Current Evidence Supporting the Role of miRNA as a Biomarker for Lung Cancer Diagnosis Through Exhaled Breath Condensate Collection: A Narrative Review
Abstract
:1. Introduction
2. MicroRNAs as a Diagnostic Biomarker of Lung Cancer
2.1. miRNA’s Role in Lung Cancer Detection
2.2. miRNA Profiling for Lung Cancer Subtype Classification
2.3. miRNA Oncogenic Family
2.4. Tumour-Suppressing miRNAs
3. Exhaled Breath Condensate
3.1. EBC Collection Systems
3.2. EBC Dilution and Sample Contamination
3.3. EBC Sample Preservation and Analysis Methods
4. miRNA Identification and Its Clinical Value in EBC Sample
Study | EBC Collection Method | EV Isolation (If Any) | RNA Extraction Method | Library Preparation | Sequencing Platform | Bioinformatic Workflow |
---|---|---|---|---|---|---|
Cherchi et al. (2023) [93] | TurboDeccs (Medivac Srl, Parma, Italy), −5 °C, 15–20 min, 100 L target | Not applied | miRNeasy Serum/Plasma Advanced Kit (Qiagen, Venlo, Netherlands), 200 µL input | QIAseq miRNA Library Kit with UMIs | Illumina MiSeq & HiSeq3000 | Cutadapt trimming, Bowtie mapping, miRBase v21, UMI deduplication |
Mithcell et al. (2024) [120] | RTube (Respiratory Research Inc., Austin, TX, U.S.), 10 min tidal breathing, 1.5–2 mL | Differential ultracentrifugation + EV-CATCHER | miRNeasy Serum/Plasma Kit (Qiagen), 100 µL EVs | Custom PAGE-purified small RNA library | Illumina HiSeq 2500 | RNAworld trimming, DESeq2/edgeR via Bioconductor |
Stachowiak et al. (2020) [119] | TurboDeccs (Medivac Srl, Parma, Italy), −5 °C, 3 mL collected | Exosomes from EBC using miRCURY kit (Qiagen) | RNeasy mini kit + MinElute columns (Qiagen) | TruSeq Small RNA Library Kit (Qiagen) | Illumina MiniSeq | BaseSpace for NGS data; qPCR validation (miR-486-5p, miR-223, etc.) |
4.1. miRNAs as Potential EBC Biomarkers for Lung Cancer Diagnosis
4.2. Validation of miRNA Biomarkers in EBC
4.3. Genome-Wide Profiling of miRNAs in Lung Cancer
4.4. Next-Generation Sequencing and Emerging Biomarkers
4.5. EBC Limitations for the Analysis of MiRNA Expression
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Mazzone, P.J.; Sears, C.R.; Arenberg, D.A.; Gaga, M.; Gould, M.K.; Massion, P.P.; Nair, V.S.; Powell, C.A.; Silvestri, G.A.; Vachani, A.; et al. Evaluating Molecular Biomarkers for the Early Detection of Lung Cancer: When Is a Biomarker Ready for Clinical Use? An Official American Thoracic Society Policy Statement. Am. J. Respir. Crit. Care Med. 2017, 196, e15–e29. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA A Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Cainap, C.; Pop, L.A.; Balacescu, O.; Cainap, S.S. Early diagnosis and screening in lung cancer. Am. J. Cancer Res. 2020, 10, 1993–2009. [Google Scholar] [PubMed] [PubMed Central]
- Pathak, A.K.; Bhutani, M.; Kumar, S.; Mohan, A.; Guleria, R. Circulating Cell-Free DNA in Plasma/Serum of Lung Cancer Patients as a Potential Screening and Prognostic Tool. Clin. Chem. 2006, 52, 1833–1842. [Google Scholar] [CrossRef] [PubMed]
- Ellis, P.M.; Vandermeer, R. Delays in the diagnosis of lung cancer. J. Thorac. Dis. 2011, 3, 183–188. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Levy, B.; Hu, Z.I.; Cordova, K.N.; Close, S.; Lee, K.; Becker, D. Clinical Utility of Liquid Diagnostic Platforms in Non-Small Cell Lung Cancer. Oncologist 2016, 21, 1121–1130. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Finotti, A.; Allegretti, M.; Gasparello, J.; Giacomini, P.; Spandidos, D.A.; Spoto, G.; Gambari, R. Liquid biopsy and PCR-free ultrasensitive detection systems in oncology (Review). Int. J. Oncol. 2018, 53, 1395–1434. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rolfo, C.; Castiglia, M.; Hong, D.; Alessandro, R.; Mertens, I.; Baggerman, G.; Zwaenepoel, K.; Gil-Bazo, I.; Passiglia, F.; Carreca, A.P.; et al. Liquid biopsies in lung cancer: The new ambrosia of researchers. Biochim. Biophys. Acta 2014, 1846, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Seijo, L.M.; Peled, N.; Ajona, D.; Boeri, M.; Field, J.K.; Sozzi, G.; Pio, R.; Zulueta, J.J.; Spira, A.; Massion, P.P.; et al. Biomarkers in Lung Cancer Screening: Achievements, Promises, and Challenges. J. Thorac. Oncol. 2019, 14, 343–357. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ntontsi, P.; Ntzoumanika, V.; Loukides, S.; Benaki, D.; Gkikas, E.; Mikros, E.; Bakakos, P.; Gikas, E. EBC metabolomics for asthma severity. J. Breath Res. 2020, 14, 036007. [Google Scholar] [CrossRef] [PubMed]
- Kita, K.; Gawinowska, M.; Chełmińska, M.; Niedoszytko, M. The Role of Exhaled Breath Condensate in Chronic Inflammatory and Neoplastic Diseases of the Respiratory Tract. Int. J. Mol. Sci. 2024, 25, 7395. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Campanella, A.; De Summa, S.; Tommasi, S. Exhaled breath condensate biomarkers for lung cancer. J. Breath Res. 2019, 13, 044002. [Google Scholar] [CrossRef] [PubMed]
- Maniscalco, M.; Fuschillo, S.; Paris, D.; Cutignano, A.; Sanduzzi, A.; Motta, A. Clinical metabolomics of exhaled breath condensate in chronic respiratory diseases. Adv. Clin. Chem. 2019, 88, 121–149. [Google Scholar] [CrossRef] [PubMed]
- Chang-Chien, J.; Huang, H.Y.; Tsai, H.J.; Lo, C.J.; Lin, W.C.; Tseng, Y.L.; Wang, S.L.; Ho, H.Y.; Cheng, M.L.; Yao, T.C. Metabolomic differences of exhaled breath condensate among children with and without asthma. Pediatr. Allergy Immunol. 2020, 32, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Rai, D.; Pattnaik, B.; Bangaru, S.; Tak, J.; Kumari, J.; Verma, U.; Vadala, R.; Yadav, G.; Dhaliwal, R.S.; Kumar, S.; et al. microRNAs in exhaled breath condensate for diagnosis of lung cancer in a resource-limited setting: A concise review. Breathe 2023, 19, 230125. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stachowiak, Z.; Wojsyk-Banaszak, I.; Jończyk-Potoczna, K.; Narożna, B.; Langwiński, W.; Szczepankiewicz, A. Extracellular vesicles-derived miRNAs as mediators of pulmonary exacerbation in pediatric cystic fibrosis. J. Breath Res. 2023, 17, 026005. [Google Scholar] [CrossRef] [PubMed]
- Fesen, K.; Silveyra, P.; Fuentes, N.; Nicoleau, M.; Rivera, L.; Kitch, D.; Graff, G.R.; Siddaiah, R. The role of microRNAs in chronic pseudomonas lung infection in Cystic fibrosis. Respir. Med. 2019, 151, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, Y. Small and Long Non-Coding RNAs: Novel Targets in Perspective Cancer Therapy. Curr. Genom. 2015, 16, 319–326. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sulewska, A.; Pilz, L.; Manegold, C.; Ramlau, R.; Charkiewicz, R.; Niklinski, J. A Systematic Review of Progress toward Unlocking the Power of Epigenetics in NSCLC: Latest Updates and Perspectives. Cells 2023, 12, 905. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ludwig, N.; Leidinger, P.; Becker, K.; Backes, C.; Fehlmann, T.; Pallasch, C.; Rheinheimer, S.; Meder, B.; Stähler, C.; Meese, E.; et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016, 44, 3865–3877. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Massihnia, D.; Perez, A.; Bazan, V.; Bronte, G.; Castiglia, M.; Fanale, D.; Barraco, N.; Cangemi, A.; Di Piazza, F.; Calò, V.; et al. A headlight on liquid biopsies: A challenging tool for breast cancer management. Tumor Biol. 2016, 37, 4263–4273. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhu, L.; Ma, P.C. Next-Generation Novel Noninvasive Cancer Molecular Diagnostics Platforms Beyond Tissues. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 964–977. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brown, R.A.M.; Epis, M.R.; Horsham, J.L.; Kabir, T.D.; Richardson, K.L.; Leedman, P.J. Total RNA extraction from tissues for microRNA and target gene expression analysis: Not all kits are created equal. BMC Biotechnol. 2018, 18, 16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, S.L.; Chen, H.Y.; Chang, G.C.; Chen, C.Y.; Chen, H.W.; Singh, S.; Cheng, C.L.; Yu, C.J.; Lee, Y.C.; Chen, H.S.; et al. MicroRNA Signature Predicts Survival and Relapse in Lung Cancer. Cancer Cell 2008, 13, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Dvinge, H.; Git, A.; Gräf, S.; Salmon-Divon, M.; Curtis, C.; Sottoriva, A.; Zhao, Y.; Hirst, M.; Armisen, J.; Miska, E.A.; et al. The shaping and functional consequences of the microRNA landscape in breast cancer. Nature 2013, 497, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, L.; Wei, X.; Zhao, C.; Luo, Y.; Li, J.; Le, T.D. Scanning sample-specific miRNA regulation from bulk and single-cell RNA-sequencing data. BMC Biol. 2024, 22, 218. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, J.; Jennings, S.F.; Tong, W.; Hong, H. Next generation sequencing for profiling expression of miRNAs: Technical progress and applications in drug development. J. Biomed. Sci. Eng. 2011, 4, 666–676. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yanaihara, N.; Caplen, N.J.; Bowman, E.; Seike, M.; Kumamoto, K.; Yi, M.; Stephens, R.M.; Okamoto, A.; Yokota, J.; Tanaka, T.; et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006, 9, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Foss, K.M.; Sima, C.; Ugolini, D.; Neri, M.; Allen, K.E.; Weiss, G.J. miR-1254 and miR-574-5p: Serum-Based microRNA Biomarkers for Early-Stage Non-small Cell Lung Cancer. J. Thorac. Oncol. 2011, 6, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Haddadin, S.; Wang, Y.; Gu, L.-Q.; Perry, M.C.; Freter, C.E.; Wang, M.X. Plasma microRNAs as novel biomarkers for early detection of lung cancer. Int. J. Clin. Exp. Pathol. 2011, 4, 575–586. [Google Scholar] [PubMed] [PubMed Central]
- Rosenfeld, N.; Aharonov, R.; Meiri, E.; Rosenwald, S.; Spector, Y.; Zepeniuk, M.; Benjamin, H.; Shabes, N.; Tabak, S.; Levy, A.; et al. MicroRNAs accurately identify cancer tissue origin. Nat. Biotechnol. 2008, 26, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Wang, J.; Shan, B.; Peng, Z.; Dong, Y.; Shi, W.; He, D.; Cheng, Y.; Zhao, W.; Zhang, C.; et al. Diagnostic and Prognostic Potential of Circulating Long Non-Coding RNAs in Non Small Cell Lung Cancer. Cell. Physiol. Biochem. 2018, 49, 816–827. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Todd, N.W.; Liu, Z.; Zhan, M.; Fang, H.; Peng, H.; Alattar, M.; Deepak, J.; Stass, S.A.; Jiang, F. Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer 2010, 67, 170–176. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bianchi, F.; Nicassio, F.; Marzi, M.; Belloni, E.; Dall’Olio, V.; Bernard, L.; Pelosi, G.; Maisonneuve, P.; Veronesi, G.; Di Fiore, P.P. A serum circulating miRNA diagnostic test to identify asymptomatic high-risk individuals with early stage lung cancer. EMBO Mol. Med. 2011, 3, 495–503. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zheng, M.; Liu, J.; Meng, C.; Tang, K.; Liao, J. Prognostic and clinicopathological importance of microRNA-140 expression in cancer patients: A meta-analysis. World J. Surg. Oncol. 2021, 19, 266. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liao, J.; Shen, J.; Leng, Q.; Qin, M.; Zhan, M.; Jiang, F. MicroRNA-based biomarkers for diagnosis of non-small cell lung cancer (NSCLC). Thorac. Cancer 2020, 11, 762–768. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kryczka, J.; Migdalska-Sęk, M.; Kordiak, J.; Kiszałkiewicz, J.M.; Pastuszak-Lewandoska, D.; Antczak, A.; Brzeziańska-Lasota, E. Serum Extracellular Vesicle-Derived miRNAs in Patients with Non-Small Cell Lung Cancer—Search for Non-Invasive Diagnostic Biomarkers. Diagnostics 2021, 11, 425. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiang, H.-G.; Dai, C.-H.; Xu, Y.-P.; Jiang, Q.; Xia, X.-B.; Shu, Y.; Li, J. Four plasma miRNAs act as biomarkers for diagnosis and prognosis of non-small cell lung cancer. Oncol. Lett. 2021, 22, 792. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- MacDonagh, L.; Gallagher, M.F.; Ffrench, B.; Gasch, C.; Gray, S.G.; Reidy, M.; Nicholson, S.; Leonard, N.; Ryan, R.; Young, V.; et al. MicroRNA expression profiling and biomarker validation in treatment-naïve and drug resistant non-small cell lung cancer. Transl. Lung Cancer Res. 2021, 10, 1773–1791. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kong, D.; Wang, K.; Zhang, Q.N.; Bing, Z.T. Systematic analysis reveals key microRNAs as diagnostic and prognostic factors in progressive stages of lung cancer. arXiv 2022, arXiv:2201.05408. [Google Scholar]
- Wiggins, J.F.; Ruffino, L.; Kelnar, K.; Omotola, M.; Patrawala, L.; Brown, D.; Bader, A.G. Development of a Lung Cancer Therapeutic Based on the Tumor Suppressor MicroRNA-34. Cancer Res. 2010, 70, 5923–5930. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Visan, K.S.; Lobb, R.J.; Wen, S.W.; Bedo, J.; Lima, L.G.; Krumeich, S.; Palma, C.; Ferguson, K.; Green, B.; Niland, C.; et al. Blood-Derived Extracellular Vesicle-Associated miR-3182 Detects Non-Small Cell Lung Cancer Patients. Cancers 2022, 14, 257. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Montani, F.; Marzi, M.J.; Dezi, F.; Dama, E.; Carletti, R.M.; Bonizzi, G.; Bertolotti, R.; Bellomi, M.; Rampinelli, C.; Maisonneuve, P.; et al. miR-Test: A Blood Test for Lung Cancer Early Detection. JNCI J. Natl. Cancer Inst. 2015, 107, djv063. [Google Scholar] [CrossRef] [PubMed]
- Wani, J.A.; Majid, S.; Imtiyaz, Z.; Rehman, M.U.; Alsaffar, R.M.; Shah, N.N.; Alshehri, S.; Ghoneim, M.M.; Imam, S.S. MiRNAs in Lung Cancer: Diagnostic, Prognostic, and Therapeutic Potential. Diagnostics 2022, 12, 1610. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boeri, M.; Verri, C.; Conte, D.; Roz, L.; Modena, P.; Facchinetti, F.; Calabrò, E.; Croce, C.M.; Pastorino, U.; Sozzi, G. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc. Natl. Acad. Sci. USA 2011, 108, 3713–3718. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lebanony, D.; Benjamin, H.; Gilad, S.; Ezagouri, M.; Dov, A.; Ashkenazi, K.; Gefen, N.; Izraeli, S.; Rechavi, G.; Pass, H.; et al. Diagnostic Assay Based on hsa-miR-205 Expression Distinguishes Squamous From Nonsquamous Non–Small-Cell Lung Carcinoma. J. Clin. Oncol. 2009, 27, 2030–2037. [Google Scholar] [CrossRef] [PubMed]
- Landi, M.T.; Zhao, Y.; Rotunno, M.; Koshiol, J.; Liu, H.; Bergen, A.W.; Rubagotti, M.; Goldstein, A.M.; Linnoila, I.; Marincola, F.M.; et al. MicroRNA Expression Differentiates Histology and Predicts Survival of Lung Cancer. Clin. Cancer Res. 2010, 16, 430–441. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qi, J.; Mu, D. MicroRNAs and lung cancers: From pathogenesis to clinical implications. Front. Med. 2012, 6, 134–155. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barshack, I.; Lithwick-Yanai, G.; Afek, A.; Rosenblatt, K.; Tabibian-Keissar, H.; Zepeniuk, M.; Cohen, L.; Dan, H.; Zion, O.; Strenov, Y.; et al. MicroRNA expression differentiates between primary lung tumors and metastases to the lung. Pathol. Res. Pract. 2010, 206, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Fuziwara, C.S.; Kimura, E.T. Insights into Regulation of the miR-17-92 Cluster of miRNAs in Cancer. Front. Med. 2015, 2, 64. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hayashita, Y.; Osada, H.; Tatematsu, Y.; Yamada, H.; Yanagisawa, K.; Tomida, S.; Yatabe, Y.; Kawahara, K.; Sekido, Y.; Takahashi, T. A Polycistronic MicroRNA Cluster, miR-17-92, Is Overexpressed in Human Lung Cancers and Enhances Cell Proliferation. Cancer Res. 2005, 65, 9628–9632. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, H.; Takeuchi, T.; Nishikawa, E.; Yanagisawa, K.; Hayashita, Y.; Ebi, H.; Yamada, H.; Suzuki, M.; Nagino, M.; Nimura, Y.; et al. Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene 2007, 26, 6099–6105. [Google Scholar] [CrossRef] [PubMed]
- Osada, H.; Takahashi, T. let-7 and miR-17-92: Small-sized major players in lung cancer development. Cancer Sci. 2010, 102, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Asangani, I.A.; Rasheed, S.A.K.; Nikolova, D.A.; Leupold, J.H.; Colburn, N.H.; Post, S.; Allgayer, H. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2007, 27, 2128–2136. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, I.; Lee, A.; James, V.; Hall, R.I.; Lund, J.N.; Tufarelli, C.; Lobo, D.N.; Larvin, M. Knockdown of microRNA-21 Inhibits Proliferation and Increases Cell Death by Targeting Programmed Cell Death 4 (PDCD4) in Pancreatic Ductal Adenocarcinoma. J. Gastrointest. Surg. 2011, 15, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Kunita, A.; Morita, S.; Irisa, T.U.; Goto, A.; Niki, T.; Takai, D.; Nakajima, J.; Fukayama, M. MicroRNA-21 in cancer-associated fibroblasts supports lung adenocarcinoma progression. Sci. Rep. 2018, 8, 8838. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, X.; Sempere, L.F.; Ouyang, H.; Memoli, V.A.; Andrew, A.S.; Luo, Y.; Demidenko, E.; Korc, M.; Shi, W.; Preis, M.; et al. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J. Clin. Investig. 2010, 120, 1298–1309. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, H.; Ma, J.; Zheng, J.; Wu, J.; Qu, C.; Sun, F.; Xu, S. MiR-31 Functions as a Tumor Suppressor in Lung Adenocarcinoma Mainly by Targeting HuR. Clin. Lab. 2016, 62, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, M.; Quintavalle, C.; Di Leva, G.; Zanca, C.; Romano, G.; Taccioli, C.; Liu, C.G.; Croce, C.M.; Condorelli, G. MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene 2008, 27, 3845–3855. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Pertsemlidis, A. microRNAs and lung cancer: Tumors and 22-mers. Cancer Metastasis Rev. 2010, 29, 109–122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, L.; Gibbons, D.L.; Goswami, S.; Cortez, M.A.; Ahn, Y.-H.; Byers, L.A.; Zhang, X.; Yi, X.; Dwyer, D.; Lin, W.; et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat. Commun. 2014, 5, 5241. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moriya, Y.; Nohata, N.; Kinoshita, T.; Mutallip, M.; Okamoto, T.; Yoshida, S.; Suzuki, M.; Yoshino, I.; Seki, N. Tumor suppressive microRNA-133a regulates novel molecular networks in lung squamous cell carcinoma. J. Hum. Genet. 2011, 57, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Mataki, H.; Seki, N.; Chiyomaru, T.; Enokida, H.; Goto, Y.; Kumamoto, T.; Machida, K.; Mizuno, K.; Nakagawa, M.; Inoue, H. Tumor-suppressive microRNA-206 as a dual inhibitor of MET and EGFR oncogenic signaling in lung squamous cell carcinoma. Int. J. Oncol. 2014, 46, 1039–1050. [Google Scholar] [CrossRef] [PubMed]
- Reinhart, B.J.; Slack, F.J.; Basson, M.; Pasquinelli, A.E.; Bettinger, J.C.; Rougvie, A.E.; Horvitz, H.R.; Ruvkun, G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000, 403, 901–906. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.M.; Grosshans, H.; Shingara, J.; Byrom, M.; Jarvis, R.; Cheng, A.; Labourier, E.; Reinert, K.L.; Brown, D.; Slack, F.J. RAS Is Regulated by the let-7 MicroRNA Family. Cell 2005, 120, 635–647. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.D.; Esquela-Kerscher, A.; Stefani, G.; Byrom, M.; Kelnar, K.; Ovcharenko, D.; Wilson, M.; Wang, X.; Shelton, J.; Shingara, J.; et al. The let-7 MicroRNA Represses Cell Proliferation Pathways in Human Cells. Cancer Res. 2007, 67, 7713–7722. [Google Scholar] [CrossRef] [PubMed]
- Tokumaru, S.; Suzuki, M.; Yamada, H.; Nagino, M.; Takahashi, T. let-7 regulates Dicer expression and constitutes a negative feedback loop. Carcinogenesis 2008, 29, 2073–2077. [Google Scholar] [CrossRef] [PubMed]
- Calin, G.A.; Sevignani, C.; Dumitru, C.D.; Hyslop, T.; Noch, E.; Yendamuri, S.; Shimizu, M.; Rattan, S.; Bullrich, F.; Negrini, M.; et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA 2004, 101, 2999–3004. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, L.; He, X.; Lim, L.P.; de Stanchina, E.; Xuan, Z.; Liang, Y.; Xue, W.; Zender, L.; Magnus, J.; Ridzon, D.; et al. A microRNA component of the p53 tumour suppressor network. Nature 2007, 447, 1130–1134. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bommer, G.T.; Gerin, I.; Feng, Y.; Kaczorowski, A.J.; Kuick, R.; Love, R.E.; Zhai, Y.; Giordano, T.J.; Qin, Z.S.; Moore, B.B.; et al. p53-Mediated Activation of miRNA34 Candidate Tumor-Suppressor Genes. Curr. Biol. 2007, 17, 1298–1307. [Google Scholar] [CrossRef] [PubMed]
- Kasinski, A.L.; Slack, F.J. miRNA-34 Prevents Cancer Initiation and Progression in a Therapeutically Resistant K-ras and p53-Induced Mouse Model of Lung Adenocarcinoma. Cancer Res. 2012, 72, 5576–5587. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garofalo, M.; Jeon, Y.-J.; Nuovo, G.J.; Middleton, J.; Secchiero, P.; Joshi, P.; Alder, H.; Nazaryan, N.; Di Leva, G.; Romano, G.; et al. MiR-34a/c-Dependent PDGFR-α/β Downregulation Inhibits Tumorigenesis and Enhances TRAIL-Induced Apoptosis in Lung Cancer. PLoS ONE 2013, 8, e67581. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Horvath, I.; Hunt, J.; Barnes, P.J.; Alving, K.; Antczak, A.; Baraldi, E.; Becher, G.; van Beurden, W.J.; Corradi, M.; Dekhuijzen, R.; et al. Exhaled breath condensate: Methodological recommendations and unresolved questions. Eur. Respir. J. 2005, 26, 523–548. [Google Scholar] [CrossRef] [PubMed]
- McCafferty, J.B.; A Bradshaw, T.; Tate, S.; Greening, A.P.; A Innes, J. Effects of breathing pattern and inspired air conditions on breath condensate volume, pH, nitrite, and protein concentrations. Thorax 2004, 59, 694–698. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, J.; Thomas, P.S. Relationship between Exhaled Breath Condensate Volume and Measurements of Lung Volumes. Respiration 2006, 74, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.S.; Sandrini, A.; Campbell, C.; Chow, S.; Thomas, P.S.; Yates, D.H. Comparison of Biomarkers in Exhaled Breath Condensate and Bronchoalveolar Lavage. Am. J. Respir. Crit. Care Med. 2007, 175, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Balbi, B.; Pignatti, P.; Corradi, M.; Baiardi, P.; Bianchi, L.; Brunetti, G.; Radaeli, A.; Moscato, G.; Mutti, A.; Spanevello, A.; et al. Bronchoalveolar lavage, sputum and exhaled clinically relevant inflammatory markers: Values in healthy adults. Eur. Respir. J. 2007, 30, 769–781. [Google Scholar] [CrossRef] [PubMed]
- Montuschi, P.; Paris, D.; Melck, D.; Lucidi, V.; Ciabattoni, G.; Raia, V.; Calabrese, C.; Bush, A.; Barnes, P.J.; Motta, A. NMR spectroscopy metabolomic profiling of exhaled breath condensate in patients with stable and unstable cystic fibrosis. Thorax 2011, 67, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Aebersold, R.; Mann, M. Mass spectrometry-based proteomics. Nature 2003, 422, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Wiktorowicz, J.E.; Jamaluddin, M. Proteomic analysis of the asthmatic airway. Adv. Exp. Med. Biol. 2014, 795, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.; Chen, J.-R.; Zhou, F.; Lu, C.-X.; Yang, Q.; Tao, G.-H.; Tao, Y.-J.; Chen, J.-L. Methylation of P16 in exhaled breath condensate for diagnosis of non-small cell lung cancer. Lung Cancer 2013, 83, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Sinues, P.M.-L.; Zenobi, R.; Kohler, M. Analysis of the Exhalome: A diagnostic tool of the future. Chest 2013, 144, 746–749. [Google Scholar] [CrossRef] [PubMed]
- Hakim, M.; Billan, S.; Tisch, U.; Peng, G.; Dvrokind, I.; Marom, O.; Abdah-Bortnyak, R.; Kuten, A.; Haick, H. Diagnosis of head-and-neck cancer from exhaled breath. Br. J. Cancer 2011, 104, 1649–1655. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Piotrowski, W.J.; Antczak, A.; Marczak, J.; Nawrocka, A.; Kurmanowska, Z.; Górski, P. Eicosanoids in Exhaled Breath Condensate and BAL Fluid of Patients With Sarcoidosis. Chest 2007, 132, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidi, E.M.; Lappas, A.S.; Tzortzi, A.S.; Behrakis, P.K. Exhaled Breath Condensate: Technical and Diagnostic Aspects. Sci. World J. 2015, 2015, 435160. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Szunerits, S.; Dörfler, H.; Pagneux, Q.; Daniel, J.; Wadekar, S.; Woitrain, E.; Ladage, D.; Montaigne, D.; Boukherroub, R. Exhaled breath condensate as bioanalyte: From collection considerations to biomarker sensing. Anal. Bioanal. Chem. 2022, 415, 27–34. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Effros, R.M.; Peterson, B.; Casaburi, R.; Su, J.; Dunning, M.; Torday, J.; Biller, J.; Shaker, R. Epithelial lining fluid solute concentrations in chronic obstructive lung disease patients and normal subjects. J. Appl. Physiol. 2005, 99, 1286–1292. [Google Scholar] [CrossRef] [PubMed]
- Czebe, K.; Barta, I.; Antus, B.; Valyon, M.; Horváth, I.; Kullmann, T. Influence of condensing equipment and temperature on exhaled breath condensate pH, total protein and leukotriene concentrations. Respir. Med. 2008, 102, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Piotrowski, W.J.; Kurmanowska, Z.; Antczak, A.; Marczak, J.; Górski, P. Exhaled 8-isoprostane as a prognostic marker in sarcoidosis. A short term follow-up. BMC Pulm. Med. 2010, 10, 23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Izquierdo, J.L.; Almonacid, C.; Parra, T.; Pérez, J. Inflamación pulmonar y sistémica en 2 fenotipos de EPOC [Systemic and lung inflammation in 2 phenotypes of chronic obstructive pulmonary disease]. Arch. Bronconeumol. 2006, 42, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Cherchi, R.; Cusano, R.; Orrù, S.; Ferrari, P.A.; Massidda, M.; Fotia, G.; De Matteis, S.; Cocco, P. Next Generation Sequencing for miRNA Detection on the Exhaled Breath Condensate: A Pilot Study. Epigenet. Insights 2023, 16, 25168657231160985. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rosias, P.; Robroeks, C.; Hendriks, J.; Dompeling, E.; Jöbsis, Q. Exhaled breath condensate: A space odessey, where no one has gone before…. Eur. Respir. J. 2004, 24, 189–190, author reply 190. [Google Scholar] [CrossRef] [PubMed]
- Čepelak, I.; Dodig, S. Exhaled breath condensate: A new method for lung disease diagnosis. Clin. Chem. Lab. Med. 2007, 45, 945–952. [Google Scholar] [CrossRef] [PubMed]
- Effros, R.M.; Dunning, M.B.; Biller, J.; Shaker, R. The promise and perils of exhaled breath condensates. Am. J. Physiol. Cell. Mol. Physiol. 2004, 287, L1073–L1080. [Google Scholar] [CrossRef] [PubMed]
- Effros, R.M.; Hoagland, K.W.; Bosbous, M.; Castillo, D.; Foss, B.; Dunning, M.; Gare, M.; Lin, W.; Sun, F. Dilution of Respiratory Solutes in Exhaled Condensates. Am. J. Respir. Crit. Care Med. 2002, 165, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Effros, R.M.; Biller, J.; Foss, B.; Hoagland, K.; Dunning, M.B.; Castillo, D.; Bosbous, M.; Sun, F.; Shaker, R. A Simple Method for Estimating Respiratory Solute Dilution in Exhaled Breath Condensates. Am. J. Respir. Crit. Care Med. 2003, 168, 1500–1505. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, T.M. Sampling Airway Surface Liquid: Non-Volatilesin the Exhaled Breath Condensate. Lung 2004, 182, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Gessner, C.; Kuhn, H.; Seyfarth, H.-J.; Pankau, H.; Winkler, J.; Schauer, J.; Wirtz, H. Factors influencing breath condensate volume. Pneumologie 2001, 55, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Zakrzewski, J.T.; Barnes, N.C.; Costello, J.F.; Piper, P.J. Lipid Mediators in Cystic Fibrosis and Chronic Obstructive Pulmonary Disease. Am. Rev. Respir. Dis. 1987, 136, 779–782. [Google Scholar] [CrossRef] [PubMed]
- Rosias, P.P.R.; Dompeling, E.; Hendriks, H.J.E.; Heijnens, J.W.C.M.; Donckerwolcke, R.A.M.G.; Jöbsis, Q. Exhaled breath condensate in children: Pearls and pitfalls. Pediatr. Allergy Immunol. 2004, 15, 4–19. [Google Scholar] [CrossRef] [PubMed]
- Huszár, É.; Vass, G.; Vizi, É.; Csoma, Z.; Barát, E.; Világos, G.M.; Herjavecz, I.; Horváth, I. Adenosine in exhaled breath condensate in healthy volunteers and in patients with asthma. Eur. Respir. J. 2002, 20, 1393–1398. [Google Scholar] [CrossRef] [PubMed]
- Recommendations for Standardized Procedures for the Online and Offline Measurement of Exhaled Lower Respiratory Nitric Oxide and Nasal Nitric Oxide in Adults and Children-1999. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors, July 1999. Am. J. Respir. Crit. Care Med. 1999, 160, 2104–2117. [Google Scholar] [CrossRef] [PubMed]
- Rosias, P. Methodological aspects of exhaled breath condensate collection and analysis. J. Breath Res. 2012, 6, 027102. [Google Scholar] [CrossRef] [PubMed]
- Vlasić, Z.; Dodig, S.; Cepelak, I.; Topić, R.Z.; Zivcić, J.; Nogalo, B.; Turkalj, M. Iron and Ferritin Concentrations in Exhaled Breath Condensate of Children with Asthma. J. Asthma 2009, 46, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Montuschi, P. Analysis of exhaled breath condensate in respiratory medicine: Methodological aspects and potential clinical applications. Ther. Adv. Respir. Dis. 2007, 1, 5–23. [Google Scholar] [CrossRef] [PubMed]
- Sidorenko, G.I.; Zborovskiĭ, E.I.; Levina, D.I. Poverkhnostno-aktivnye svoĭstva kondensata vydykhaemogo vozdukha (novyĭ sposob issledovaniia funktsii legkikh) [Surface-active properties of the exhaled air condensate (a new method of studying lung function)]. Ter. Arkh. 1980, 52, 65–68. (In Russian) [Google Scholar] [PubMed]
- Janicka, M.; Kot-Wasik, Á.; Kot, J.; Namieśnik, J. Isoprostanes-biomarkers of lipid peroxidation: Their utility in evaluating oxidative stress and analysis. Int. J. Mol. Sci. 2010, 11, 4631–4659. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Glowacka, E.; Jedynak-Wasowicz, U.; Sanak, M.; Lis, G. Exhaled eicosanoid profiles in children with atopic asthma and healthy controls. Pediatr. Pulmonol. 2012, 48, 324–335. [Google Scholar] [CrossRef] [PubMed]
- Molina, M.A.; Zhao, W.; Sankaran, S.; Schivo, M.; Kenyon, N.J.; Davis, C.E. Design-of-experiment optimization of exhaled breath condensate analysis using a miniature differential mobility spectrometer (DMS). Anal. Chim. Acta 2008, 628, 155–161. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Davis, C.E.; Bogan, M.J.; Sankaran, S.; Molina, M.A.; Loyola, B.R.; Zhao, W.; Benner, W.H.; Schivo, M.; Farquar, G.R.; Kenyon, N.J.; et al. Analysis of volatile and non-volatile biomarkers in human breath using differential mobility spectrometry (DMS). IEEE Sens. J. 2009, 10, 114–122. [Google Scholar] [CrossRef]
- Shi, R.; Chiang, V.L. Facile Means for Quantifying Microrna Expression by Real-Time PCR. BioTechniques 2005, 39, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ruan, K. MicroRNA detection by microarray. Anal. Bioanal. Chem. 2009, 394, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- Hafner, M.; Landgraf, P.; Ludwig, J.; Rice, A.; Ojo, T.; Lin, C.; Holoch, D.; Lim, C.; Tuschl, T. Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods 2008, 44, 3–12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reuter, J.A.; Spacek, D.V.; Snyder, M.P. High-Throughput Sequencing Technologies. Mol. Cell 2015, 58, 586–597. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Youssef, O.; Knuuttila, A.; Piirilä, P.; Böhling, T.; Sarhadi, V.; Knuutila, S. Presence of cancer-associated mutations in exhaled breath condensates of healthy individuals by next generation sequencing. Oncotarget 2017, 8, 18166–18176. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Corradi, M.; Folesani, G.; Robuschi, B.; Selis, L.; Riccelli, M.G.; Andreoli, R.; Pisi, R.; Chetta, A.; Mutti, A. Non-invasive techniques to assess restrictive lung disease in workers exposed to free crystalline silica. Med. Lav. 2019, 110, 83–92. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stachowiak, Z.; Wojsyk-Banaszak, I.; Jończyk-Potoczna, K.; Narożna, B.; Langwiński, W.; Kycler, Z.; Sobkowiak, P.; Bręborowicz, A.; Szczepankiewicz, A. MiRNA Expression Profile in the Airways Is Altered during Pulmonary Exacerbation in Children with Cystic Fibrosis—A Preliminary Report. J. Clin. Med. 2020, 9, 1887. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mitchell, M.I.; Ben-Dov, I.Z.; Ye, K.; Liu, C.; Shi, M.; Sadoughi, A.; Shah, C.; Siddiqui, T.; Okorozo, A.; Gutierrez, M.; et al. Exhaled breath condensate contains extracellular vesicles (EVs) that carry miRNA cargos of lung tissue origin that can be selectively purified and analyzed. J. Extracell. Vesicles 2024, 13, e12440. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mozzoni, P.; Banda, I.; Goldoni, M.; Corradi, M.; Tiseo, M.; Acampa, O.; Balestra, V.; Ampollini, L.; Casalini, A.; Carbognani, P.; et al. Plasma and EBC microRNAs as early biomarkers of non-small-cell lung cancer. Biomarkers 2013, 18, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, F.K.; Ali-Labib, R.; Galal, I.H.; Mahmoud, H.M. MicroRNA-155 expression in exhaled breath condensate of patients with lung cancer. Egypt. J. Chest Dis. Tuberc. 2017, 66, 687–691. [Google Scholar] [CrossRef]
- Chen, J.-L.; Chen, J.-R.; Han, H.-N.; Zhou, F.; Lv, X.-D.; Ma, H. Clinical Significance of MiRNA21 in Exhaled Breath Condensate of Non-Small-Cell Lung Cancer. Int. J. Clin. Exp. Med. 2016, 9, 17219–17231. [Google Scholar]
- Chen, J.-L.; Han, H.-N.; Lv, X.-D.; Ma, H.; Wu, J.-N.; Chen, J.-R. Clinical value of exhaled breath condensate let-7 in non-small cell lung cancer. Int. J. Clin. Exp. Pathol. 2020, 13, 163–171. [Google Scholar] [PubMed] [PubMed Central]
- Xie, H.; Chen, J.; Lv, X.; Zhang, L.; Wu, J.; Ge, X.; Yang, Q.; Zhang, D.; Chen, J. Clinical Value of Serum and Exhaled Breath Condensate miR-186 and IL-1β Levels in Non-Small Cell Lung Cancer. Technol. Cancer Res. Treat. 2020, 19, 1533033820947490. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pérez-Sánchez, C.; Barbarroja, N.; Pantaleão, L.C.; López-Sánchez, L.M.; Ozanne, S.E.; Jurado-Gámez, B.; Aranda, E.; Lopez-Pedrera, C.; Rodríguez-Ariza, A. Clinical Utility of microRNAs in Exhaled Breath Condensate as Biomarkers for Lung Cancer. J. Pers. Med. 2021, 11, 111. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Faversani, A.; Favero, C.; Dioni, L.; Pesatori, A.C.; Bollati, V.; Montoli, M.; Musso, V.; Terrasi, A.; Fusco, N.; Nosotti, M.; et al. An EBC/Plasma miRNA Signature Discriminates Lung Adenocarcinomas From Pleural Mesothelioma and Healthy Controls. Front. Oncol. 2021, 11, 643280. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rai, D.; Pattnaik, B.; Bangaru, S.; Bhatraju, N.K.; Tak, J.; Kashyap, S.; Verma, U.; Vadala, R.; Yadav, G.; Dhaliwal, R.S.; et al. MicroRNAs in exhaled breath condensate: A pilot study of biomarker detection for lung cancer. Cancer Treat. Res. Commun. 2023, 35, 100689. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Han, W.; Loudig, O.; Shah, C.D.; Dobkin, J.B.; Keller, S.; Sadoughi, A.; Zhu, C.; Siegel, R.E.; Fernandez, M.K.; et al. Initial development and testing of an exhaled microRNA detection strategy for lung cancer case–control discrimination. Sci. Rep. 2023, 13, 6620. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lim, M.Y.; Thomas, P.S. Biomarkers in Exhaled Breath Condensate and Serum of Chronic Obstructive Pulmonary Disease and Non-Small-Cell Lung Cancer. Int. J. Chronic Dis. 2013, 2013, 578613. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Soyer, T.; Birben, E.; Türer, Ö.B.; Kahveci, M.; Tuğcu, G.D.; Soyer, Ö.U.; Yalçın, E.; Doğru, D.; Özçelik, U.; Kiper, N.; et al. MicroRNA Levels in Exhaled Breath Condensate of Patients with Esophageal Atresia. Dis. Esophagus 2021, 34, doaa082. [Google Scholar] [CrossRef] [PubMed]
- Mendes, F.C.; Paciência, I.; Ferreira, A.C.; Martins, C.; Rufo, J.C.; Silva, D.; Cunha, P.; Farraia, M.; Moreira, P.; Delgado, L.; et al. Development and validation of exhaled breath condensate microRNAs to identify and endotype asthma in children. PLoS ONE 2019, 14, e0224983. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Matrix | Advantages | Limitations |
---|---|---|
Exhaled Breath Condensate | - Completely non-invasive - High patient compliance - Reflects airway-specific processes - Suitable for repeated sampling | - Low miRNA concentration - High dilution (>99.9% water) - Lack of standardization - Contamination risk (oral/upper airway) |
Plasma | - Minimally invasive - High biomarker concentration - Well-standardized collection and handling - Broad diagnostic use | - Low specificity for lung-related processes - Invasive for repeated use - Systemic signal dilution |
Sputum | - Originates from the respiratory tract - Moderately high RNA yield - Non-invasive (when spontaneous) | - Variable sample quality - Possible oral contamination - Difficult to obtain from asymptomatic individuals |
Bronchoalveolar lavage | - High local specificity - High RNA yield - Established protocols in clinical settings | - Invasive (requires bronchoscopy) - Low patient acceptability - Not suitable for routine screening |
Reference | System | Advantages | Disadvantages |
---|---|---|---|
Konstantinidi et al. (2015) [61] | RTube collection system (Respiratory Research Inc., Austin, TX, U.S.) | - Rapid cooling mechanism—Commercially available—Enables unsupervised home-based sample collection | - Prolonged collection time (~15 min for 500 μL)—Potential analyte adsorption onto collection tube surfaces—Dilution effects in EBC |
Piotrowski et al. (2010) [91] | ECoScreen I and ECoScreen II (Erich Jaeger GmbH, Hochberg, Germany) U.S., | - Optional package for determining the total EBC | - Not portable—No control of condensation temperature (Eco1) |
Izquierdo et al. (2006) [92] | Anacon (Biostec, Valencia, Spain) | - Usage on ventilated patients—Monitoring and control of temperature collection | - Lacks clinical validation |
Cherchi et al. (2023) [93] | TurboDeccs (Medivac Srl, Parma, Italy) | - Disposable components—Monitoring and control of temperature collection—Portable—Optional package for determining the total EBC | - Multiple simultaneous collections not allowed |
McCafferty et al. (2004) [64] | Temperature-selective collection approach | - Differentiates between dead space and deep lung air, reducing EBC dilution | - Complex collection setup—Lacks clinical validation |
Balbi et al. (2007) [65] | Disposable sampling device for viral particles | - Efficient capture of viral particles in EBC—Minimal dilution with ambient air—Effective collection of ultrafine particles (<300 nm) | - Complex collection methodology—Absence of clinical validation |
Effros et al. (2002) [66] | Facial mask with detachable medical adhesive | - Wearable design enhances user compliance—Facilitates pre-concentration of collected sample | - Extended collection time—Lacks clinical validation |
Liu et al. (2007) [67] | Facial mask-based EBC collection | - Wearable and user-friendly—Short collection duration (~5 min for 500 μL)—Potential for sensor integration | - Lacks clinical validation—Ongoing clinical trials |
Reference | Aims | Group | Method | miRNAs | Result | Interpretation |
---|---|---|---|---|---|---|
Mozzoni et al. (2013) [121] | To identify biomarkers that increase the likelihood of early detection of LC | NSCLC n = 54 Control n = 46 (26 nodules, seven bronchiectasis, 13 others: emphysema (n = 2), inflammatory outcomes (n = 2), aspiration pneumonia (n = 1), tuberculosis (n = 1), rhino-bronchial syndrome (n = 1), asthma with allergic rhinitis (n = 1), unspecified radiological alteration (n = 5) | qRT-PCR assay | miR-21 miR-486 | Upregulated Downregulated | miR-21 was significantly upregulated and miR-486 was downregulated in LC as compared with the control group. miR-21 was reported as oncogenic, and miR-486 as a tumour-suppressor miRNA |
Chen et al. (2016) [123] | To investigate the clinical significance of miRNA21 in patients with NSCLC | NSCLC n = 30 Control n = 30 | qRT-PCR assay | miR-21 | Upregulated | miR-21 was significantly upregulated in NSCLC as compared with the control group. |
Ibrahim et al. (2017) [122] | To evaluate the role of miRNA-155 in the diagnosis, as well as the prognosis of LC | LC n = 15 Control n = 15 | qRT-PCR assay | miR-155 | Upregulated | miR-155 was upregulated in LC patients as compared with the control group. Reported oncogene and a potential biomarker for early LC detection, as well as for prognosis |
Chen et al. (2020) [124] | To investigate the association between let-7 and NSCLC | NSCLC n = 30 Healthy control n = 30 | qRT-PCR assay | Let-7 | Downregulated | Levels of Let-7 were downregulated in NSCLC patients compared to healthy controls. |
Xie et al. (2020) [125] | To investigate the expression level and clinical significance of serum and EBC miR-186 and IL-1β in NSCLC patients | NSCLC n = 62 Healthy control n = 60 | qRT-PCR assay | miR-186 | Downregulated | Levels of miR-186 decreased in the EBC of NSCLC patients compared with healthy controls. |
Pérez-Sànchez et al. (2021) [126] | To assess the utility of EBC miRNAs as biomarkers of diagnosis, type of tumour, stage, invasion capacity, and prognosis | LC n = 21 Healthy donor n = 21 | Genome-wide microarray | miR-6865-5p, miR-4707-5p, miR-451a, miR-1469, miR-4507, miR-6780a-5p, miR-668-5p, miR-6794-5p and miR-7855-5p miR-3921, miR-320a and miR-6777-5p | Upregulated Downregulated | Nine microRNAs (miR-6865-5p, miR-4707-5p, miR-451a, miR-1469, miR-4507, miR-6780a-5p, miR-668-5p, miR-6794-5p and miR-7855-5p) were upregulated in the EBC of LC patients. Three microRNAs (miR-3921, miR-320a and miR-6777-5p) were downregulated compared with healthy controls. |
Faversani et al. (2021) [127] | Early detection of LC by profiling miRNA in EBC (non-invasive method) | Adenocarcinoma n = 14 Healthy controls n = 9 | qRT-PCR array | miR-597-5p, miR-1260a | Upregulated | miR-597-5p and miR-1260a were upregulated in the EBC of lung adenocarcinoma patients compared with healthy controls. |
Rai et al. (2023) [128] | To validate the clinical utility of miRNAs from EBC as non-invasive biomarkers for LC patients | LC n = 30 Healthy controls n = 30 | qRT-PCR array | miR-31-3p, Let7i and miR-449c | Upregulated | Expression of miR-31-3p, Let7i, and miR-449c was found to be upregulated in EBC of LC patients compared with healthy controls |
Shi et al. (2023) [129] | To develop and test an miRNA detection strategy by EBC for LC case–control discrimination | NSCLC n = 166 Case controls n = 185 | qRT-PCR array | miR-21r, miR-33b, miR212 | Upregulated | Adjusted logistic regression models identified exhaled miR-21, 33b, and 212 as overall case–control discriminants. |
Mitchell et al. (2024) [120] | To target the LC population based on miRNAs carried by extracellular vesicles in EBC | NSCLC n = 6 Healthy controls n = 12 | NGS analysis | let-7c, mir-155, miR-22, miR-378, miR-125b, miR-133a, miR-222, miR-210 miR9, miR-486, miR-34c, miR-206, miR-100, miR-503, miR-1, miR-451 | Upregulated Downregulated | Tissue-specific enrichment of exhaled extra vesicles from EBC may help identify miRNAs whose deregulated expression correlates with LC. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrari, P.A.; Salis, C.B.; Macciò, A. Current Evidence Supporting the Role of miRNA as a Biomarker for Lung Cancer Diagnosis Through Exhaled Breath Condensate Collection: A Narrative Review. Life 2025, 15, 683. https://doi.org/10.3390/life15050683
Ferrari PA, Salis CB, Macciò A. Current Evidence Supporting the Role of miRNA as a Biomarker for Lung Cancer Diagnosis Through Exhaled Breath Condensate Collection: A Narrative Review. Life. 2025; 15(5):683. https://doi.org/10.3390/life15050683
Chicago/Turabian StyleFerrari, Paolo Albino, Cosimo Bruno Salis, and Antonio Macciò. 2025. "Current Evidence Supporting the Role of miRNA as a Biomarker for Lung Cancer Diagnosis Through Exhaled Breath Condensate Collection: A Narrative Review" Life 15, no. 5: 683. https://doi.org/10.3390/life15050683
APA StyleFerrari, P. A., Salis, C. B., & Macciò, A. (2025). Current Evidence Supporting the Role of miRNA as a Biomarker for Lung Cancer Diagnosis Through Exhaled Breath Condensate Collection: A Narrative Review. Life, 15(5), 683. https://doi.org/10.3390/life15050683