regulation of cAMP-Dependent Protein Kinase Activity by Glutathionylation. J. Biol. Chem. 2002, 277, 43505–43511. [Google Scholar] [CrossRef]
- Kambe, T.; Song, T.; Takata, T.; Hatano, N.; Miyamoto, Y.; Nozaki, N.; Naito, Y.; Tokumitsu, H.; Watanabe, Y. Inactivation of Ca2+/calmodulin-dependent protein kinase I by S-glutathionylation of the active-site cysteine residue. FEBS Lett. 2010, 584, 2478–2484. [Google Scholar] [CrossRef]
- Takata, T.; Tsuchiya, Y.; Watanabe, Y. 90-kDa ribosomal S6 kinase 1 is inhibited by S-glutathionylation of its active-site cysteine residue during oxidative stress. FEBS Lett. 2013, 587, 1681–1686. [Google Scholar] [CrossRef]
- Truong, T.H.; Ung, P.M.-U.; Palde, P.B.; Paulsen, C.E.; Schlessinger, A.; Carroll, K.S. Molecular Basis for Redox Activation of Epidermal Growth Factor Receptor Kinase. Cell Chem. Biol. 2016, 23, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Wani, R.; Qian, J.; Yin, L.; Bechtold, E.; King, S.B.; Poole, L.B.; Paek, E.; Tsang, A.W.; Furdui, C.M. Isoform-specific regulation of Akt by PDGF-induced reactive oxygen species. Proc. Natl. Acad. Sci. USA 2011, 108, 10550–10555. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.S.; Radzio-Andzelm, E. Three Protein Kinase Structures Define a Common Motif. Structure 1994, 2, 345–355. [Google Scholar] [CrossRef]
- Taylor, S.S.; Keshwani, M.M.; Steichen, J.M.; Kornev, A.P. Evolution of the Eukaryotic Protein Kinases as Dynamic Molecular Switches. Philosoph. Transaction Royal Soc. B: Biol. Sci. 2012, 367, 2517–2528. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.A.; McGlone, M.L.; Gibson, R.; Taylor, S.S. Phosphorylation Modulates Catalytic Function and Regulation in the cAMP-Dependent Protein Kinase. Biochemistry 1995, 34, 2447–2454. [Google Scholar] [CrossRef]
- Taylor, S.S.; Kornev, A.P. Protein Kinases: Evolution of Dynamic Regulatory Proteins. Trends Biochem. Sci. 2011, 36, 65–77. [Google Scholar] [CrossRef]
- Taylor, S.S.; Søberg, K.; Kobori, E.; Wu, J.; Pautz, S.; Herberg, F.W.; Skålhegg, B.S. The Tails of Protein Kinase. A. Mol. Pharmacol. 2022, 101, 219–225. [Google Scholar] [CrossRef]
- Olivieri, C.; Walker, C.; Subrahmanian, M.V.; Porcelli, F.; Taylor, S.S.; Bernlohr, D.A.; Veglia, G. An NMR Portrait of Functional and Dysfunctional Allosteric Cooperativity in cAMP-Dependent Protein Kinase A. FEBS Lett. 2023, 597, 1055–1072. [Google Scholar] [CrossRef]
- Prinz, A.; Diskar, M.; Erlbruch, A.; Herberg, F.W. Novel, isotype-specific sensors for protein kinase A subunit interaction based on bioluminescence resonance energy transfer (BRET). Cell. Signal. 2006, 18, 1616–1625. [Google Scholar] [CrossRef]
- Manni, S.; Mauban, J.H.; Ward, C.W.; Bond, M. Phosphorylation of the cAMP-dependent Protein Kinase (PKA) Regulatory Subunit Modulates PKA-AKAP Interaction, Substrate Phosphorylation, and Calcium Signaling in Cardiac Cells. J. Biol. Chem. 2008, 283, 24145–24154. [Google Scholar] [CrossRef]
- Zhang, H.; Kong, Q.; Wang, J.; Jiang, Y.; Hua, H. Complex Roles of cAMP–PKA–CREB Signaling in Cancer. Experi. Hematol. Oncol. 2020, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ravnskjaer, K.; Madiraju, A.; Montminy, M. Role of the cAMP Pathway in Glucose and Lipid Metabolism. Metab. Control. 2016, 233, 29–49. [Google Scholar] [CrossRef]
- Bossis, I.; Stratakis, C.A. Minireview: PRKAR1A: Normal and Abnormal Functions. Endocrinology 2004, 145, 5452–5458. [Google Scholar] [CrossRef]
- Shabb, J.B. Physiological Substrates of cAMP-Dependent Protein Kinase. Chem. Rev. 2001, 101, 2381–2412. [Google Scholar] [CrossRef]
- Turnham, R.E.; Scott, J.D. Protein kinase A catalytic subunit isoform PRKACA; History, function and physiology. Gene 2016, 577, 101–108. [Google Scholar] [CrossRef]
- Murthy, K.S. Signaling for contraction and relaxation in smooth muscle of the gut. Annu. Rev. Physiol. 2006, 68, 345–374. [Google Scholar] [CrossRef] [PubMed]
- Kandel, E.R. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol. Brain 2012, 5, 14. [Google Scholar] [CrossRef]
- Lissandron, V.; Zaccolo, M. Compartmentalized cAMP/PKA signalling regulates cardiac excitation–contraction coupling. J. Muscle Res. Cell Motil. 2006, 27, 399–403. [Google Scholar] [CrossRef]
- Haynes, J.; Robinson, J.; Saunders, L.; Taylor, A.E.; Strada, S.J.; Barman, S.A.; Zhu, S.; Han, G.; White, R.E.; Jernigan, N.L.; et al. Role of cAMP-dependent protein kinase in cAMP-mediated vasodilation. Am. J. Physiol. Circ. Physiol. 1992, 262, H511–H516. [Google Scholar] [CrossRef]
- Pan, L.; Black, T.A.; Shi, Q.; Jones, C.A.; Petrovic, N.; Loudon, J.; Kane, C.; Sigmund, C.D.; Gross, K.W. Critical Roles of a Cyclic AMP Responsive Element and an E-box in Regulation of Mouse Renin Gene Expression. J. Biol. Chem. 2001, 276, 45530–45538. [Google Scholar] [CrossRef]
- Liu, F.; Verin, A.D.; Borbiev, T.; Garcia, J.G.N.; Zeng, Z.; Inoue, K.; Sun, H.; Leng, T.; Feng, X.; Zhu, L.; et al. Role of cAMP-dependent protein kinase A activity in endothelial cell cytoskeleton rearrangement. Am. J. Physiol. Cell. Mol. Physiol. 2001, 280, L1309–L1317. [Google Scholar] [CrossRef]
- Goddard, L.M.; Iruela-Arispe, L.M. Cellular and molecular regulation of vascular permeability. Thromb. Haemost. 2013, 109, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Bakre, M.; Yin, H.; Varner, J.A. Inhibition of endothelial cell survival and angiogenesis by protein kinase A. J. Clin. Investig. 2002, 110, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Skalhegg, B.S. Specificity in the cAMP PKA signaling pathway differential expression regulation and subcellular localization of subunits oF PKA. Front. Biosci. 1997, 2, d331–d342. [Google Scholar] [CrossRef] [PubMed]
- Søberg, K.; Moen, L.V.; Skålhegg, B.S.; Laerdahl, J.K. Evolution of the cAMP-Dependent Protein Kinase (PKA) Catalytic Subunit Isoforms. PloS One 2017, 12, e0181091. [Google Scholar] [CrossRef]
- Taylor, S.S.; Zhang, P.; Steichen, J.M.; Keshwani, M.M.; Kornev, A.P. PKA: Lessons learned after twenty years. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2013, 1834, 1271–1278. [Google Scholar] [CrossRef]
- Søberg, K.; Skålhegg, B.S. The Molecular Basis for Specificity at the Level of the Protein Kinase a Catalytic Subunit. Front. Endocrinol. 2018, 9, 538. [Google Scholar] [CrossRef]
- Ilouz, R.; Bubis, J.; Wu, J.; Yim, Y.Y.; Deal, M.S.; Kornev, A.P.; Ma, Y.; Blumenthal, D.K.; Taylor, S.S. Localization and quaternary structure of the PKA RIβ holoenzyme. Proc. Natl. Acad. Sci. USA 2012, 109, 12443–12448. [Google Scholar] [CrossRef]
- Lu, T.-W.; Wu, J.; Aoto, P.C.; Weng, J.-H.; Ahuja, L.G.; Sun, N.; Cheng, C.Y.; Zhang, P.; Taylor, S.S. Two PKA RIα holoenzyme states define ATP as an isoform-specific orthosteric inhibitor that competes with the allosteric activator, cAMP. Proc. Natl. Acad. Sci. USA 2019, 116, 16347–16356. [Google Scholar] [CrossRef]
- Cuello, F.; Eaton, P. Cysteine-Based Redox Sensing and Its Role in Signaling by Cyclic Nucleotide–Dependent Kinases in the Cardiovascular System. Annu. Rev. Physiol. 2019, 81, 63–87. [Google Scholar] [CrossRef]
- Clegg, C.H.; Cadd, G.G.; McKnight, G.S. Genetic characterization of a brain-specific form of the type I regulatory subunit of cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 1988, 85, 3703–3707. [Google Scholar] [CrossRef] [PubMed]
- McNicholl, E.T.; Das, R.; SilDas, S.; Byun, J.A.; Akimoto, M.; Jafari, N.; Melacini, G. Backbone resonance assignment of the cAMP-binding domains of the protein kinase A regulatory subunit Iα. Biomol. NMR Assign. 2021, 15, 379–382. [Google Scholar] [CrossRef]
- Kim, C.; Xuong, N.-H.; Taylor, S.S. Crystal Structure of a Complex Between the Catalytic and Regulatory (RIα) Subunits of PKA. Science 2005, 307, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Manschwetus, J.T.; Bendzunas, G.N.; Limaye, A.J.; Knape, M.J.; Herberg, F.W.; Kennedy, E.J. A Stapled Peptide Mimic of the Pseudosubstrate Inhibitor PKI Inhibits Protein Kinase A. Molecules 2019, 24, 1567. [Google Scholar] [CrossRef] [PubMed]
- Di Benedetto, G.; Zoccarato, A.; Lissandron, V.; Terrin, A.; Li, X.; Houslay, M.D.; Baillie, G.S.; Zaccolo, M. Protein Kinase A Type I and Type II Define Distinct Intracellular Signaling Compartments. Circ. Res. 2008, 103, 836–844. [Google Scholar] [CrossRef]
- Wang, Y.; Ho, T.G.; Franz, E.; Hermann, J.S.; Smith, F.D.; Hehnly, H.; Esseltine, J.L.; Hanold, L.E.; Murph, M.M.; Bertinetti, D.; et al. PKA-Type I Selective Constrained Peptide Disruptors of AKAP Complexes. ACS Chem. Biol. 2015, 10, 1502–1510. [Google Scholar] [CrossRef]
- Omar, M.H.; Scott, J.D. AKAP Signaling Islands: Venues for Precision Pharmacology. Trends Pharmacol. Sci. 2020, 41, 933–946. [Google Scholar] [CrossRef]
- Walker-Gray, R.; Klussmann, E. A-Kinase Anchoring Proteins (AKAPs). In Encyclopedia of Molecular Pharmacology; Offermanns, S., Rosenthal, W., Eds.; Springer International Publishing: Cham, The Netherlands, 2021; pp. 78–83. [Google Scholar] [CrossRef]
- Søberg, K.; Jahnsen, T.; Rognes, T.; Skålhegg, B.S.; Laerdahl, J.K. Evolutionary Paths of the cAMP-Dependent Protein Kinase (PKA) Catalytic Subunits. PLoS ONE 2013, 8, e60935. [Google Scholar] [CrossRef]
- Schiebel, K.; Winkelmann, M.; Mertz, A.; Xu, X.; Page, D.C.; Weil, D.; Petit, C.; Rappold, G.A. Abnormal XY Interchange between a Novel Isolated Protein Kinase Gene, PRKY, and Its Homologue, PRKX, Accounts for One Third of All (Y+)XX Males and (Y-)XY Females. Hum. Mol. Genet. 1997, 6, 1985–1989. [Google Scholar] [CrossRef]
- Uhler, M.D.; Mcknight, G. Expression of cdnas for 2 isoforms of the catalytic subunit of camp-dependent protein-kinase. J. Biol. Chem. 1987, 262, 15202–15207. [Google Scholar] [CrossRef]
- Fagerberg, L.; Hallström, B.M.; Oksvold, P.; Kampf, C.; Djureinovic, D.; Odeberg, J.; Habuka, M.; Tahmasebpoor, S.; Danielsson, A.; Edlund, K.; et al. Analysis of the Human Tissue-specific Expression by Genome-wide Integration of Transcriptomics and Antibody-based Proteomics. Mol. Cell. Proteom. 2014, 13, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.S.; Wallbott, M.; Machal, E.M.F.; Søberg, K.; Ahmed, F.; Bruystens, J.; Vu, L.; Baker, B.; Wu, J.; Raimondi, F.; et al. PKA Cβ: A forgotten catalytic subunit of cAMP-dependent protein kinase opens new windows for PKA signaling and disease pathologies. Biochem. J. 2021, 478, 2101–2119. [Google Scholar] [CrossRef]
- Beebe, S.J.; Øyen, O.; Sandberg, M.; Frøysa, A.; Hansson, V.; Jahnsen, T. Molecular Cloning of a Tissue-Specific Protein Kinase (Cγ) from Human Testis—Representing a Third Isoform for the Catalytic Subunit of cAMP-Dependent Protein Kinase. Mol. Endocrinol. 1990, 4, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, B.; Chiorini, J.A.; Ma, Y.; Kotin, R.M.; Herberg, F.W. PrKX Is a Novel Catalytic Subunit of the cAMP-Dependent Protein Kinase Regulated by the Regulatory Subunit Type I. J. Biol. Chem. 1999, 274, 5370–5378. [Google Scholar] [CrossRef] [PubMed]
- Reinton, N.; Haugen, T.B.; Ørstavik, S.; Skålhegg, B.S.; Hansson, V.; Jahnsen, T.; Taskén, K. The Gene Encoding the Cγ Catalytic Subunit of cAMP-Dependent Protein Kinase Is a Transcribed Retroposon. Genomics 1998, 49, 290–297. [Google Scholar] [CrossRef]
- Taskén, K.; Solberg, R.; Zhao, Y.; Hansson, V.; Jahnsen, T.; Siciliano, M.J. The Gene Encoding the Catalytic Subunit Cα of cAMP-Dependent Protein Kinase (Locus PRKACA) Localizes to Human Chromosome Region 19p13.1. Genomics 1996, 36, 535–538. [Google Scholar] [CrossRef]
- Shoji, S.; Parmelee, D.C.; Wade, R.D.; Kumar, S.; Ericsson, L.H.; A Walsh, K.; Neurath, H.; Long, G.L.; Demaille, J.G.; Fischer, E.H.; et al. Complete amino acid sequence of the catalytic subunit of bovine cardiac muscle cyclic AMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 1981, 78, 848–851. [Google Scholar] [CrossRef]
- Showers, M.; Maurer, R. A cloned bovine cdna encodes an alternate form of the catalytic subunit of camp-dependent protein-kinase. J. Biol. Chem. 1986, 261, 6288–6291. [Google Scholar] [CrossRef]
- Showers, M.O.; Maurer, R.A. [28] Cloning of cDNA for the Catalytic Subunit of cAMP-Dependent Protein Kinase. In Meth. Enzymol. 1998, 159, 311–318. [Google Scholar] [CrossRef]
- Agustin, J.T.S.; Leszyk, J.D.; Nuwaysir, L.M.; Witman, G.B. The Catalytic Subunit of the cAMP-dependent Protein Kinase of Ovine Sperm Flagella Has a Unique Amino-terminal Sequence. J. Biol. Chem. 1998, 273, 24874–24883. [Google Scholar] [CrossRef]
- Reinton, N.; Collas, P.; Haugen, T.B.; Skålhegg, B.S.; Hansson, V.; Jahnsen, T.; Taskén, K. Localization of a Novel Human A-Kinase-Anchoring Protein, hAKAP220, during Spermatogenesis. Dev. Biol. 2000, 223, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Sadeghian, F.; Castaneda, P.G.; Amin, M.R.; Cram, E.J. Functional Insights into Protein Kinase A (PKA) Signaling from C. elegans. Life 2022, 12, 1878. [Google Scholar] [CrossRef]
- Skålhegg, B.S.; Huang, Y.; Su, T.; Idzerda, R.L.; McKnight, G.S.; Burton, K.A. Mutation of the C? Subunit of PKA Leads to Growth Retardation and Sperm Dysfunction. Mol. Endocrinol. 2002, 16, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Roelink, H.; McKnight, G.S. Protein Kinase A Deficiency Causes Axially Localized Neural Tube Defects in Mice. J. Biol. Chem. 2002, 277, 19889–19896. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Cao, M.; Chen, P.; Li, W.; Liu, D. Identification, Mapping, and Application of Polymorphic DNA Associated with Resistance Gene Pm21 of Wheat. Genome 1996, 39, 191–197. [Google Scholar] [CrossRef]
- Brandon, E.P.; Zhuo, M.; Huang, Y.Y.; Qi, M.; A Gerhold, K.; A Burton, K.; Kandel, E.R.; McKnight, G.S.; Idzerda, R.L. Hippocampal long-term depression and depotentiation are defective in mice carrying a targeted disruption of the gene encoding the RI beta subunit of cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 1995, 92, 8851–8855. [Google Scholar] [CrossRef]
- Skalhegg, B.S.; Tasken, K. Subcellular Localization of Subunits of PKA. Front. Biosci. 2000, 5, 678–693. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, L.; Qi, Y.; Xu, H. Mitochondrial cAMP signaling. Cell. Mol. Life Sci. 2016, 73, 4577–4590. [Google Scholar] [CrossRef]
- Fragoso, M.C.B.V.; Wanichi, I.Q.; Cavalcante, I.P.; Mariani, B.M.d.P. The Role of gsp Mutations on the Development of Adrenocortical Tumors and Adrenal Hyperplasia. Front. Endocrinol. 2016, 7, 104. [Google Scholar] [CrossRef]
- Raker, V.K.; Becker, C.; Steinbrink, K. The cAMP Pathway as Therapeutic Target in Autoimmune and Inflammatory Diseases. Front. Immunol. 2016, 7, 123. [Google Scholar] [CrossRef]
- Hanoune, J.; Defer, N. Regulation and Role of Adenylyl Cyclase Isoforms. Annu. Rev. 2001, 41, 145–174. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.U.; Kim, S.-J.; Lee, J.; Song, M.-Y.; Park, K.-S.; Park, J.B.; Cho, H.-S.; Oh, Y.J. Protein kinase A-induced phosphorylation at the Thr154 affects stability of DJ-1. Park. Relat. Disord. 2019, 66, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Greenwald, E.C.; Saucerman, J.J. Bigger, Better, Faster. J. Cardiovasc. Pharmacol. 2011, 58, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Schmoker, A.M.; Barritt, S.A.; Weir, M.E.; Mann, J.E.; Hogan, T.C.; Ballif, B.A.; Deming, P.B. Fyn Regulates Binding Partners of Cyclic-AMP Dependent Protein Kinase A. Proteomes 2018, 6, 37. [Google Scholar] [CrossRef]
- Imamura, H.; Wagih, O.; Niinae, T.; Sugiyama, N.; Beltrao, P.; Ishihama, Y. Identifications of Putative PKA Substrates with Quantitative Phosphoproteomics and Primary-Sequence-Based Scoring. J. Proteome Res. 2017, 16, 1825–1830. [Google Scholar] [CrossRef]
- Amer, Y.O.; Hebert-Chatelain, E. Mitochondrial cAMP-PKA signaling: What do we really know? Biochim. Biophys. Acta (BBA) Bioenerg. 2018, 1859, 868–877. [Google Scholar] [CrossRef]
- Eftekharzadeh, B.; Ramin, M.; Khodagholi, F.; Moradi, S.; Tabrizian, K.; Sharif, R.; Azami, K.; Beyer, C.; Sharifzadeh, M. Inhibition of PKA attenuates memory deficits induced by β-amyloid (1–42), and decreases oxidative stress and NF-κB transcription factors. Behav. Brain Res. 2011, 226, 301–308. [Google Scholar] [CrossRef]
- Touyz, R.M.; Alves-Lopes, R.; Rios, F.J.; Camargo, L.L.; Anagnostopoulou, A.; Arner, A.; Montezano, A.C. Vascular smooth muscle contraction in hypertension. Cardiovasc. Res. 2018, 114, 529–539. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, X.; Li, Y.; Qi, F.; Liu, C.; Ai, X.; Tang, M.; Szeto, C.; Gao, E.; Hua, X.; et al. Protein Kinase A Is a Master Regulator of Physiological and Pathological Cardiac Hypertrophy. Circ. Res. 2024, 134, 393–410. [Google Scholar] [CrossRef]
- Zhang, Y.; Murugesan, P.; Huang, K.; Cai, H. NADPH oxidases and oxidase crosstalk in cardiovascular diseases: Novel therapeutic targets. Nat. Rev. Cardiol. 2019, 17, 170–194. [Google Scholar] [CrossRef]
- Cuello, F.; Herberg, F.W.; Stathopoulou, K.; Henning, P.; Diering, S. Regulation of Cardiac PKA Signaling by cAMP and Oxidants. Antioxidants 2021, 10, 663. [Google Scholar] [CrossRef] [PubMed]
- Layland, J.; Solaro, R.; Shah, A. Regulation of cardiac contractile function by troponin I phosphorylation. Cardiovasc. Res. 2005, 66, 12–21. [Google Scholar] [CrossRef]
- Tada, M.; A Kirchberger, M. Significance of the membrane protein phospholamban in cyclic AMP-mediated regulation of calcium transport by sarcoplasmic reticulum. Recent Adv. Stud. Cardiac. Struct. Metab. 1976, 11, 265–272. [Google Scholar] [PubMed]
- Wegener, A.D.; Simmerman, H.K.; Lindemann, J.P.; Jones, L.R. Phospholamban Phosphorylation in Intact Ventricles. J. Biol. Chem. 1989, 264, 11468–11474. [Google Scholar] [CrossRef]
- Kim, H.W.; A Steenaart, N.; Ferguson, D.G.; Kranias, E.G. Functional reconstitution of the cardiac sarcoplasmic reticulum Ca2(+)-ATPase with phospholamban in phospholipid vesicles. J. Biol. Chem. 1990, 265, 1702–1709. [Google Scholar] [CrossRef] [PubMed]
- Marx, S.O.; Reiken, S.; Hisamatsu, Y.; Jayaraman, T.; Burkhoff, D.; Rosemblit, N.; Marks, A.R. PKA Phosphorylation Dissociates FKBP12.6 from the Calcium Release Channel (Ryanodine Receptor): Defective Regulation in Failing Hearts. Cell 2000, 101, 365–376. [Google Scholar] [CrossRef]
- Liu, G.; Papa, A.; Katchman, A.N.; Zakharov, S.I.; Roybal, D.; Hennessey, J.A.; Kushner, J.; Yang, L.; Chen, B.-X.; Kushnir, A.; et al. Mechanism of adrenergic CaV1.2 stimulation revealed by proximity proteomics. Nature 2020, 577, 695–700. [Google Scholar] [CrossRef]
- Weber, D.K.; Reddy, U.V.; Wang, S.; Larsen, E.K.; Gopinath, T.; Gustavsson, M.B.; Cornea, R.L.; Thomas, D.D.; De Simone, A.; Veglia, G.; et al. Structural Basis for Allosteric Control of the SERCA-Phospholamban Membrane Complex by Ca2+ and Phosphorylation. Elife 2021, 10, e66226. [Google Scholar] [CrossRef]
- Qin, J.; Zhang, J.; Lin, L.; Haji-Ghassemi, O.; Lin, Z.; Woycechowsky, K.J.; Van Petegem, F.; Zhang, Y.; Yuchi, Z.; Mathematics; et al. Structures of PKA–Phospholamban Complexes Reveal a Mechanism of Familial Dilated Cardiomyopathy. Elife 2022, 11, e75346. [Google Scholar] [CrossRef]
- Bombardini, T. Myocardial contractility in the echo lab: Molecular, cellular and pathophysiological basis. Cardiovasc. Ultrasound 2005, 3, 27. [Google Scholar] [CrossRef]
- Kurihara, S.; Fukuda, N. Regulation of myocardial contraction as revealed by intracellular Ca2+ measurements using aequorin. J. Physiol. Sci. 2024, 74, 12. [Google Scholar] [CrossRef]
- Moss, R.L.; Fitzsimons, D.P.; Ralphe, J.C. Cardiac MyBP-C Regulates the Rate and Force of Contraction in Mammalian Myocardium. Circ. Res. 2015, 116, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Ponnam, S.; Sevrieva, I.; Sun, Y.-B.; Irving, M.; Kampourakis, T. Site-specific phosphorylation of myosin binding protein-C coordinates thin and thick filament activation in cardiac muscle. Proc. Natl. Acad. Sci. USA 2019, 116, 15485–15494. [Google Scholar] [CrossRef]
- Gautel, M.; Zuffardi, O.; Freiburg, A.; Labeit, S. Phosphorylation Switches Specific for the Cardiac Isoform of Myosin Binding Protein-C: A Modulator of Cardiac Contraction? EMBO J. 1995, 14, 1952–1960. [Google Scholar] [CrossRef] [PubMed]
- Sadayappan, S.; de Tombe, P.P. Cardiac myosin binding protein-C: Redefining its structure and function. Biophys. Rev. 2012, 4, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Perry, S.V.; Cole, H.A. Phosphorylation of troponin and the effects of interactions between the components of the complex. Biochem. J. 1974, 141, 733–743. [Google Scholar] [CrossRef]
- Mittmann, K.; Jaquet, K.; Heilmeyer, L.M. A Common Motif of Two Adjacent Phosphoserines in Bovine, Rabbit and Human Cardiac Troponin I. FEBS Lett. 1990, 273, 41–45. [Google Scholar] [CrossRef]
- Reiffert, S.U.; Jaquet, K.; Heilmeyer, L.M.G.; Herberg, F.W. Stepwise Subunit Interaction Changes by Mono- and Bisphosphorylation of Cardiac Troponin I. Biochemistry 1998, 37, 13516–13525. [Google Scholar] [CrossRef]
- Sadayappan, S.; Gulick, J.; Osinska, H.; Martin, L.A.; Hahn, H.S.; Dorn, G.W.; Klevitsky, R.; Seidman, C.E.; Seidman, J.G.; Robbins, J. Cardiac Myosin-Binding Protein-C Phosphorylation and Cardiac Function. Circ. Res. 2005, 97, 1156–1163. [Google Scholar] [CrossRef]
- Cazorla, O.; Szilagyi, S.; Vignier, N.; Salazar, G.; Krämer, E.; Vassort, G.; Carrier, L.; Lacampagne, A. Length and protein kinase A modulations of myocytes in cardiac myosin binding protein C-deficient mice. Cardiovasc. Res. 2006, 69, 370–380. [Google Scholar] [CrossRef]
- Pohlmann, L.; Kröger, I.; Vignier, N.; Schlossarek, S.; Krämer, E.; Coirault, C.; Sultan, K.R.; El-Armouche, A.; Winegrad, S.; Eschenhagen, T.; et al. Cardiac Myosin-Binding Protein C Is Required for Complete Relaxation in Intact Myocytes. Circ. Res. 2007, 101, 928–938. [Google Scholar] [CrossRef] [PubMed]
- Robertson, S.; Johnson, J.; Holroyde, M.; Kranias, E.; Potter, J.; Solaro, R. The effect of troponin I phosphorylation on the Ca2+-binding properties of the Ca2+-regulatory site of bovine cardiac troponin. J. Biol. Chem. 1982, 257, 260–263. [Google Scholar] [CrossRef]
- Garvey, J.L.; Kranias, E.G.; Solaro, R.J. Phosphorylation of C-protein, troponin I and phospholamban in isolated rabbit hearts. Biochem. J. 1988, 249, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Kentish, J.C.; McCloskey, D.T.; Layland, J.; Palmer, S.; Leiden, J.M.; Martin, A.F.; Solaro, R.J. Phosphorylation of Troponin I by Protein Kinase A Accelerates Relaxation and Crossbridge Cycle Kinetics in Mouse Ventricular Muscle. Circ. Res. 2001, 88, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Rosa, S.C.d.S.; Nayak, N.; Caymo, A.M.; Gordon, J.W. Mechanisms of Muscle Insulin Resistance and the Cross-Talk with Liver and Adipose Tissue. Physiol. Rep. 2020, 8, e14607. [Google Scholar] [CrossRef]
- London, E.; Bloyd, M.; Stratakis, C.A. PKA functions in metabolism and resistance to obesity: Lessons from mouse and human studies. J. Endocrinol. 2020, 246, R51–R64. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, X.; Yi, L.; Yang, L.; Wang, W.E.; Zeng, C.; Mi, M.; Chen, X. Hepatic PKA inhibition accelerates the lipid accumulation in liver. Nutr. Metab. 2019, 16, 69. [Google Scholar] [CrossRef]
- Lai, C.-Y.; Liu, Y.-J.; Lai, H.-L.; Chen, H.-M.; Kuo, H.-C.; Liao, Y.-P.; Chern, Y. The D2 Dopamine Receptor Interferes With the Protective Effect of the A2A Adenosine Receptor on TDP-43 Mislocalization in Experimental Models of Motor Neuron Degeneration. Front. Neurosci. 2018, 12, 187. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Chen, X.; Wang, B.; Ma, W.; Yang, Y.; Zheng, R.; Huang, Z. PKA-RIIβ autophosphorylation modulates PKA activity and seizure phenotypes in mice. Commun. Biol. 2021, 4, 63. [Google Scholar] [CrossRef]
- Dagda, R.K.; Das Banerjee, T. Role of protein kinase A in regulating mitochondrial function and neuronal development: Implications to neurodegenerative diseases. Prog. Neurobiol. 2015, 26, 359–370. [Google Scholar] [CrossRef]
- Lee, Y.-Y.; Park, J.-S.; Leem, Y.-H.; Park, J.-E.; Kim, D.-Y.; Choi, Y.-H.; Park, E.-M.; Kang, J.L.; Kim, H.-S. The phosphodiesterase 10 inhibitor papaverine exerts anti-inflammatory and neuroprotective effects via the PKA signaling pathway in neuroinflammation and Parkinson’s disease mouse models. J. Neuroinflamm. 2019, 16, 246. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, B.; Zhao, M.; Liu, J.; Hou, Y.; Wei, S.; Zheng, R. Age-related decline of PKA-RIIβ level in SNc dopaminergic neurons underlies PD pathogenesis. bioRxiv 2024. [Google Scholar] [CrossRef]
- RV, A.A.; Buzaeva, P.; Michaelevski, I. Unlocking the therapeutic potential of protein kinase inhibitors in neurodegenerative and psychiatric disorders. Explor. Drug Sci. 2024, 3, 100892. [Google Scholar] [CrossRef]
- Haque, E.; Jakaria; Akther, M.; Cho, D.-Y.; Kim, I.-S.; Choi, D.-K. The GCN5: Its biological functions and therapeutic potentials. Clin. Sci. 2021, 135, 231–257. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Liu, J.; Chen, J.; Wang, J.; Hua, H.; Jiang, Y. cAMP-PKA/EPAC signaling and cancer: The interplay in tumor microenvironment. J. Hematol. Oncol. 2024, 17, 5. [Google Scholar] [CrossRef]
- Rosenthal, K.J.; Gordan, J.D.; Scott, J.D. Protein kinase A and local signaling in cancer. Biochem. J. 2024, 481, 1659–1677. [Google Scholar] [CrossRef]
- Ognjenovic, N.B.; Bagheri, M.; Mohamed, G.A.; Xu, K.; Chen, Y.; Saleem, M.A.M.; Brown, M.S.; Nagaraj, S.H.; Muller, K.E.; Gerber, S.A.; et al. Limiting Self-Renewal of the Basal Compartment by PKA Activation Induces Differentiation and Alters the Evolution of Mammary Tumors. Dev. Cell 2020, 55, 544–557.e6. [Google Scholar] [CrossRef]
- Yao, X.; Hu, W.; Zhang, J.; Huang, C.; Zhao, H.; Yao, X. Application of cAMP-dependent catalytic subunit β (PRKACB) Low Expression in Predicting Worse Overall Survival: A Potential Therapeutic Target for Colorectal Carcinoma. J. Cancer 2020, 11, 4841–4850. [Google Scholar] [CrossRef]
- Bolger, G.B. The cAMP-signaling cancers: Clinically-divergent disorders with a common central pathway. Front. Endocrinol. 2022, 13, 1024423. [Google Scholar] [CrossRef]
- Wang, H.; Cai, Q.; Zeng, X.; Yu, D.; Agrawal, S.; Zhang, R. Antitumor activity and pharmacokinetics of a mixed-backbone antisense oligonucleotide targeted to the RIα subunit of protein kinase A after oral administration. Proc. Natl. Acad. Sci. USA 1999, 96, 13989–13994. [Google Scholar] [CrossRef]
- Poole, L.B. Formation and Functions of Protein Sulfenic Acids. Curr. Protoc. Toxicol. 2003, 18, 17.1.1–17.1.15. [Google Scholar] [CrossRef] [PubMed]
- Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.I.; Griendling, K.K. Nox proteins in signal transduction. Free Radic. Biol. Med. 2009, 47, 1239–1253. [Google Scholar] [CrossRef]
- Gostner, J.M.; Becker, K.; Fuchs, D.; Sucher, R. Redox Regulation of the Immune Response. Redox Rep. 2013, 18, 88–94. [Google Scholar] [CrossRef]
- Gough, D.R.; Cotter, T.G. Hydrogen peroxide: A Jekyll and Hyde signalling molecule. Cell Death Dis. 2011, 2, e213. [Google Scholar] [CrossRef]
- Harrison, I.P.; Selemidis, S. Understanding the Biology of Reactive Oxygen Species and Their Link to Cancer: NADPH Oxidases as Novel Pharmacological Targets. Clinical Exper. Pharmacol. Physiol. 2014, 41, 533–542. [Google Scholar] [CrossRef]
- Klomsiri, C.; Karplus, P.; Poole, L.B. Cysteine-Based Redox Switches in Enzymes. Antioxid. Redox Signal. 2011, 14, 1065–1077. [Google Scholar] [CrossRef]
- Marinho, H.S.; Real, C.; Cyrne, L.; Soares, H.; Antunes, F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol. 2014, 2, 535–562. [Google Scholar] [CrossRef]
- Miki, H.; Funato, Y. Regulation of intracellular signalling through cysteine oxidation by reactive oxygen species. J. Biochem. 2012, 151, 255–261. [Google Scholar] [CrossRef]
- Poole, L.B.; Schöneich, C. Introduction: What we do and do not know regarding redox processes of thiols in signaling pathways. Free Radic. Biol. Med. 2015, 80, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Travasso, R.D.; dos Aidos, F.S.; Bayani, A.; Abranches, P.; Salvador, A. Localized redox relays as a privileged mode of cytoplasmic hydrogen peroxide signaling. Redox Biol. 2017, 12, 233–245. [Google Scholar] [CrossRef]
- Hernandes, M.S.; Britto, L.R. NADPH Oxidase and Neurodegeneration. Curr. Neuropharmacol. 2012, 10, 321–327. [Google Scholar] [CrossRef]
- Lugrin, J.; Rosenblatt-Velin, N.; Parapanov, R.; Liaudet, L. The role of oxidative stress during inflammatory processes. Biol. Chem. 2014, 395, 203–230. [Google Scholar] [CrossRef] [PubMed]
- Klomsiri, C.; Rogers, L.C.; Soito, L.; McCauley, A.K.; King, S.B.; Nelson, K.J.; Poole, L.B.; Daniel, L.W. Endosomal H2O2 production leads to localized cysteine sulfenic acid formation on proteins during lysophosphatidic acid-mediated cell signaling. Free Radic. Biol. Med. 2014, 71, 49–60. [Google Scholar] [CrossRef]
- Akoumianakis, I.; Antoniades, C. Impaired Vascular Redox Signaling in the Vascular Complications of Obesity and Diabetes Mellitus. Antioxid. Redox Signal. 2019, 30, 333–353. [Google Scholar] [CrossRef] [PubMed]
- Cioffi, F.; Adam, R.H.I.; Broersen, K. Molecular Mechanisms and Genetics of Oxidative Stress in Alzheimer’s Disease. J. Alzheimer’s Dis. 2019, 72, 981–1017. [Google Scholar] [CrossRef]
- Kalyanaraman, B.; Cheng, G.; Hardy, M.; Ouari, O.; Bennett, B.; Zielonka, J. Teaching the basics of reactive oxygen species and their relevance to cancer biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies. Redox Biol. 2018, 15, 347–362. [Google Scholar] [CrossRef]
- Iqbal, M.J.; Kabeer, A.; Abbas, Z.; Siddiqui, H.A.; Calina, D.; Sharifi-Rad, J.; Cho, W.C. Interplay of oxidative stress, cellular communication and signaling pathways in cancer. Cell Commun. Signal. 2024, 22, 7. [Google Scholar] [CrossRef]
- Dias, V.; Junn, E.; Mouradian, M.M. The Role of Oxidative Stress in Parkinson’s Disease. J. Parkinsons Dis. 2013, 3, 461–491. [Google Scholar] [CrossRef]
- Little, A.C.; Sulovari, A.; Danyal, K.; Heppner, D.E.; Seward, D.J.; van der Vliet, A. Paradoxical roles of dual oxidases in cancer biology. Free Radic. Biol. Med. 2017, 110, 117–132. [Google Scholar] [CrossRef] [PubMed]
- Schiffers, C.; Reynaert, N.L.; Wouters, E.F.M.; van der Vliet, A. Redox Dysregulation in Aging and COPD: Role of NOX Enzymes and Implications for Antioxidant Strategies. Antioxidants 2021, 10, 1799. [Google Scholar] [CrossRef] [PubMed]
- Veith, C.; Boots, A.W.; Idris, M.; van Schooten, F.-J.; van der Vliet, A. Redox Imbalance in Idiopathic Pulmonary Fibrosis: A Role for Oxidant Cross-Talk Between NADPH Oxidase Enzymes and Mitochondria. Antioxid. Redox Signal. 2019, 31, 1092–1115. [Google Scholar] [CrossRef]
- Gao, H.-M.; Zhou, H.; Hong, J.-S. NADPH Oxidases: Novel Therapeutic Targets for Neurodegenerative Diseases. Trends Pharmacol. Sci. 2012, 33, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Sirokmány, G.; Donkó, Á.; Geiszt, M. Nox/Duox Family of NADPH Oxidases: Lessons from Knockout Mouse Models. Trends Pharmacol. Sci. 2016, 37, 318–327. [Google Scholar] [CrossRef]
- Vermot, A.; Petit-Härtlein, I.; Smith, S.M.E.; Fieschi, F. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants 2021, 10, 890. [Google Scholar] [CrossRef]
- Ammar, R.F.; Gutterman, D.D.; A Brooks, L.; Dellsperger, K.C. Free radicals mediate endothelial dysfunction of coronary arterioles in diabetes. Cardiovasc. Res. 2000, 47, 595–601. [Google Scholar] [CrossRef]
- Pendyala, S.; Natarajan, V. Redox regulation of Nox proteins. Respir. Physiol. Neurobiol. 2010, 174, 265–271. [Google Scholar] [CrossRef]
- Zhao, M.-M.; Xu, M.-J.; Cai, Y.; Zhao, G.; Guan, Y.; Kong, W.; Tang, C.; Wang, X. Mitochondrial reactive oxygen species promote p65 nuclear translocation mediating high-phosphate-induced vascular calcification in vitro and in vivo. Kidney Int. 2011, 79, 1071–1079. [Google Scholar] [CrossRef]
- van der Vliet, A.; Janssen-Heininger, Y.M. Hydrogen Peroxide as a Damage Signal in Tissue Injury and Inflammation: Murderer, Mediator, or Messenger? J. Cell. Biochem. 2013, 115, 427–435. [Google Scholar] [CrossRef]
- Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 2017, 11, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Csányi, G., Jr. Oxidative Stress in Cardiovascular Disease. Int. J. Mol. Sci. 2014, 15, 6002–6008. [Google Scholar] [CrossRef] [PubMed]
- Bardaweel, S.K.; Gul, M.; Alzweiri, M.; Ishaqat, A.; ALSalamat, H.A.; Bashatwah, R.M. Reactive Oxygen Species: The Dual Role in Physiological and Pathological Conditions of the Human Body. Eurasian J. Med. 2018, 50, 193–201. [Google Scholar] [CrossRef]
- Mackova, V.; Raudenska, M.; Polanska, H.H.; Jakubek, M.; Masarik, M. Navigating the Redox Landscape: Reactive Oxygen Species in Regulation of Cell Cycle. Redox Rep. 2024, 29, 2371173. [Google Scholar] [CrossRef]
- Heinke, L. Mitochondrial ROS drive cell cycle progression. Nat. Rev. Mol. Cell Biol. 2022, 23, 581. [Google Scholar] [CrossRef]
- Akhigbe, R.; Ajayi, A. The Impact of Reactive Oxygen Species in the Development of Cardiometabolic Disorders: A Review. Lipids Health Dis. 2021, 20, 23. [Google Scholar] [CrossRef] [PubMed]
- Valaitienė, J.; Laučytė-Cibulskienė, A. Oxidative Stress and Its Biomarkers in Cardiovascular Diseases. Artery Res. 2024, 30, 18. [Google Scholar] [CrossRef]
- Houldsworth, A. Role of oxidative stress in neurodegenerative disorders: A review of reactive oxygen species and prevention by antioxidants. Brain Commun. 2023, 6, fcad356. [Google Scholar] [CrossRef]
- Afzal, S.; Manap, A.S.A.; Attiq, A.; Albokhadaim, I.; Kandeel, M.; Alhojaily, S.M. From imbalance to impairment: The central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Front. Pharmacol. 2023, 14, 1269581. [Google Scholar] [CrossRef]
- Manoharan, R.R.; Prasad, A.; Pospíšil, P.; Kzhyshkowska, J. ROS signaling in innate immunity via oxidative protein modifications. Front. Immunol. 2024, 15, 1359600. [Google Scholar] [CrossRef]
- Kozlov, A.V.; Javadov, S.; Sommer, N. Cellular ROS and Antioxidants: Physiological and Pathological Role. Antioxidants 2024, 13, 602. [Google Scholar] [CrossRef]
- Ye, F.; Zhou, F.; Bedolla, R.G.; Jones, T.; Lei, X.; Kang, T.; Guadalupe, M.; Gao, S.-J. Reactive Oxygen Species Hydrogen Peroxide Mediates Kaposi’s Sarcoma-Associated Herpesvirus Reactivation from Latency. PLoS Pathog. 2011, 7, e1002054. [Google Scholar] [CrossRef]
- Brezny, A.C.; Nedzbala, H.S.; Mayer, J.M. Multiple Selectivity-Determining Mechanisms of H2O2 Formation in Iron Porphyrin-Catalysed Oxygen Reduction. Chem. Comm. 2021, 57, 1202–1205. [Google Scholar] [CrossRef]
- Andrés, C.M.C.; de la Lastra, J.M.P.; Juan, C.A.; Plou, F.J.; Pérez-Lebeña, E. Chemistry of Hydrogen Peroxide Formation and Elimination in Mammalian Cells, and Its Role in Various Pathologies. Stresses 2022, 2, 256–274. [Google Scholar] [CrossRef]
- Lennicke, C.; Rahn, J.; Lichtenfels, R.; Wessjohann, L.A.; Seliger, B. Hydrogen peroxide—Production, fate and role in redox signaling of tumor cells. Cell Commun. Signal. 2015, 13, 39. [Google Scholar] [CrossRef]
- Davies, M.J. The oxidative environment and protein damage. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2005, 1703, 93–109. [Google Scholar] [CrossRef]
- Sheehan, D. Detection of redox-based modification in two-dimensional electrophoresis proteomic separations. Biochem. Biophys. Res. Commun. 2006, 349, 455–462. [Google Scholar] [CrossRef]
- Matsui, A.; Hashiguchi, K.; Suzuki, M.; Zhang-Akiyama, Q.-M. Oxidation resistance 1 functions in the maintenance of cellular survival and genome stability in response to oxidative stress-independent DNA damage. Genes Environ. 2020, 42, 29. [Google Scholar] [CrossRef]
- Martins, S.G.; Zilhão, R.; Thorsteinsdóttir, S.; Carlos, A.R. Linking Oxidative Stress and DNA Damage to Changes in the Expression of Extracellular Matrix Components. Front. Genet. 2021, 12, 673002. [Google Scholar] [CrossRef]
- Sejwal, K.; Chami, M.; Baumgartner, P.; Kowal, J.; Müller, S.A.; Stahlberg, H. Proteoliposomes—A system to study membrane proteins under buffer gradients by cryo-EM. Nanotechnol. Rev. 2017, 6, 57–74. [Google Scholar] [CrossRef]
- Yan, L.-J. Analysis of Oxidative Modification of Proteins. Curr. Protocols Prot. Sci. 2009, 56, 14.4.1–14.4.28. [Google Scholar] [CrossRef]
- Yan, L.-J. Protein Redox Modification as a Cellular Defense Mechanism against Tissue Ischemic Injury. Ox. Med. Cellular Longevity 2014, 2014, 343154. [Google Scholar] [CrossRef]
- Poole, L.B. The basics of thiols and cysteines in redox biology and chemistry. Free Radic. Biol. Med. 2015, 80, 148–157. [Google Scholar] [CrossRef]
- Poole, L.B.; Thorpe, C. Redox proteins. Protein Sci. 2018, 28, 5–7. [Google Scholar] [CrossRef]
- Paulsen, C.E.; Carroll, K.S. Cysteine-Mediated Redox Signaling: Chemistry, Biology, and Tools for Discovery. Chemical reviews 2013, 113, 4633–4679. [Google Scholar] [CrossRef]
- Truong, T.H.; Carroll, K.S. Redox Regulation of Protein Kinases. Crit. Rev. Biochem. Mol. Biol. 2013, 48, 332–356. [Google Scholar] [CrossRef]
- Reddie, K.G.; Carroll, K.S. Expanding the functional diversity of proteins through cysteine oxidation. Curr. Opin. Chem. Biol. 2008, 12, 746–754. [Google Scholar] [CrossRef]
- Shi, Y.; Carroll, K.S. Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation. Acc. Chem. Res. 2019, 53, 20–31. [Google Scholar] [CrossRef]
- Fra, A.; Yoboue, E.D.; Sitia, R. Cysteines as Redox Molecular Switches and Targets of Disease. Front. Mol. Neurosci. 2007, 10, 167. [Google Scholar] [CrossRef]
- Fu, L.; Jung, Y.; Tian, C.; Ferreira, R.B.; Cheng, R.; He, F.; Yang, J.; Carroll, K.S. Nucleophilic covalent ligand discovery for the cysteine redoxome. Nat. Chem. Biol. 2023, 19, 1309–1319. [Google Scholar] [CrossRef]
- Stadtman, E.R. Oxidation of Free Amino Acids and Amino Acid Residues in Proteins by Radiolysis and by metal-CATALYZED Reactions. Annu. Rev. Biochem. 1993, 62, 797–821. [Google Scholar] [CrossRef]
- Fomenko, D.E.; Marino, S.M.; Gladyshev, V.N. Functional Diversity of Cysteine Residues in Proteins and Unique Features of Catalytic Redox-active Cysteines in Thiol Oxidoreductases. Mol. Cells 2008, 26, 228–235. [Google Scholar] [CrossRef]
- Conte, M.L.; Carroll, K.S. The Redox Biochemistry of Protein Sulfenylation and Sulfinylation. J. Biol. Chem. 2013, 288, 26480–26488. [Google Scholar] [CrossRef]
- Marino, S.M. Protein Flexibility and Cysteine Reactivity: Influence of Mobility on the H-Bond Network and Effects on pKa Prediction. Protein J. 2014, 33, 323–336. [Google Scholar] [CrossRef]
- Valderrama, R.; Begara-Morales, J.C.; Chaki, M.; Mata-Pérez, C.; Padilla, M.N.; Barroso, J.B. Hydrogen Peroxide (H2O2)-and Nitric Oxide (NO)-Derived Posttranslational Modifications; Gupta, D.K., Palma, J.M., Corpas, F.J., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 37–67. [Google Scholar] [CrossRef]
- Lu, J.; Holmgren, A. The thioredoxin antioxidant system. Free Radic. Biol. Med. 2014, 66, 75–87. [Google Scholar] [CrossRef]
- Mohammadi, F.; Soltani, A.; Ghahremanloo, A.; Javid, H.; Hashemy, S.I. The thioredoxin system and cancer therapy: A review. Cancer Chemother. Pharmacol. 2019, 84, 925–935. [Google Scholar] [CrossRef]
- Yang, B.; Lin, Y.; Huang, Y.; Shen, Y.-Q.; Chen, Q. Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol. 2024, 70, 103032. [Google Scholar] [CrossRef]
- Diwakar, L.; Ravindranath, V. Protein Glutathionylation and Glutaredoxin: Role in Neurodegenerative Diseases. Antioxidants 2022, 11, 2334. [Google Scholar] [CrossRef]
- Chai, Y.-C.; Mieyal, J.J. Glutathione and Glutaredoxin—Key Players in Cellular Redox Homeostasis and Signaling. Antioxidants 2023, 12, 1553. [Google Scholar] [CrossRef]
- Vašková, J.; Kočan, L.; Vaško, L.; Perjési, P. Glutathione-Related Enzymes and Proteins: A Review. Molecules 2023, 28, 1447. [Google Scholar] [CrossRef]
- Ogata, F.T.; Branco, V.; Vale, F.F.; Coppo, L. Glutaredoxin: Discovery, redox defense and much more. Redox Biol. 2021, 43, 101975. [Google Scholar] [CrossRef]
- de Piña, M.Z.; Vázquez-Meza, H.; Pardo, J.P.; Rendón, J.L.; Villalobos-Molina, R.; Riveros-Rosas, H.; Piña, E. Signaling the Signal, Cyclic AMP-Dependent Protein Kinase Inhibition by Insulin-Formed and Reactivation by Thioredoxin. J. Biol. Chem. 2008, 283, 12373–12386. [Google Scholar] [CrossRef]
- Nelson, N.; Taylor, S. Selective Protection of Sulfhydryl Groups in cAMP-Dependent Protein Kinase II. J. Biol. Chem. 1983, 258, 10981–10987. [Google Scholar] [CrossRef]
- Srinivasan, S.; Spear, J.; Chandran, K.; Joseph, J.; Kalyanaraman, B.; Avadhani, N.G. Oxidative Stress Induced Mitochondrial Protein Kinase A Mediates Cytochrome C Oxidase Dysfunction. PLoS ONE 2013, 8, e77129. [Google Scholar] [CrossRef]
- Brennan, J.P.; Southworth, R.; Medina, R.A.; Davidson, S.M.; Duchen, M.R.; Shattock, M.J. Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation. Cardiovasc. Res. 2006, 72, 313–321. [Google Scholar] [CrossRef]
- Castellanos, E.; Lanning, N.J. Phosphorylation of OXPHOS Machinery Subunits: Functional Implications in Cell Biology and Disease. Yale J. Biol. Med. 2019, 92, 523–531. [Google Scholar] [PubMed]
- Prabu, S.K.; Anandatheerthavarada, H.K.; Raza, H.; Srinivasan, S.; Spear, J.F.; Avadhani, N.G. Protein Kinase A-Mediated Phosphorylation Modulates Cytochrome Oxidase Function and Augments Hypoxia and Myocardial Ischemia-Related Injury. J. Biol. Chem. 2006, 281, 2061–2070. [Google Scholar] [CrossRef]
- Trum, M.; Islam, M.M.T.; Lebek, S.; Baier, M.; Hegner, P.; Eaton, P.; Maier, L.S.; Wagner, S. Inhibition of cardiac potassium currents by oxidation-activated protein kinase A contributes to early afterdepolarizations in the heart. Am. J. Physiol. Heart Circ. Physiol. 2020, 319, H1347–H1357. [Google Scholar] [CrossRef]
- Beck, K.-F.; Euler, J.; Eisel, F.; Beck, M.; Köhler, Y.; Sha, L.K.; von Knethen, A.; Longen, S.; Pfeilschifter, J. Cytokines induce protein kinase A-mediated signalling by a redox-dependent mechanism in rat renal mesangial cells. Biochem. Pharmacol. 2014, 93, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Burgoyne, J.R.; Rudyk, O.; Cho, H.-J.; Prysyazhna, O.; Hathaway, N.; Weeks, A.; Evans, R.; Ng, T.; Schröder, K.; Brandes, R.P.; et al. Deficient angiogenesis in redox-dead Cys17Ser PKARIα knock-in mice. Nat. Commun. 2015, 6, 7920. [Google Scholar] [CrossRef] [PubMed]
- Banky, P.; Roy, M.; Newlon, M.G.; Morikis, D.; Haste, N.M.; Taylor, S.S.; A Jennings, P. Related Protein–Protein Interaction Modules Present Drastically Different Surface Topographies Despite A Conserved Helical Platform. J. Mol. Biol. 2003, 330, 1117–1129. [Google Scholar] [CrossRef]
- Bubis, J.; Vedvick, T.; Taylor, S. Antiparallel Alignment of the 2 Protomers of the Regulatory Subunit Dimer of cAMP-Dependent Protein Kinase-I. J. Biol. Chem. 1987, 262, 14961–14966. [Google Scholar] [CrossRef]
- Sarma, G.N.; Kinderman, F.S.; Kim, C.; von Daake, S.; Chen, L.; Wang, B.-C.; Taylor, S.S. Structure of D-AKAP2:PKA RI Complex: Insights into AKAP Specificity and Selectivity. Structure 2010, 18, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Potter, R.; Taylor, S. The Structural Domains of cAMP-Dependent Protein Kinase-I-Characterization of 2 Sites of Proteolytic Cleavage and Homologies to Camp-Dependent Protein Kinase-II. J. Biol. Chm. 1980, 255, 9706–9712. [Google Scholar] [CrossRef]
- Viste, K.; Kopperud, R.K.; Christensen, A.E.; Døskeland, S.O. Substrate Enhances the Sensitivity of Type I Protein Kinase A to cAMP. J. Biol. Chem. 2005, 280, 13279–13284. [Google Scholar] [CrossRef]
- Simon, J.N.; Vrellaku, B.; Monterisi, S.; Chu, S.M.; Rawlings, N.; Lomas, O.; Marchal, G.A.; Waithe, D.; Syeda, F.; Gajendragadkar, P.R.; et al. Oxidation of Protein Kinase A Regulatory Subunit PKARIα Protects Against Myocardial Ischemia-Reperfusion Injury by Inhibiting Lysosomal-Triggered Calcium Release. Circulation 2021, 143, 449–465. [Google Scholar] [CrossRef]
- Michel, J.J.C.; Scott, J.D. AKAP Mediated Signal Transduction. Annu. Rev. Pharmacol. Toxicol. 2002, 42, 235–257. [Google Scholar] [CrossRef]
- Wong, W.; Scott, J.D. AKAP signalling complexes: Focal points in space and time. Nat. Rev. Mol. Cell Biol. 2004, 5, 959–970. [Google Scholar] [CrossRef]
- Jarnæss, E.; Ruppelt, A.; Stokka, A.J.; Lygren, B.; Scott, J.D.; Taskén, K. Dual Specificity A-Kinase Anchoring Proteins (AKAPs) Contain an Additional Binding Region That Enhances Targeting of Protein Kinase A Type I. J. Biol. Chem. 2008, 283, 33708–33718. [Google Scholar] [CrossRef]
- McConnachie, G.; Langeberg, L.K.; Scott, J.D. AKAP signaling complexes: Getting to the heart of the matter. Trends Mol. Med. 2006, 12, 317–323. [Google Scholar] [CrossRef]
- McClendon, C.L.; Kornev, A.P.; Gilson, M.K.; Taylor, S.S. Dynamic architecture of a protein kinase. Proc. Natl. Acad. Sci. USA 2014, 111, E4623–E4631. [Google Scholar] [CrossRef]
- Pearson, R.B.; Kemp, B.E. Protein Kinase Phosphorylation Site Sequences and Consensus Specificity Motifs: Tabulations. Meth. Enzymol. 1991, 62–81. [Google Scholar] [CrossRef]
- Reikhardt, B.A.; Shabanov, P.D. Catalytic Subunit of PKA as a Prototype of the Eukaryotic Protein Kinase Family. Biochemistry 2020, 85, 409–424. [Google Scholar] [CrossRef]
- Moore, M.J.; Adams, J.A.; Taylor, S.S. Structural Basis for Peptide Binding in Protein Kinase A: Role of Glutamic Acid 203 and Tyrosine 204 in the Peptide-Positioning Loop. J. Biol. Chem. 2003, 278, 10613–10618. [Google Scholar] [CrossRef]
- Zheng, J.; Knighton, D.R.; Eyck, L.F.T.; Karlsson, R.; Xuong, N.; Taylor, S.S.; Sowadski, J.M. Crystal Structure of the Catalytic Subunit of cAMP-Dependent Protein Kinase Complexed with Magnesium-ATP and Peptide Inhibitor. Biochemistry 1993, 32, 2154–2161. [Google Scholar] [CrossRef]
- Humphries, K.M.; Deal, M.S.; Taylor, S.S. Enhanced Dephosphorylation of cAMP-Dependent Protein Kinase by Oxidation and Thiol Modification. J. Biol. Chem. 2005, 280, 2750–2758. [Google Scholar] [CrossRef]
- Humphries, K.M.; Pennypacker, J.K.; Taylor, S.S. Redox Regulation of cAMP-dependent Protein Kinase Signaling: Kinase Versus Phosphatase Inactivation. J. Biol. Chem. 2007, 282, 22072–22079. [Google Scholar] [CrossRef]
- Johnson, L.N.; Noble, M.E.; Owen, D.J. Active and Inactive Protein Kinases: Structural Basis for Regulation. Cell 1996, 85, 149–158. [Google Scholar] [CrossRef]
- Shoji, S.; Titani, K.; Demaille, J.G.; Fischer, E.H. Sequence of Two Phosphorylated Sites in the Catalytic Subunit of Bovine Cardiac Muscle Adenosine Monophosphate-Dependent Protein Kinase. J. Biol. Chem. 1979, 254, 6211–6214. [Google Scholar] [CrossRef]
- Steinberg, A.R.; Cauthron, R.D.; Symcox, M.M.; Shuntoh, H. Autoactivation of Catalytic (Cα) Subunit of Cyclic AMP-Dependent Protein Kinase by Phosphorylation of Threonine 197. Mol. Cell Biol. 1993, 13, 2332–2341. [Google Scholar] [CrossRef]
- Yonemoto, W.; Garrod, S.; Bell, S.; Taylor, S. Identification of phosphorylation sites in the recombinant catalytic subunit of cAMP-dependent protein kinase. J. Biol. Chem. 1993, 268, 18626–18632. [Google Scholar] [CrossRef]
- Johnson, D.A.; Akamine, P.; Radzio-Andzelm, E.; Madhusudan, M.; Taylor, S.S. Dynamics of cAMP-Dependent Protein Kinase. Chem. Rev. 2001, 101, 2243–2270. [Google Scholar] [CrossRef]
- Shen, J.; A Smith, R.; Stoll, V.S.; Edalji, R.; Jakob, C.; Walter, K.; Gramling, E.; Dorwin, S.; Bartley, D.; Gunasekera, A.; et al. Characterization of protein kinase A phosphorylation: Multi-technique approach to phosphate mapping. Anal. Biochem. 2003, 324, 204–218. [Google Scholar] [CrossRef]
- Bechtel, P.J.; A Beavo, J.; Krebs, E.G. Purification and characterization of catalytic subunit of skeletal muscle adenosine 3′:5′-monophosphate-dependent protein kinase. J. Biol. Chem. 1977, 252, 2691–2697. [Google Scholar] [CrossRef]
- Toner-Webb, J.; Van Patten, S.M.; Walsh, D.A.; Taylor, S.S. Autophosphorylation of the catalytic subunit of cAMP-dependent protein kinase. J. Biol. Chem. 1992, 267, 25174–25180. [Google Scholar] [CrossRef]
- Liauw, S.; Steinberg, R.A. Dephosphorylation of catalytic subunit of cAMP-dependent protein kinase at Thr-197 by a cellular protein phosphatase and by purified protein phosphatase-2A. J. Biol. Chem. 1996, 271, 258–263. [Google Scholar] [CrossRef]
- Zákány, R.; Szűcs, K.; Bakó, É.; Felszeghy, S.; Czifra, G.; Bíró, T.; Módis, L.; Gergely, P. Protein Phosphatase 2A Is Involved in the Regulation of Protein Kinase A Signaling Pathway during in Vitro Chondrogenesis. Exp. Cell Res. 2002, 275, 1–8. [Google Scholar] [CrossRef]
- Moore, M.J.; Kanter, J.R.; Jones, K.; Taylor, S.S. Phosphorylation of the catalytic subunit of protein kinase A: autophosphorylation phosphorylation by phosphoinositide-dependent kinase-1. J. Biol. Chem. 2002, 277, 47878–47884. [Google Scholar] [CrossRef]
- Cheng, X.; Ma, Y.; Moore, M.; Hemmings, B.A.; Taylor, S.S. Phosphorylation and activation of cAMP-dependent protein kinase by phosphoinositide-dependent protein kinase. Proc. Natl. Acad. Sci. USA 1998, 95, 9849–9854. [Google Scholar] [CrossRef]
- Cauthron, R.D.; Carter, K.B.; Liauw, S.; Steinberg, R.A. Physiological phosphorylation of protein kinase A at Thr-197 is by a protein kinase A kinase. Mol. Cell. Biol. 1998, 18, 1416–1423. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekhator, E.S.; Fazzari, M.; Newman, R.H. Redox Regulation of cAMP-Dependent Protein Kinase and Its Role in Health and Disease. Life 2025, 15, 655. https://doi.org/10.3390/life15040655
Ekhator ES, Fazzari M, Newman RH. Redox Regulation of cAMP-Dependent Protein Kinase and Its Role in Health and Disease. Life. 2025; 15(4):655. https://doi.org/10.3390/life15040655
Chicago/Turabian StyleEkhator, Ese S., Marco Fazzari, and Robert H. Newman. 2025. "Redox Regulation of cAMP-Dependent Protein Kinase and Its Role in Health and Disease" Life 15, no. 4: 655. https://doi.org/10.3390/life15040655
APA StyleEkhator, E. S., Fazzari, M., & Newman, R. H. (2025). Redox Regulation of cAMP-Dependent Protein Kinase and Its Role in Health and Disease. Life, 15(4), 655. https://doi.org/10.3390/life15040655