The Junction of Allergic Inflammation and Atherosclerosis: Pathways and Clinical Implications—A Review
Abstract
:1. Introduction
1.1. Overview of Atherosclerosis and Its Risk Factors
1.2. Introduction to Allergic Inflammation
2. Materials and Methods
Linking Allergies to Atherosclerosis (and Cardiovascular Disease)
3. Pathophysiology and Immune Cell Infiltration and Activation
3.1. Th2 Cells and Cytokines and Chemokines
3.2. Mast Cells
3.3. Eosinophils
3.4. Lipid Metabolism
4. Clinical Evidence
4.1. Implications for Clinical Practice and Future Research: Potential New Therapies Targeting Allergic Inflammation Pathways
4.2. Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hansson, G.K. Inflammation, Atherosclerosis, and Coronary Artery Disease. N. Engl. J. Med. 2005, 352, 1685–1695. [Google Scholar] [CrossRef]
- Borén, J.; Chapman, M.J.; Krauss, R.M.; Packard, C.J.; Bentzon, J.F.; Binder, C.J.; Daemen, M.J.; Demer, L.L.; Hegele, R.A.; Nicholls, S.J.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2020, 41, 2313–2330. [Google Scholar] [CrossRef] [PubMed]
- Gisterå, A.; Hansson, G.K. The immunology of atherosclerosis. Nat. Rev. Nephrol. 2017, 13, 368–380. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.P.; Bot, I.; Kovanen, P.T. Mast cells in human and experimental cardiometabolic diseases. Nat. Rev. Cardiol. 2015, 12, 643–658. [Google Scholar] [CrossRef] [PubMed]
- Niccoli, G.; Montone, R.A.; Sabato, V.; Crea, F. Role of allergic inflammatory cells in coronary artery disease. Circulation 2018, 138, 1736–1748. [Google Scholar] [CrossRef]
- Tabas, I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat. Rev. Immunol. 2010, 10, 36–46. [Google Scholar] [CrossRef]
- Wolf, D.; Ley, K. Immunity and inflammation in atherosclerosis. Circ. Res. 2019, 124, 315–327. [Google Scholar] [CrossRef]
- Holgate, S.T. Allergy, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Eronica, V.; Ao, Y.; Ameron, C.; Latell, P.; Ohn, J. All CH. Dendritic cells. ANZ J. Surg. 2002, 72, 501–506. [Google Scholar] [CrossRef]
- Gowthaman, U.; Chen, J.S.; Zhang, B.; Flynn, W.F.; Lu, Y.; Song, W.; Joseph, J.; Gertie, J.A.; Xu, L.; Collet, M.A.; et al. Identification of a T follicular helper cell subset that drives anaphylactic IgE. Science 2019, 365, eaaw6433. [Google Scholar] [CrossRef]
- Jutel, M.; Agache, I.; Zemelka-Wiacek, M.; Akdis, M.; Chivato, T.; del Giacco, S.; Gajdanowicz, P.; Gracia, I.E.; Klimek, L.; Lauerma, A.; et al. Nomenclature of allergic diseases and hypersensitivity reactions: Adapted to modern needs: An EAACI position paper. Allergy Eur. J. Allergy Clin. Immunol. 2023, 78, 2851–2874. [Google Scholar] [CrossRef]
- Shamji, M.H.; Sharif, H.; Layhadi, J.A.; Zhu, R.; Kishore, U.; Renz, H. Diverse immune mechanisms of allergen immunotherapy for allergic rhinitis with and without asthma. J. Allergy Clin. Immunol. 2022, 149, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Liao, S.; Chen, F.; Yang, Q.; Wang, D.Y. Role of IL-25, IL-33, and TSLP in triggering united airway diseases toward type 2 inflammation. Allergy Eur. J. Allergy Clin. Immunol 2020, 75, 2794–2804. [Google Scholar] [CrossRef] [PubMed]
- Wallrapp, A.; Riesenfeld, S.J.; Burkett, P.R.; Kuchroo, V.K. Type 2 innate lymphoid cells in the induction and resolution of tissue inflammation. Immunol. Rev. 2018, 286, 53–73. [Google Scholar] [CrossRef]
- Gour, N.; Wills-Karp, M. IL-4 and IL-13 signaling in allergic airway disease. Cytokine 2015, 75, 68–78. [Google Scholar] [CrossRef]
- Nagase, H.; Ueki, S.; Fujieda, S. The roles of IL-5 and anti-IL-5 treatment in eosinophilic diseases: Asthma, eosinophilic granulomatosis with polyangiitis, and eosinophilic chronic rhinosinusitis. Allergol. Int. 2020, 69, 178–186. [Google Scholar] [CrossRef]
- Potaczek, D.P.; Undas, A. Allergic burden and the risk of venous thromboembolism. Eur. Respir. J. 2013, 42, 1157–1158. [Google Scholar] [CrossRef] [PubMed]
- Undas, A.; Cieśla-Dul, M.; Drażkiewicz, T.; Potaczek, D.P.; Sadowski, J. Association between atopic diseases and venous thromboembolism: A case-control study in patients aged 45 years or less. J. Thromb. Haemost. 2011, 9, 870–873. [Google Scholar] [CrossRef]
- Vellasamy, D.M.; Lee, S.-J.; Goh, K.W.; Goh, B.-H.; Tang, Y.-Q.; Ming, L.C.; Yap, W.H. Targeting immune senescence in atherosclerosis. Int. J. Mol. Sci. 2022, 23, 13059. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Alcaide, P.; Liu, L.; Sun, J.; He, A.; Luscinskas, F.W.; Shi, G.P. Regulation of endothelial cell adhesion molecule expression by mast cells, macrophages, and neutrophils. PLoS ONE 2011, 6, e14525. [Google Scholar] [CrossRef]
- Yoshizaki, A.; Yanaba, K.; Iwata, Y.; Komura, K.; Ogawa, A.; Akiyama, Y.; Muroi, E.; Hara, T.; Ogawa, F.; Takenaka, M.; et al. Cell Adhesion Molecules Regulate Fibrotic Process via Th1/Th2/Th17 Cell Balance in a Bleomycin-Induced Scleroderma Model. J. Immunol. 2010, 185, 2502–2515. [Google Scholar] [CrossRef]
- Gerhardt, T.; Haghikia, A.; Stapmanns, P.; Leistner, D.M. Immune Mechanisms of Plaque Instability. Front. Cardiovasc. Med. 2022, 8, 797046. [Google Scholar] [CrossRef] [PubMed]
- Banafea, G.H.; Bakhashab, S.; Alshaibi, H.F.; Natesan Pushparaj, P.; Rasool, M. The Role of Human Mast Cells in Allergy and Asthma. Bioengineered 2022, 13, 7049–7064. [Google Scholar] [CrossRef]
- Elieh-Ali-Komi, D.; Bot, I.; Rodríguez-González, M.; Maurer, M. Cellular and Molecular Mechanisms of Mast Cells in Atherosclerotic Plaque Progression and Destabilization. Clin. Rev. Allergy Immunol. 2024, 66, 30–49. [Google Scholar] [CrossRef]
- Lazova, S.; Naydenova, K.; Velikova, T. Eosinophilic Cationic Protein and Immunoglobulin E: Unraveling Biomarkers in Chronic Pediatric Cough. Sinusitis 2024, 8, 1–10. [Google Scholar] [CrossRef]
- Mackman, N. Eosinophils, Atherosclerosis, and Thrombosis. Blood 2019, 134, 1781–1782. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xiang, X.; Nie, L.; Guo, X.; Zhang, F.; Wen, C.; Xia, Y.; Mao, L. The emerging role of Th1 cells in atherosclerosis and its implications for therapy. Front. Immunol. 2023, 13, 1079668. [Google Scholar] [CrossRef]
- Hinkley, H.; Counts, D.A.; VonCanon, E.; Lacy, M. T cells in atherosclerosis: Key players in the pathogenesis of vascular disease. Cells 2023, 12, 2152. [Google Scholar] [CrossRef]
- Lee, Y.W.; Lee, W.H.; Kim, P.H. Role of NADPH oxidase in interleukin-4-induced monocyte chemoattractant protein-1 expression in vascular endothelium. Inflamm. Res. 2010, 59, 755–765. [Google Scholar] [CrossRef]
- Proto, J.D.; Doran, A.C.; Gusarova, G.; Yurdagul, A.; Sozen, E.; Subramanian, M.; Islam, M.N.; Rymond, C.C.; Du, J.; Hook, J.; et al. Regulatory T cells promote macrophage fferocytosis during inflammation resolution. Immunity 2018, 49, 666–677.e6. [Google Scholar] [CrossRef]
- Chistiakov, D.A.; Melnichenko, A.A.; Myasoedova, V.A.; Grechko, A.V.; Orekhov, A.N. Mechanisms of foam cell formation in atherosclerosis. J. Mol. Med. 2017, 95, 1153–1165. [Google Scholar] [CrossRef]
- Silveira, J.S.; Antunes, G.L.; Kaiber, D.B.; da Costa, M.S.; Marques, E.P.; Ferreira, F.S.; Gassen, R.B.; Breda, R.V.; Wyse, A.T.; Pitrez, P.; et al. Reactive oxygen species are involved in eosinophil extracellular traps release and in airway inflammation in asthma. J. Cell. Physiol. 2019, 234, 23633–23646. [Google Scholar] [CrossRef] [PubMed]
- Hulthe, J.; Wiklund, O.; Hurt-Camejo, E.; Bondjers, G. Antibodies to oxidized LDL in relation to carotid atherosclerosis, cell adhesion molecules, and phospholipase A2. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 269–274. [Google Scholar] [CrossRef]
- Gangwar, R.S.; Friedman, S.; Seaf, M.; Levi-Schaffer, F. Mast cells and eosinophils in allergy: Close friends or just neighbors. Eur. J. Pharmacol. 2016, 778, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Kunder, C.A.; St John, A.L.; Abraham, S.N. Mast cell modulation of the vascular and lymphatic endothelium. Blood 2011, 118, 5383–5393. [Google Scholar] [CrossRef] [PubMed]
- Lappalainen, H.; Laine, P.; Pentikäinen, M.O.; Sajantila, A.; Kovanen, P.T. Mast cells in neovascularized human coronary plaques store and secrete basic fibroblast growth factor, a potent angiogenic mediator. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1880–1885. [Google Scholar] [CrossRef]
- Poto, R.; Criscuolo, G.; Marone, G.; Brightling, C.E.; Varricchi, G. Human lung mast cells: Therapeutic implications in asthma. Int. J. Mol. Sci. 2022, 23, 14466. [Google Scholar] [CrossRef]
- Min, K.B.; Min, J.Y. Risk of cardiovascular mortality in relation to increased total serum IgE levels in older adults: A population-based cohort study. Int. J. Environ. Res. Public Health 2019, 16, 4350. [Google Scholar] [CrossRef]
- Picard, F.; Sayah, N.; Spagnoli, V.; Adjedj, J.; Varenne, O. Vasospastic angina: A literature review of current evidence. Arch. Cardiovasc. Dis. 2019, 112, 44–55. [Google Scholar] [CrossRef]
- Saheera, S.; Potnuri, A.G.; Guha, A.; Palaniyandi, S.S.; Thandavarayan, R.A. Histamine 2 receptors in cardiovascular biology: A friend for the heart. Drug Discov. Today 2022, 27, 234–245. [Google Scholar] [CrossRef]
- Kounis, N.G.; Zavras, G.M. Histamine-induced coronary artery spasm: The concept of allergic angina. Br. J. Clin. Pract. 1991, 45, 121–128. [Google Scholar] [CrossRef]
- Kounis, N.G.; Cervellin, G.; Koniari, I.; Bonfanti, L.; Dousdampanis, P.; Charokopos, N.; Assimakopoulos, S.F.; Kakkos, S.K.; Ntouvas, I.G.; Soufras, G.D.; et al. Anaphylactic cardiovascular collapse and Kounis syndrome: Systemic vasodilation or coronary vasoconstriction? Ann. Transl. Med. 2018, 6, 332. [Google Scholar] [CrossRef] [PubMed]
- Kounis, N.G.; Kounis, G.N.; Kouni, S.N.; Soufras, G.D.; Niarchos, C.; Mazarakis, A. Allergic reactions following implantation of drug-eluting stents: A manifestation of Kounis syndrome? J. Am. Coll. Cardiol. 2006, 48, 592–593. [Google Scholar] [CrossRef]
- van Dijk, R.A.; Rijs, K.; Wezel, A.; Hamming, J.F.; Kolodgie, F.D.; Virmani, R.; Schaapherder, A.F.; Lindeman, J.H. Systematic evaluation of the cellular innate immune response during the process of human atherosclerosis. J. Am. Heart Assoc. 2016, 5, e002860. [Google Scholar] [CrossRef] [PubMed]
- Marx, C.; Novotny, J.; Salbeck, D.; Zellner, K.R.; Nicolai, L.; Pekayvaz, K.; Kilani, B.; Stockhausen, S.; Bürgener, N.; Kupka, D.; et al. Eosinophil-platelet interactions promote atherosclerosis and stabilize thrombosis with eosinophil extracellular traps. Blood 2019, 134, 1859. [Google Scholar] [CrossRef]
- Stoleski, S.; Minov, J.; Karadzinska-Bislimovska, J.; Mijakoski, D.; Atanasovska, A. Eosinophil cationic protein concentrations among crop and dairy farmers with asthma. Open Access Maced. J. Med. Sci. 2018, 6, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.H.; Ye, M.K.; Park, J.; Geum, S.Y. Immunopathologic role of eosinophils in eosinophilic chronic rhinosinusitis. Int. J. Mol. Sci. 2022, 23, 13313. [Google Scholar] [CrossRef]
- Acharya, K.R.; Ackerman, S.J. Eosinophil granule proteins: Form and function. J. Biol. Chem. 2014, 289, 17406–17415. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Q.; Wang, Q.; Zhu, J.; Xiao, Q. Themed Section: Spotlight on small molecules in cardiovascular diseases. Br. J. Pharmacol. 2018, 175, 1279. [Google Scholar]
- van der Heiden, K.; Cuhlmann, S.; Luong, L.A.; Zakkar, M.; Evans, P.C. Role of nuclear factor κB in cardiovascular health and disease. Clin. Sci. 2010, 118, 593–605. [Google Scholar] [CrossRef]
- Masselli, E.; Pozzi, G.; Vaccarezza, M.; Mirandola, P.; Galli, D.; Vitale, M.; Carubbi, C.; Gobbi, G. ROS in platelet biology: Functional aspects and methodological insights. Int. J. Mol. Sci. 2020, 21, 4866. [Google Scholar] [CrossRef]
- Dekkers, K.F.; Slieker, R.C.; Ioan-Facsinay, A.; van Iterson, M.; BIOS consortium; Ikram, M.A.; van Greevenbroek, M.M.; Veldink, J.H.; Franke, L.; Boomsma, D.I.; et al. Lipid-induced transcriptomic changes in blood link to lipid metabolism and allergic response. Nat. Commun. 2023, 14, 544. [Google Scholar] [CrossRef] [PubMed]
- Crestani, E.; Harb, H.; Charbonnier, L.M.; Leirer, J.; Motsinger-Reif, A.; Rachid, R.; Phipatanakul, W.; Kaddurah-Daouk, R.; Chatila, T.A. Untargeted metabolomic profiling identifies disease-specific signatures in food allergy and asthma. J. Allergy Clin. Immunol. 2020, 145, 897–906. [Google Scholar] [CrossRef] [PubMed]
- La Mantia, I.; Andaloro, C.; Albanese, P.G.; Varricchio, A. Blood lipid levels related to allergic rhinitis: A significant association? Eur. Mediterr. Biomed. J. 2017, 12, 144–147. [Google Scholar]
- Sheha, D.S.; El-Korashi, L.A.; AbdAllah, A.M.; El-Begermy, M.M.; Elmahdi, A.R. Dyslipidemia among allergic rhinitis patients: Frequency and risk factors. World Allergy Organ. J. 2021, 14, 100523. [Google Scholar] [CrossRef] [PubMed]
- Thyssen, J.P.; Ross Terres, J.A.; Pierce, E.J.; Feely, M.A.; Silverberg, J.I. Prevalence, incidence and relative risk of cardiovascular disease risk factors in adults with atopic dermatitis: A systematic review. JEADV Clin. Pract. 2023, 2, 5–18. [Google Scholar] [CrossRef]
- Maștaleru, A.; Popescu, G.; Abdulan, I.M.; Cumpăt, C.M.; Costache, A.D.; Grosu, C.; Leon, M.M. Association between serum lipids and asthma in adults—A systematic review. Nutrients 2024, 16, 2070. [Google Scholar] [CrossRef]
- Kim, D.; Chung, H.; Lee, J.E.; Kim, J.; Hwang, J.; Chung, Y. Immunologic aspects of dyslipidemia: A critical regulator of adaptive immunity and immune disorders. J. Lipid Atheroscler. 2021, 10, 184–201. [Google Scholar] [CrossRef]
- Grao-Cruces, E.; Lopez-Enriquez, S.; Martin, M.E.; Montserrat-de la Paz, S. High-density lipoproteins and immune response: A review. Int. J. Biol. Macromol. 2022, 195, 117–123. [Google Scholar] [CrossRef]
- Trakaki, A.; Marsche, G. High-Density Lipoprotein in Skin Diseases. Encyclopedia. Available online: https://encyclopedia.pub/entry/3517 (accessed on 3 March 2025).
- Wen, J.; Zhuang, R.; He, C.; Giri, M.; Guo, S. High density lipoprotein-cholesterol is inversely associated with blood eosinophil counts among asthmatic adults in the USA: NHANES 2011–2018. Front. Immunol. 2023, 14, 1166406. [Google Scholar] [CrossRef]
- Roula, D.; Theiler, A.; Luschnig, P.; Sturm, G.J.; Tomazic, P.V.; Marsche, G.; Heinemann, A.; Sturm, E.M. Apolipoprotein A-IV acts as an endogenous anti-inflammatory protein and is reduced in treatment-naïve allergic patients and allergen-challenged mice. Allergy 2020, 75, 392–402. [Google Scholar] [CrossRef]
- Rhee, T.M.; Choi, E.K.; Han, K.D.; Lee, S.R.; Oh, S. Impact of the Combinations of Allergic Diseases on Myocardial Infarction and Mortality. J. Allergy Clin. Immunol. Pract. 2021, 9, 872–880.e4. [Google Scholar] [CrossRef]
- Gusev, E.; Sarapultsev, A. Atherosclerosis and Inflammation: Insights from the Theory of General Pathological Processes. Int. J. Mol. Sci. 2023, 24, 7910. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.G.; Kwon, M.J.; Kim, J.H.; Kim, S.Y.; Kim, J.H.; Park, J.Y.; Hwang, Y.I.; Jang, S.H. Association between asthma and cardiovascular diseases: A longitudinal follow-up study using a national health screening cohort. World Allergy Organ. J. 2024, 17, 100907. [Google Scholar] [CrossRef] [PubMed]
- Keet, C.E.C.M.; McGowan, E.C.; Jacobs, D. IgE to common food allergens is associated with cardiovascular mortality in the National Health and Examination Survey and the Multi-Ethnic Study of Atherosclerosis. J. Allergy Clin. Immunol. 2024, 153, 471–478.e3. [Google Scholar] [CrossRef]
- Ascott, A.; Mulick, A.; Ashley, M.Y.; Prieto-Merino, D.; Schmidt, M.; Abuabara, K.; Smeeth, L.; Roberts, A.; Langan, S.M. Atopic eczema and major cardiovascular outcomes: A systematic review and meta-analysis of population-based studies. J. Allergy Clin. Immunol. 2019, 143, 1821–1829. [Google Scholar] [CrossRef] [PubMed]
- Crans Yoon, A.M.; Chiu, V.; Rana, J.S.; Sheikh, J. Association of allergic rhinitis, coronary heart disease, cerebrovascular disease, and all-cause mortality. Ann. Allergy Asthma Immunol. 2016, 117, 359–364.e1. [Google Scholar] [CrossRef]
- Nagarajan, S.; Rosenbaum, J.; Joks, R. The Relationship Between Allergic Rhinitis, Asthma, and Cardiovascular Disease in the National Health Interview Surveys (NHIS), 1999–2018. J. Allergy Clin. Immunol. Pract. 2024, 12, 1509–1519.e4. [Google Scholar] [CrossRef]
- Kaplan, A.P.; Giménez-Arnau, A.M.; Saini, S.S. Mechanisms of Action That Contribute to Efficacy of Omalizumab in Chronic Spontaneous Urticaria. Allergy 2017, 72, 519–533. [Google Scholar] [CrossRef]
- McCann, M.R.; Kosloski, M.P.; Xu, C.; Davis, J.D.; Kamal, M.A. Dupilumab: Mechanism of Action, Clinical, and Translational Science. Clin. Transl. Sci. 2024, 17, e13899. [Google Scholar] [CrossRef]
- Kupczyk, M.; Kuna, P. Benralizumab: An Anti-IL-5 Receptor α Monoclonal Antibody in the Treatment of Asthma. Immunotherapy 2018, 10, 349–359. [Google Scholar] [CrossRef]
- Ortega, H.G.; Liu, M.C.; Pavord, I.D.; Brusselle, G.G.; FitzGerald, J.M.; Chetta, A.; Humbert, M.; Katz, L.E.; Keene, O.N.; Yancey, S.W.; et al. Mepolizumab Treatment in Patients with Severe Eosinophilic Asthma. N. Engl. J. Med. 2014, 371, 1198–1207. [Google Scholar] [CrossRef] [PubMed]
- Marone, G.; Spadaro, G.; Braile, M.; Poto, R.; Criscuolo, G.; Pahima, H.; Loffredo, S.; Levi-Schaffer, F.; Varricchi, G. Tezepelumab: A Novel Biological Therapy for the Treatment of Severe Uncontrolled Asthma. Expert Opin. Investig. Drugs 2019, 28, 931–940. [Google Scholar] [CrossRef]
- Kelsen, S.G.; Agache, I.O.; Soong, W.; Israel, E.; Chupp, G.L.; Cheung, D.S.; Theess, W.; Yang, X.; Staton, T.L.; Choy, D.F.; et al. Astegolimab (Anti-ST2) Efficacy and Safety in Adults with Severe Asthma: A Randomized Clinical Trial. J. Allergy Clin. Immunol. 2021, 148, 790–798. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.C.; Loo, S.-L.; Nichol, K.S.; Reid, A.T.; Veerati, P.C.; Esneau, C.; Wark, P.A.B.; Grainge, C.L.; Knight, D.A.; Vincent, T.; et al. IL-25 Blockade Augments Antiviral Immunity during Respiratory Virus Infection. Commun. Biol. 2022, 5, 415. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, J.A.; Youngblood, B.A.; Schleimer, R.P.; Bochner, B.S. Siglecs as Potential Targets of Therapy in Human Mast Cell- and/or Eosinophil-Associated Diseases. Semin. Immunol. 2023, 69, 101799. [Google Scholar] [CrossRef]
- Mohamed, M.F.; Bhatnagar, S.; Parmentier, J.M.; Nakasato, P.; Wung, P. Upadacitinib: Mechanism of Action, Clinical, and Translational Science. Clin. Transl. Sci. 2024, 17, e13688. [Google Scholar] [CrossRef]
- Deeks, E.D.; Duggan, S. Abrocitinib: First Approval. Drugs 2021, 81, 2149–2157. [Google Scholar] [CrossRef]
- Murillo, J.C.; Dimov, V.; Gonzalez-Estrada, A. An Evaluation of Fevipiprant for the Treatment of Asthma: A Promising New Therapy? Expert Opin. Pharmacother. 2018, 19, 2087–2093. [Google Scholar] [CrossRef]
- Newland, A.; McDonald, V. Fostamatinib: A Review of Its Clinical Efficacy and Safety in the Management of Chronic Adult Immune Thrombocytopenia. Immunotherapy 2020, 12, 1325–1340. [Google Scholar] [CrossRef]
- Hossenbaccus, L.; Linton, S.; Ramchandani, R.; Burrows, A.G.; Ellis, A.K. Study of Cat Allergy Using Controlled Methodology—A Review of the Literature and a Call to Action. Front. Allergy 2022, 3, 828091. [Google Scholar] [CrossRef]
- Scheiblhofer, S.; Thalhamer, J.; Weiss, R. DNA and mRNA Vaccination against Allergies. Pediatr. Allergy Immunol. 2018, 29, 679–688. [Google Scholar] [CrossRef] [PubMed]
- Dongye, Z.; Li, J.; Wu, Y. Toll-like Receptor 9 Agonists and Combination Therapies: Strategies to Modulate the Tumour Immune Microenvironment for Systemic Anti-Tumour Immunity. Br. J. Cancer 2022, 127, 1584–1594. [Google Scholar] [CrossRef]
- Mazziotta, C.; Tognon, M.; Martini, F.; Torreggiani, E.; Rotondo, J.C. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells 2023, 12, 184. [Google Scholar] [CrossRef]
- Karimi, M.; Shirsalimi, N.; Hashempour, Z.; Salehi Omran, H.; Sedighi, E.; Beigi, F.; Mortezazadeh, M. Safety and Efficacy of Fecal Microbiota Transplantation (FMT) as a Modern Adjuvant Therapy in Various Diseases and Disorders: A Comprehensive Literature Review. Front. Immunol. 2024, 15, 1439176. [Google Scholar] [CrossRef]
- Conrad, M.L.; Barrientos, G.; Cai, X.; Mukherjee, S.; Das, M.; Stephen-Victor, E.; Harb, H. Regulatory T Cells and Their Role in Allergic Disease. Allergy 2024, 80, 77. [Google Scholar] [CrossRef] [PubMed]
- Skuljec, J.; Chmielewski, M.; Happle, C.; Habener, A.; Busse, M.; Abken, H.; Hansen, G. Chimeric Antigen Receptor-Redirected Regulatory T Cells Suppress Experimental Allergic Airway Inflammation, a Model of Asthma. Front. Immunol. 2017, 8, 1125. [Google Scholar] [CrossRef]
- Chen, H.; Xu, X.; Cheng, S.; Xu, Y.; Xuefei, Q.; Cao, Y.; Xie, J.; Wang, C.-Y.; Xu, Y.; Xiong, W. Small Interfering RNA Directed against microRNA-155 Delivered by a Lentiviral Vector Attenuates Asthmatic Features in a Mouse Model of Allergic Asthma. Exp. Ther. Med. 2017, 14, 4391–4396. [Google Scholar] [CrossRef] [PubMed]
- Applications of RNAi and CRISPR Gene Editing Technologies to Decrease Immunodominant Allergens in Foods. Available online: https://www.researchgate.net/publication/377756095_Applications_of_RNAi_and_CRISPR_Gene_Editing_Technologies_to_Decrease_Immunodominant_Allergens_in_Foods (accessed on 5 June 2025).
- Aquino, M.; Simons, E.; Szepietowski, J.C.; Kircik, P. Efficacy and Safety of Ruxolitinib Cream for the Treatment of Atopic Dermatitis: Results from 2 phase 3, randomized, double-blind studies. J. Am. Acad. Dermatol. 2021, 85, 863–872. [Google Scholar]
- Cazzola, M.; Hanania, N.A.; Rogliani, P.; Matera, M.G. Cardiovascular disease in asthma patients: From mechanisms to therapeutic implications. Kardiol. Pol. 2023, 81, 232–241. [Google Scholar] [CrossRef]
Type of Cell | Mechanism of Action | Effect |
---|---|---|
Th2 Cells | Secrete IL-4, IL-5, and IL-13, promoting a Th2-skewed inflammatory response. Induce expression of adhesion molecules (VCAM-1, ICAM-1) on endothelial cells, enhancing immune cell recruitment. Suppress Th1 responses and modulate macrophage polarization [21]. | Increase endothelial dysfunction, enhances monocyte infiltration into plaques, and promote macrophage differentiation. Contribute to chronic vascular inflammation, foam cell formation, and plaque instability [22]. |
Mast Cells | Degranulate in response to allergens, releasing histamine, TNF-α, IL-6, VEGF, tryptase, chymase, and leukotrienes.Release histamine, cytokines (e.g., TNF-α, IL-6), growth factors (e.g., VEGF), proteases (e.g., tryptase, chymase) and other pro-inflammatory mediators upon activation induce smooth muscle contraction and vascular remodeling [23]. | Enhance the permeability of blood vessels, promoting the adhesion of leukocytes (white blood cells) to the endothelial cells lining the blood vessels. Facilitate the infiltration of LDL particles and inflammatory cells in the arterial intima. Promote extracellular matrix degradation, neovascularization, and intraplaque hemorrhage, contributing to plaque rupture [24]. |
Eosinophils | Secrete major basic protein (MBP), eosinophil cationic protein (ECP), and reactive oxygen species (ROS). Produce lipid-oxidizing enzymes and cytokines (e.g., IL-5, IL-13) [25]. | Enhance oxidative stress and endothelial dysfunction, promoting atherosclerotic plaque formation. Induce endothelial damage and smooth muscle cell activation. Contribute to plaque instability through pro-inflammatory cytokine release [26]. |
Therapy Type | Target/Mechanism | Examples | Therapeutic Goals |
---|---|---|---|
Monoclonal Antibodies | IgE neutralization | Omalizumab | Prevent mast cell and basophil activation [70] |
IL-4/IL-13 inhibition | Dupilumab | Reduce Th2 cytokine signaling, IgE production [71] | |
IL-5/IL-5R blockade | Mepolizumab, Benralizumab | Decrease eosinophil survival and activation [72,73] | |
TSLP inhibition | Tezepelumab | Block epithelial cytokine that initiates allergic response [74] | |
IL-33/ST2 inhibition | Astegolimab (experimental) | Suppress type 2 innate immunity [75] | |
IL-25 blockade | Under development | Reduce type 2 inflammation from epithelial signals [76] | |
Siglec-8 targeting | Antolimab | Induce eosinophil apoptosis [77] | |
Small Molecule Inhibitors | JAK inhibitors (block cytokine signaling) | Upadacitinib, Abrocitinib | Broad suppression of inflammatory signaling [78,79] |
CRTh2 antagonists | Fevipiprant (investigational) | Inhibit Th2 cell migration and activation [80] | |
Syk inhibitors | Fostamatinib (investigational) | Block FcεRI-mediated mast cell activation [81] | |
Immunotherapy Enhancements | Peptide-based immunotherapy | Allergen peptides (e.g., Cat-PAD) | Induce tolerance without risk of anaphylaxis [82] |
DNA/RNA allergen vaccines | Under clinical development | Modulate immune response toward tolerance [83] | |
Adjuvant-enhanced AIT | TLR agonists, CpG motifs | Promote regulatory T cell response [84] | |
Microbiome-Based Therapies | Probiotics/Prebiotics | Lactobacillus spp., Bifidobacterium spp. | Modulate gut–skin–lung immune responses [85] |
Fecal Microbiota Transplant (FMT) | Experimental | Restore immune balance through microbiota reset [86] | |
Cell-Based Therapies | Regulatory T cell (Treg) therapy | Autologous/engineered Tregs | Suppress allergic inflammation [87] |
CAR-Tregs (Chimeric Antigen Receptor Tregs) | Preclinical | Allergen-specific immune tolerance [88] | |
Gene/RNA Therapies | siRNA/microRNA targeting cytokines | Under research | Suppress key inflammatory mediators [89] |
CRISPR-based editing | Preclinical | Disrupt genes involved in IgE or Th2 responses [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valcovici, M.; Iacob, M.S.; Sharma, A.; Pah, A.M.; Marin-Bancila, L.; Berceanu, M.M.V.; Velimirovici, M.D.; Dinu, A.-R.; Drăgan, S.R.; Kundnani, N.R. The Junction of Allergic Inflammation and Atherosclerosis: Pathways and Clinical Implications—A Review. Life 2025, 15, 964. https://doi.org/10.3390/life15060964
Valcovici M, Iacob MS, Sharma A, Pah AM, Marin-Bancila L, Berceanu MMV, Velimirovici MD, Dinu A-R, Drăgan SR, Kundnani NR. The Junction of Allergic Inflammation and Atherosclerosis: Pathways and Clinical Implications—A Review. Life. 2025; 15(6):964. https://doi.org/10.3390/life15060964
Chicago/Turabian StyleValcovici, Mihaela, Mihai Sorin Iacob, Abhinav Sharma, Ana Maria Pah, Lucretia Marin-Bancila, Marcel Mihai Vaduva Berceanu, Milan Daniel Velimirovici, Anca-Raluca Dinu, Simona Ruxanda Drăgan, and Nilima Rajpal Kundnani. 2025. "The Junction of Allergic Inflammation and Atherosclerosis: Pathways and Clinical Implications—A Review" Life 15, no. 6: 964. https://doi.org/10.3390/life15060964
APA StyleValcovici, M., Iacob, M. S., Sharma, A., Pah, A. M., Marin-Bancila, L., Berceanu, M. M. V., Velimirovici, M. D., Dinu, A.-R., Drăgan, S. R., & Kundnani, N. R. (2025). The Junction of Allergic Inflammation and Atherosclerosis: Pathways and Clinical Implications—A Review. Life, 15(6), 964. https://doi.org/10.3390/life15060964