Predicting Cardiovascular Risk Factors for Acute Leukemia Patients by Assessing Subclinical Atherosclerosis and Left Ventricular Function Before Chemotherapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients’ Selection
2.2. Inclusion and Exclusion Criteria
2.3. Primary and Secondary Objectives Details
2.4. Parameters of Subclinical Atherosclerosis
2.4.1. Carotid Intima-Media Thickness (IMT)
2.4.2. Aortic Pulse Wave Velocity (PWV) or Arterial Stiffness
2.4.3. The Ankle-Brachial Index (ABI)
2.5. Statistical Analysis
3. Results
3.1. Demographic Date in AL Patients with/Without CVRFs, and Control Patients with CVRFs
3.2. Biological Parameters in AL Patients with/Without CVRFs and Control Patients with CVRFs Before Chemotherapy Treatment
3.3. Hemodynamic and Subclinical Atherosclerosis Parameters in AL Patients with/Without CVRFs and in Control Patients Before Chemotherapy Treatment
3.4. Echocardiography Parameters in AL Patients with/Without CVRFs and in Control Patients Before Chemotherapy Treatment
3.5. Speckle Tracking Assessment Through Global Longitudinal Strain (GLS) Parameters in AL Patients with/Without CVRFs and in Control Patients with CVRFs Before Chemotherapy Treatment
3.6. Biological, Hemodynamic, Vascular and Echocardiography Parameters in AML and ALL Patients with/Without CVRFs Before Chemotherapy Treatment
3.7. Biological, Hemodynamic, Vascular and Echocardiography Parameters Regarding Sex, with/Without CVRFs in AL Patients Before Chemotherapy Treatment
3.8. Biological, Hemodynamic, Vascular and Echocardiography Parameters Regarding Age </>60 Years Old, with/Without CVRFs in AL (AML or ALL) Patients Before Chemotherapy Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cardinale, D.; Colombo, A.; Lamantia, G.; Colombo, N.; Civelli, M.; De Giacomi, G.; Rubino, M.; Veglia, F.; Fiorentini, C.; Cipolla, C.M. Anthracycline-Induced Cardiomyopathy: Clinical Relevance and Response to Pharmacologic Therapy. J. Am. Coll. Cardiol. 2010, 55, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Zamorano, J.L.; Lancellotti, P.; Rodriguez Muñoz, D.; Aboyans, V.; Asteggiano, R.; Galderisi, M.; Habib, G.; Lenihan, D.J.; Lip, G.Y.H.; Lyon, A.R.; et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines. Eur. Heart J. 2016, 37, 2768–2801. [Google Scholar] [CrossRef]
- Bonney, D.K. An update on leukaemia. Paediatr. Child Health 2011, 22, 85–91. [Google Scholar] [CrossRef]
- Malanca, M.; Cimadevilla, C.; Brochet, E.; Iung, B.; Vahanian, A.; Messika-Zeitoun, D. Radiotherapy-induced mitral stenosis: A three-dimensional perspective. J. Am. Soc. Echocardiogr. 2010, 23, e1–e2. [Google Scholar] [CrossRef]
- Linders, A.N.; Dias, I.B.; Fernández, T.L.; Tocchetti, C.G.; Bomer, N.; Van der Meer, P. A review of the pathophysiological mechanisms of doxorubicin-induced cardiotoxicity and aging. npj Aging 2024, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Neuendorff, N.R.; Loh, K.P.; Mims, A.S.; Christofyllakis, K.; Soo, W.-K.; Bölükbasi, B.; Oñoro-Algar, C.; Hundley, W.G.; Klepin, H.D. Anthracycline-related cardiotoxicity in older patients with acute myeloid leukemia: A Young SIOG. Blood Adv. 2020, 25, 762–775. [Google Scholar] [CrossRef] [PubMed]
- Morelli, O.; Pasvolsky, O.; Vaturi, M.; Vaxman, I.; Amitai, I.; Raanani, P.; Kornowski, R.; Iakobishvili, Z. Anthracycline cardiotoxicity in patients with acute myeloid leukemia: Cardiovascular risk assessment, monitoring and management. Eur. Heart J. 2017, 38 (Suppl. S1), 6160. [Google Scholar] [CrossRef]
- Lancellotti, P.; Galderisi, M.; Donal, E.; Edvardsen, T.; Popescu, B.A.; Farmakis, D.; Filippatos, G.; Habib, G.; Lestuzzi, C.; Santoro, C.; et al. Protocol update and preliminary results of EACVI/HFA Cardiac Oncology Toxicity (COT) Registry of the European Society of Cardiology. ESC Heart Fail. 2017, 4, 312–318. [Google Scholar] [CrossRef]
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS): Developed by the task force on cardio-oncology of the European Society of Cardiology (ESC). Eur. Heart J. 2022, 43, 4229–4361. [Google Scholar] [CrossRef]
- Herrmann, J.; Lerman, A.; Sandhu, N.P.; Villarraga, H.R.; Mulvagh, S.L.; Kohli, M. Evaluation and management of patients with heart disease and cancer: Cardio-oncology. Mayo Clin. Proc. 2014, 89, 1287–1306. [Google Scholar] [CrossRef]
- Truong, J.; Yan, A.T.; Cramarossa, G.; Chan, K.K.W. Chemotherapy-Induced Cardiotoxicity: Detection, Prevention, and Management. Can. J. Cardiol. 2014, 30, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Lyon, A.R.; Dent, S.; Stanway, S.; Earl, H.; Brezden-Masley, C.; Cohen-Solal, A.; Tocchetti, C.G.; Moslehi, J.J.; Groarke, J.D.; Bergler-Klein, J.; et al. Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: A position statement and new risk assessment tools from the Cardio-Oncology Study Group of the Heart Failure Association of the European Society of Cardiology in collaboration with the International Cardio-Oncology Society. Eur. J. Heart Fail. 2020, 22, 1945–1960. [Google Scholar] [PubMed]
- Louis, C.U.; Butani, L. High blood pressure and hypertension in children with newly diagnosed acute leukemia and lymphoma. Pediatr. Nephrol. 2008, 23, 603–609. [Google Scholar] [CrossRef]
- Bielorai, B.; Pinhas-Hamiel, O. Type 2 Diabetes Mellitus, the Metabolic Syndrome, and Its Components in Adult Survivors of Acute Lymphoblastic Leukemia and Hematopoietic Stem Cell Transplantations. Curr. Diab. Rep. 2018, 18, 32. [Google Scholar] [CrossRef]
- Mukai, M.; Komori, K.; Oka, T. Mechanism and Management of Cancer Chemotherapy Induced Atherosclerosis. J. Atheroscler. Thromb. 2018, 25, 994–1002. [Google Scholar] [CrossRef]
- Bayram, C.; Çetin, I.; Tavil, B.; Yarali, N.; Ekici, F.; Isık, P.; Tunc, B. Evaluation of Cardiotoxicity by Tissue Doppler Imaging in Childhood Leukemia Survivors Treated with Low-Dose Anthracycline. Pediatr. Cardiol. 2015, 36, 862–866. [Google Scholar] [CrossRef] [PubMed]
- Mizia-Stec, K.; Gościńska, A.; Mizia, M.; Haberka, M.; Chmiel, A.; Poborski, W.; Gąsior, Z. Anthracycline chemotherapy impairs the structure and diastolic function of the left ventricle and induces negative arterial remodeling. Kardiol. Pol. 2013, 71, 681–690. [Google Scholar] [CrossRef]
- Negishi, K.; Negishi, T.; Hare, J.L.; Haluska, B.A.; Plana, J.C.; Marwick, T.H. Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity. J. Am. Soc. Echocardiogr. 2013, 26, 493–498. [Google Scholar] [CrossRef]
- Zamorano, J.L.; Bax, J.; Knuuti, J.; Sechtem, U.; Lancellotti, P.; Pinto, F.; Popescu, B.A. The ESC Textbook of Cardiovascular Imaging, 3rd ed.; Oxford University Press: Oxford, UK, 2021; ISBN 978-0-19-884935-3. [Google Scholar] [CrossRef]
- Cameron, A.C.; Touyz, R.M.; Lang, N.N. Vascular complications of cancer chemotherapy. Can. J. Cardiol. 2016, 32, 852–886. [Google Scholar] [CrossRef]
- Sadurska, E.; Zaucha-Prażmo, A.; Brodzisz, A.; Kowalczyk, J.; Beń-Skowronek, I. Premature atherosclerosis after treatment for acute lymphoblastic leukemia in childhood. Ann. Agric. Environ. Med. 2018, 25, 71–76. [Google Scholar] [CrossRef]
- Jain, D.; Russell, R.R.; Schwartz, R.G.; Panjrath, G.S.; Aronow, W. Cardiac complications of cancer therapy: Pathophysiology, identification, prevention, treatment, and future directions. Curr. Cardiol. Rep. 2017, 19, 36. [Google Scholar] [CrossRef] [PubMed]
- Mihalcea, D.J.; Florescu, M.; Suran, B.M.C.; Enescu, O.A.; Mincu, R.I.; Magda, S.; Patrascu, N.; Vinereanu, D. Comparison of pulse wave velocity assessed by three different techniques: Arteriograph, Complior, and Echo-tracking. Heart Vessel. 2016, 31, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Chung, W.B.; Cho, K.I.; Kim, B.J.; Seo, J.S.; Park, S.M.; Kim, H.J.; Lee, J.H.; Kim, E.K.; Youn, H.J. Diagnosis, Treatment, and Prevention of Cardiovascular Toxicity Related to Anti-Cancer Treatment in Clinical Practice: An Opinion Paper from the Working Group on Cardio-Oncology of the Korean Society of Echocardiography. J. Cardiovasc. Ultrasound 2018, 26, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.D.; Rea, D.; Schwarz, M.; Grille, P.; E Nicolini, F.; Rosti, G.; Levato, L.; Giles, F.J.; Dombret, H.; Mirault, T.; et al. Peripheral artery occlusive disease in chronic phase chronic myeloid leukemia patients treated with nilotinib or Imatinib. Leukemia 2013, 27, 1316–1321. [Google Scholar] [CrossRef]
- Levato, L.; Cantaffa, R.; Kropp, M.G.; Magro, D.; Piro, E.; Molica, S. Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in chronic myeloid leukemia: A single institution study. Eur. J. Haematol. 2013, 90, 531–532. [Google Scholar] [CrossRef]
- Moslehi, J.J. Cardiovascular Toxic Effects of Targeted Cancer Therapies. N. Engl. J. Med. 2016, 375, 1457–1467. [Google Scholar] [CrossRef]
- Militaru, A.G.; Militaru, M.; Iurciuc, M.; Delamarian, M.; Matusz, P.; Lighezan, D. Identification of the occurrence of cardiotoxic effects by assessing left ventricular dysfunction and vascular remodeling parameters in a patient with acute lymphoblastic leukemia. Rom. J. Cardiol. 2018, 28, 27–33. [Google Scholar]
- Militaru, A.G.; Avram, A.; Cimpean, A.M.; Iurciuc, M.; Matusz, P.; Lighezan, D.; Militaru, M. The assessment of left ventricle function, and subclinical atherosclerosis in patients with acute myeloid leukemia. In Vivo 2018, 32, 1599–1607. [Google Scholar] [CrossRef]
- Militaru, A.G.; Zus, S.; Cimpean, A.M.; Iurciuc, S.; Matusz, P.; Iurciuc, M.; Lighezan, D.; Militaru, M. Early Diagnosis of Cardiotoxicity in Patients Undergoing Chemotherapy for Acute Lymphoblastic Leukemia. Anticancer Res. 2019, 39, 3255–3264. [Google Scholar] [CrossRef]
- Dengel, D.R.; Kelly, A.S.; Zhang, L.; Hodges, J.S.; Baker, K.S.; Steinberger, J. Signs of early sub-clinical atherosclerosis in childhood cancer survivors. Pediatr. Blood Cancer 2014, 61, 532–537. [Google Scholar] [CrossRef]
- Siviero-Miachon, A.A.; Spinola-Castro, A.M.; de Martino Lee, M.L.; de Castro Monteiro, C.M.; de Camargo Carvalho, A.C.; Calixto, A.R.; Geloneze, B.; Guerra-Junior, G. Subcutaneous adipose tissue plays a beneficial effect on subclinical atherosclerosis in young survivors of acute lymphocytic leukemia. Vasc. Health Risk Manag. 2015, 11, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Plana, J.C.; Galderisi, M.; Barac, A.; Ewer, M.S.; Ky, B.; Scherrer-Crosbie, M.; Ganame, J.; Sebag, I.A.; Agler, D.A.; Badano, L.P.; et al. Expert consensus for modality imaging evaluation of adult patiets during and after cancer therapy: A report from the American society of echocardiography and the European association of cardiovascular imaging. J. Am. Soc. Echocardiogr. 2014, 27, 911–939. [Google Scholar] [CrossRef] [PubMed]
- Kabłak-Ziembicka, A.; Przewłocki, T. Clinical Significance of Carotid Intima-Media Complex and Carotid Plaque Assessment by Ultrasound for the Prediction of Adverse Cardiovascular Events in Primary and Secondary Care Patients. J. Clin. Med. 2021, 10, 4628. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baier, D.; Teren, A.; Wirkner, K.; Loeffler, M.; Scholz, M. Parameters of pulse wave velocity: Determinants and reference values assessed in the population-based study LIFE-Adult. Clin. Res. Cardiol. 2018, 107, 1050–1061. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Le Bivic, L.; Magne, J.; Guy-Moyat, B.; Wojtyna, H.; Lacroix, P.; Blossier, J.-D.; Le Guyader, A.; Desormais, I.; Aboyans, V. The Intrinsic Prognostic Value of the Ankle-Brachial Index Is Independent from Its Mode of Calculation. Vasc. Med. 2019, 24, 23–31. [Google Scholar] [CrossRef]
- Bostany, G.; Chen, Y.; Francisco, L.; Dai, C.; Meng, Q.; Sparks, J.; Sessions, M.; Nabell, L.; Stringer-Reasor, E.; Khoury, K.; et al. Cardiac Dysfunction Among Breast Cancer Survivors: Role of Cardiotoxic Therapy and Cardiovascular Risk Factors. J. Clin. Oncol. 2025, 43, 32–45. [Google Scholar] [CrossRef]
- Bhave, M.; Shah, A.N.; Akhter, N.; Rosen, S.T. An update on the risk prediction and prevention of anticancer therapyinduced cardiotoxicity. Curr. Opin. Oncol. 2014, 26, 590–599. [Google Scholar] [CrossRef]
- Russo, G.; Cioffi, G.; Gori, S.; Tuccia, F.; Boccardi, L.; Khoury, G.; Lestuzzi, C.; Maurea, N.; Oliva, S.; Faggiano, P.; et al. ICARO (ItalianCARdio-Oncological) Network. Role of hypertension on newonset congestive heart failure in patients receiving trastuzumab therapy for breastcancer. J. Cardiovasc. Med. 2014, 15, 141–146. [Google Scholar] [CrossRef]
- Caro-Codón, J.; López-Fernández, T.; Álvarez-Ortega, C.; Auñón, P.Z.; Rodríguez, I.R.; Prieto, P.G.; Soto, A.B.; Albendea, M.C.; Albaladejo, A.; Mediavilla, G.; et al. Cardiovascular risk factors during cancer treatment. Prevalence and prognostic relevance: Insights from the CARDIOTOX registry. Eur. J. Prev. Cardiol. 2022, 29, 859–868. [Google Scholar] [CrossRef]
- Akpek, M.; Ozdogru, I.; Sahin, O.; Inanc, M.; Dogan, A.; Yazici, C.; Berk, V.; Karaca, H.; Kalay, N.; Oguzhan, A.; et al. Protective effects of spironolactone against anthracycline-induced cardiomyopathy. Eur. J. Heart Fail. 2015, 17, 81–89. [Google Scholar] [CrossRef]
- Cochet, A.; Quilichini, G.; Dygai-Cochet, I.; Touzery, C.; Toubeau, M.; Berriolo-Riedinger, A.; Coudert, B.; Cottin, Y.; Fumoleau, P.; Brunotte, F. Baseline diastolic dysfunction as a predictive factor of trastuzumab-mediated cardiotoxicity after adjuvant anthracycline therapy in breast cancer. Breast Cancer Res. Treat. 2011, 130, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.E.; Barac, A.; Thavendiranathan, P.; Scherrer-Crosbie, M. Strain imaging in cardio-oncology. JACC Cardio Oncol. 2020, 2, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Ho, E.; Brown, A.; Barrett, P.; Morgan, R.B.; King, G.; Kennedy, M.J.; Murphy, R.T. Subclinical anthracycline- and trastuzumab-induced cardiotoxicity in the long-term follow-up of asymptomatic breast cancer survivors: A speckle tracking echocardiographic study. Heart 2010, 96, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Voigt, J.U.; Pedrizzetti, G.; Lysyansky, P.; Marwick, T.H.; Houle, H.; Baumann, R.; Pedri, S.; Ito, Y.; Abe, Y.; Metz, S.; et al. Definitions for a common standard for 2D speckle tracking echocardiography: Consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 1–11. [Google Scholar] [CrossRef]
- Kazuaki, N.K.; Tomoko, N.T.; Brian, A.; Haluska, J.L.; Plana, H.J.C.; Marwick, T.H. Use of speckle strain to assess left ventricular responses to cardiotoxic chemotherapy and cardioprotection. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 324–331. [Google Scholar] [CrossRef]
- Ky, B.; Putt, S.H.; Sawaya, H.; French, B.; Januzzi, J.L.; Sebag, I.A.; Plana, J.C.; Cohen, V.; Banchs, J.; Carver, J.R.; et al. Early Increases in Multiple Biomarkers Predict Subsequent Cardiotoxicity in Patients with Breast Cancer Treated With Doxorubicin, Taxanes, and Trastuzuab. J. Am. Coll. Cardiol. 2014, 63, 809–816. [Google Scholar] [CrossRef]
- Thavendiranathan, P.; Poulin, F.; Lim, K.D.; Plana, J.C.; Woo, A.; Marwick, T.H. Use of myocardial strain imaging by echocardiography form the early detection of cardiotoxicity in patients during and after cancer chemotherapy: A systematic review. J. Am. Coll. Cardiol. 2014, 63, 2751–2768. [Google Scholar] [CrossRef] [PubMed]
- Araujo-Gutierrez, R.; Chitturi, K.R.; Xu, J.; Wang, Y.; Kinder, E.; Senapati, A.; Chebrolu, L.B.; Kassi, M.; Trachtenberg, B.H. Baseline global longitudinal strain predictive of anthracycline-induced cardiotoxicity. Cardio Oncol. 2021, 7, 4. [Google Scholar] [CrossRef]
- Pereira, T.; Correia, C.; Cardoso, J. Novel Methods for Pulse Wave Velocity Measurement. J. Med. Biol. Eng. 2015, 35, 555–565. [Google Scholar] [CrossRef]
- Mancia, G.; Fagard, R.; Narkiewicz, K.; Redon, J.; Zanchetti, A.; Bo¨hm, M.; Christiaens, T.; Cifkova, R.; De Backer, G.; Dominiczak, A.; et al. 2013 ESH/ESC guidelines for themanagement of arterial hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur. Heart J. 2013, 34, 2159–2219. [Google Scholar]
- Laurent, S.; Cockcroft, J.; Van Bortel, L.; Boutouyrie, P.; Giannattasio, C.; Hayoz, D.; Pannier, B.; Vlachopoulos, C.; Wilkinson, I.; Struijker-Boudier, H. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur. Heart J. 2006, 27, 2588–2605. [Google Scholar] [CrossRef]
- Hussain, S.M.; Oldenburg, B.; Wang, Y.; Zoungas, S.; Tonkin, A.M. Assessment of cardiovascular disease risk in South Asian populations. Int. J. Vasc. Med. 2013, 2013, 786–801. [Google Scholar] [CrossRef]
- Cacho-Díaz, B.; Lorenzana-Mendoza, N.A.; Spínola-Maroño, H.; Reyes-Soto, G.; Cantú-Brito, C. Comorbidities, Clinical Features, and Prognostic Implications of Cancer Patients with Cerebrovascular Disease. J. Stroke Cerebrovasc. Dis. 2018, 27, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Iurciuc, S.; Avram, C.; Turi, V.; Militaru, A.G.; Avram, A.; Cimpean, A.M.; Iurciuc, M. Physical Training, Hemodynamic Parameters and Arterial Stiffness: Friend or Foes of the Hypertensive Patient? In Vivo 2016, 30, 521–528. [Google Scholar]
- Militaru, M.; Lighezan, D.F.; Tudoran, C.; Militaru, A.G. Connections between Cognitive Impairment and Atrial Fibrillation in Patients with Diabetes Mellitus Type 2. Biomedicines 2024, 12, 672. [Google Scholar] [CrossRef] [PubMed]
- Militaru, M.; Rachieru, C.; Lighezan, D.F.; Militaru, A.G. The Impact of Hypertension and Atrial Fibrillation on Cognitive Decline and Subclinical Atherosclerosis. Brain Sci. 2021, 11, 752. [Google Scholar] [CrossRef]
- Tham, E.B.; Haykowsky, M.J.; Chow, K.; Spavor, M.; Kaneko, S.; Khoo, N.S.; Pagano, J.J.; Mackie, A.S.; Thompson, R.B. Diffuse myocardial fibrosis by T1-mapping in children with subclinical anthracycline cardiotoxicity: Relationship to exercise capacity, cumulative dose and remodeling. J. Cardiovasc. Magn. Reason. 2013, 15, 48. [Google Scholar] [CrossRef]
- Wassmuth, R.; Lentzsch, S.; Erdbruegger, U.; Schulz-Menger, J.; Doerken, B.; Dietz, R.; Friedrich, M.G. Subclinical cardiotoxic effects ofanthracyclines as assessed by magnetic resonance imaging-a pilot study. Am. Heart J. 2001, 141, 1007–1013. [Google Scholar] [CrossRef] [PubMed]
- Neilan, T.G.; Coelho-Filho, O.R.; Pena-Herrera, D.; Shah, R.V.; Jerosch-Herold, M.; Francis, S.A.; Moslehi, J.; Kwong, R.Y. Left ventricular massin patients with a cardiomyopathy after treatment with anthracyclines. Am. J. Cardiol. 2012, 110, 1679–1686. [Google Scholar] [CrossRef]
- Virizuela, J.A.; García, A.M.; Peñas, R.d.L.; Santaballa, A.; Andrés, R.; Beato, C.; de la Cruz, S.; Gavilá, J.; González-Santiago, S.; Fernández, T.L. SEOM clinical guidelines on cardiovascular toxicity (2018). Clin. Transl. Oncol. 2019, 21, 94–105. [Google Scholar] [CrossRef]
- Lancellotti, P.; Suter, T.M.; López-Fernández, T.; Galderisi, M.; Lyon, A.R.; Van der Meer, P.; Cohen Solal, A.; Zamorano, J.L.; Jerusalem, G.; Moonen, M.; et al. Cardio-oncology services: Rationale, organization, and implementation: A report from the ESC cardio-oncology council. Eur. Heart J. 2018, 26, 45. [Google Scholar]
- Kalam, K.; Marwick, T.H. Role of cardioprotective therapy for prevention of cardiotoxicity with chemotherapy: A systematic review and meta-analysis. Eur. J. Cancer 2013, 49, 2900–2909. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, D.; Biasillo, G.; Cipolla, C.M. Curing cancer, saving the heart: A challenge that cardioncology should not miss. Curr. Cardiol. Rep. 2016, 18, 51. [Google Scholar] [CrossRef]
- López-Fernández, T.; García, A.M.; Beltrán, A.S.; Luis, Á.M.; Sanz, R.G.; Ramos, P.M.; del Castillo, S.V.; Areses, E.L.d.S.; Barreiro-Pérez, M.; Baydes, R.H.; et al. Cardio-onco-hematology in clinical practice. Position paper and recommendations. Rev. Esp. Cardiol. 2017, 70, 474–486. [Google Scholar] [CrossRef] [PubMed]
- Piepoli, M.; Hoes, W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.T.; Corrà, U.; Cosyns, B.; Deaton, C.; et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The sixth Joint Task Force or the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar] [PubMed]
- López-Fernández, T.; Thavendiranathan, P. Emerging cardiac image modalities for early detection of cardiotoxicity derived for anticancer therapies. Rev. Esp. Cardiol. 2017, 70, 487–495. [Google Scholar] [CrossRef]
- Popovici, D.C.; Ionita, I.; Ionita, C.; Marinita, A.; Moleriu, R.D.; Ionita, H.; Iacob, D.; Chiriac, V.D.; Petre, I. Statistical Hierarchy of Diagnostic Criteria for Chronic Myeloid Leukemia. Rev. Chim. 2017, 68, 2463–2466. [Google Scholar] [CrossRef]
- Sequí-Domínguez, I.; Cavero-Redondo, I.; Álvarez-Bueno, C.; Pozuelo-Carrascosa, D.P.; Nuñez de Arenas-Arroyo, S.; Martínez-Vizcaíno, V. Accuracy of Pulse Wave Velocity Predicting Cardiovascular and All-Cause Mortality. A Systematic Review and Meta-Analysis. J. Clin. Med. 2020, 9, 2080. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Participants |
AL with CVRFs 26 Patients |
AL without CVRFs 19 Patients | p Value * |
Controls with CVRFs 26 Patients | p Value ** |
---|---|---|---|---|---|
Age (19–79) years Mean +/− SD | 54.85 ± 16.63 | 44.00 ± 18.75 | 0.047 | 58.50 ± 5.21 | 0.639 |
Men (%) | 16 (61.5%) | 10 (52.6%) | 0.550 | 12 (46.2%) | 0.202 |
Women (%) | 10 (38.5%) | 9 (47.4%) | 0.550 | 14 (53.8%) | 0.202 |
BMI, Hemodynamic and Vascular Parameters | AL with CVRFs | AL without CVRFs | p Value * | Control with CVRFs | p Value ** | |||
---|---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | ||||||
BMI (kg/m2) | 27.25 | 3.64 | 23.09 | 3.67 | <0.001 | 24.57 | 3.81 | 0.078 |
HR (b/min) | 79.07 | 10.53 | 78.10 | 10.20 | 0.758 | 79.34 | 17.13 | 0.864 |
SBP (mmHg) | 126.53 | 10.84 | 125.47 | 9.90 | 0.738 | 144.42 | 20.75 | <0.001 |
DBP (mmHg) | 76.92 | 11.66 | 75.84 | 11.45 | 0.759 | 84.42 | 12.75 | 0.023 |
IMT left (mm) | 0.78 | 0.20 | 0.69 | 0.12 | 0.061 | 0.76 | 0.15 | 0.643 |
IMT right (mm) | 0.77 | 0.22 | 0.75 | 0.10 | 0.683 | 0.65 | 0.16 | 0.032 |
ABI left | 1.10 | 0.08 | 1.13 | 0.10 | 0.275 | 1.09 | 0.16 | 0.553 |
ABI right | 1.09 | 0.09 | 1.23 | 0.37 | 0.132 | 1.12 | 0.25 | 0.519 |
PWV (m/s) | 7.07 | 1.15 | 6.80 | 0.69 | 0.376 | 6.89 | 1.12 | 0.742 |
Echocardiographic Parameters | AL with CVRFs | AL without CVRFs | p Value * | Control with CVRFs | p Value ** | |||
---|---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | ||||||
IVS (mm) | 10.07 | 1.52 | 9.21 | 1.39 | 0.057 | 10.42 | 1.33 | 0.567 |
LVPW (mm) | 10.15 | 1.12 | 9.00 | 1.20 | 0.002 | 10.08 | 1.30 | 0.742 |
LVEDD (mm) | 48.50 | 5.02 | 45.68 | 8.37 | 0.166 | 49.19 | 4.17 | 0.666 |
LVESD (mm) | 27.15 | 6.89 | 24.89 | 6.84 | 0.282 | 26.65 | 5.74 | 0.812 |
LVEF (%) | 59.26 | 5.62 | 64.05 | 7.43 | 0.018 | 61.92 | 6.17 | 0.117 |
LVESV (ml) | 31.30 | 12.97 | 24.63 | 6.28 | 0.045 | 32.65 | 9.35 | 0.568 |
LVEDV (ml) | 81.42 | 30.58 | 76.94 | 23.86 | 0.599 | 78.26 | 18.96 | 0.508 |
LVFS (%) | 40.62 | 12.48 | 43.62 | 11.08 | 0.408 | 40.80 | 12.22 | 0.093 |
MAPSE (mm) | 15.03 | 4.00 | 15.26 | 3.05 | 0.188 | 14.50 | 3.25 | 0.531 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Militaru, A.G.; Lighezan, D.F.; Cimpean, A.M.; Amaricai, E.; Militaru, M. Predicting Cardiovascular Risk Factors for Acute Leukemia Patients by Assessing Subclinical Atherosclerosis and Left Ventricular Function Before Chemotherapy. Life 2025, 15, 704. https://doi.org/10.3390/life15050704
Militaru AG, Lighezan DF, Cimpean AM, Amaricai E, Militaru M. Predicting Cardiovascular Risk Factors for Acute Leukemia Patients by Assessing Subclinical Atherosclerosis and Left Ventricular Function Before Chemotherapy. Life. 2025; 15(5):704. https://doi.org/10.3390/life15050704
Chicago/Turabian StyleMilitaru, Anda Gabriela, Daniel Florin Lighezan, Anca Maria Cimpean, Elena Amaricai, and Marius Militaru. 2025. "Predicting Cardiovascular Risk Factors for Acute Leukemia Patients by Assessing Subclinical Atherosclerosis and Left Ventricular Function Before Chemotherapy" Life 15, no. 5: 704. https://doi.org/10.3390/life15050704
APA StyleMilitaru, A. G., Lighezan, D. F., Cimpean, A. M., Amaricai, E., & Militaru, M. (2025). Predicting Cardiovascular Risk Factors for Acute Leukemia Patients by Assessing Subclinical Atherosclerosis and Left Ventricular Function Before Chemotherapy. Life, 15(5), 704. https://doi.org/10.3390/life15050704