Metabolic Responses of Newly Isolated Microalgal Strains Cultured in an Open Pond Simulating Reactor Under Balanced Conditions and Nutrient Limitation
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Culture Conditions
2.3. Cell Growth and Biomass Determination
2.4. Lipid Extraction and Purification
2.5. Lipid Fractionation
2.6. Fatty Acid Composition of Cellular Lipids
2.7. Polysaccharide Determination
2.8. Protein Determination
2.9. Pigment Estimation
2.10. Data Treatment and Statistical Analysis
3. Results
3.1. Cell Growth and Biomass Production
3.2. Synthesis of Storage Materials and Fatty Acid Composition of Total Lipids and Their Fractions
4. Discussion
4.1. Cell Growth and Biomass Production
4.2. Synthesis of Storage Materials
4.3. Fatty Acid Composition of Total Lipids and Their Lipid Fractions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PUFAs | Poly-Unsaturated Fatty Acids |
EPA | n-3 Eicosapentaenoic Acid |
ALA | α-Linolenic Acid |
OPSR | Open Pond Simulating Reactor |
mASW | Modified Artificial Seawater |
mASW.N− | Nitrogen-limited growth medium |
mASW.P− | Phosphorus-limited growth medium |
NLs | Neutral Lipids |
G + S | Glycolipids + Sphingolipids |
P | Phospholipids |
References
- Ahiahonu, E.K.; Anku, W.W.; Roopnarain, A.; Green, E.; Govender, P.P.; Serepa-Dlamini, M.H. Bioprospecting wild South African microalgae as a potential third-generation biofuel feedstock, biological carbon-capture agent and for nutraceutical applications. Biomass Conv. Bioref. 2023, 13, 6897–6912. [Google Scholar] [CrossRef]
- Keresztes, Z.G.; Felföldi, T.; Somogyi, B.; Székely, G.; Dragoş, N.; Márialigeti, K.; Bartha, C.; Vörös, L. First record of picophytoplankton diversity in Central European hypersaline lakes. Extremophiles 2012, 16, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Ntzouvaras, A.; Chantzistrountsiou, X.; Papageorgiou, N.; Koletti, A.; Adamakis, I.-D.; Zografaki, M.-E.; Marka, S.; Vasilakis, G.; Tsirigoti, A.; Tzovenis, I.; et al. New records of Tetraselmis sp. strains with biotechnological potential isolated from Greek coastal lagoons. Water 2023, 15, 1698. [Google Scholar] [CrossRef]
- Arunachalam Sivagurulingam, A.P.; Sivanandi, P.; Pandian, S. Isolation, mass cultivation, and biodiesel production potential of marine microalgae identified from Bay of Bengal. Environ. Sci. Pollut. Res. 2022, 29, 6646–6655. [Google Scholar] [CrossRef]
- Gonzalez-Esquer, C.R.; Wright, K.T.; Sudasinghe, N.; Carr, C.K.; Sanders, C.K.; Turmo, A.; Kerfeld, C.A.; Twary, S.; Dale, T. Demonstration of the potential of Picochlorum soloecismus as a microalgal platform for the production of renewable fuels. Algal Res. 2019, 43, 101658. [Google Scholar] [CrossRef]
- Barten, R.; Kleisman, M.; D’Ermo, G.; Nijveen, H.; Wijffels, R.H.; Barbosa, M.J. Short-term physiologic response of the green microalga Picochlorum sp. (BPE23) to supra-optimal temperature. Sci. Rep. 2022, 12, 3290. [Google Scholar] [CrossRef]
- de la Vega, M.; Díaz, E.; Vila, M.; León, R. Isolation of a new strain of Picochlorum sp. and characterization of its potential biotechnological applications. Biotechnol. Prog. 2011, 27, 1535–1543. [Google Scholar] [CrossRef]
- Dritsas, P.; Aggelis, G. Impact of temperature on the biochemical potential of five newly isolated strains of microalgae cultured in a stirred tank reactor. Microorganisms 2025, 13, 1155. [Google Scholar] [CrossRef]
- Hotos, G.N.; Avramidou, D. The effect of various salinities and light intensities on the growth performance of five locally isolated microalgae [Amphidinium carterae, Nephroselmis sp., Tetraselmis sp. (Var. Red Pappas), Asteromonas gracilis and Dunaliella sp.] in laboratory batch cultures. J. Mar. Sci. Eng. 2021, 9, 1275. [Google Scholar] [CrossRef]
- Weissman, J.C.; Likhogrud, M.; Thomas, D.C.; Fang, W.; Karns, D.A.J.; Chung, J.W.; Nielsen, R.; Posewitz, M.C. High-light selection produces a fast-growing Picochlorum celeri. Algal Res. 2018, 36, 17–28. [Google Scholar] [CrossRef]
- Zhu, Y.; Dunford, N.T. Growth and biomass characteristics of Picochlorum oklahomensis and Nannochloropsis oculata. J. Am. Oil Chem. Soc. 2013, 90, 841–849. [Google Scholar] [CrossRef]
- Díaz, N.; Muñoz, S.; Medina, A.; Riquelme, C.; Lozano-Muñoz, I. Microchloropsis gaditana as a natural antimicrobial with a one health approach to food safety in farmed salmon. Life 2025, 15, 455. [Google Scholar] [CrossRef] [PubMed]
- Dritsas, P.; Patsialou, S.; Kampantais, D.; Roussos, E.; Kotzamanis, Y.; Tekerlekopoulou, A.; Vayenas, D.V.; Aggelis, G. Investigating the potential of newly isolated microalgae strains from the Ionian Sea (Greece) cultured in an open raceway pond. Appl. Sci. 2025, 15, 6680. [Google Scholar] [CrossRef]
- Grubišić, M.; Šantek, B.; Zorić, Z.; Čošić, Z.; Vrana, I.; Gašparović, B.; Čož-Rakovac, R.; Šantek, M.I. Bioprospecting of microalgae isolated from the Adriatic Sea: Characterization of biomass, pigment, lipid and fatty acid composition, and antioxidant and antimicrobial activity. Molecules 2022, 27, 1248. [Google Scholar] [CrossRef]
- Kang, S.; Shin, H.H.; Li, Z. The discovery and characterization of a novel microalgal strain, Picochlorum sp. KCTC AG61293, with potential for α-linolenic acid production. J. Mar. Sci. Eng. 2024, 12, 245. [Google Scholar] [CrossRef]
- Blondeau, N.; Lipsky, R.H.; Bourourou, M.; Duncan, M.W.; Gorelick, P.B.; Marini, A.M. Alpha-linolenic acid: An 1323 omega-3 fatty acid with neuroprotective properties—Ready for use in the stroke clinic? BioMed Res. Int. 2015, 519830, 1324. [Google Scholar] [CrossRef]
- Nassar, M.; Jaffery, A.; Ibrahim, B.; Baraka, B.; Abosheaishaa, H. The multidimensional benefits of eicosapentaenoic acid: From heart health to inflammatory control. Egypt. J. Intern. Med. 2023, 35, 81. [Google Scholar] [CrossRef]
- Sala-Vila, A.; Fleming, J.; Kris-Etherton, P.; Ros, E. Impact of α-linolenic acid, the vegetable ω-3 fatty acid, on cardiovascular disease and cognition. Adv. Nutr. 2022, 13, 1584–1602. [Google Scholar] [CrossRef]
- Ahn, Y.; Park, S.; Ji, M.K.; Ha, G.S.; Jeon, B.H.; Choi, J. Biodiesel production potential of microalgae, cultivated in acid mine drainage and livestock wastewater. J. Environ. Manag. 2022, 314, 115031. [Google Scholar] [CrossRef]
- Dritsas, P.; Asimakis, E.; Lianou, A.; Efstratiou, M.; Tsiamis, G.; Aggelis, G. Microalgae from the Ionian Sea (Greece): Isolation, molecular identification and biochemical features of biotechnological interest. Algal Res. 2023, 74, 103210. [Google Scholar] [CrossRef]
- Mastropetros, S.G.; Tsigkou, K.; Cladas, Y.; Priya, A.K.; Kornaros, M. Effect of nitrogen, salinity, and light intensity on the biomass composition of Nephroselmis sp.: Optimization of lipids accumulation (including EPA). Mar. Drugs 2023, 21, 331. [Google Scholar] [CrossRef]
- Qazi, W.M.; Ballance, S.; Kousoulaki, K.; Uhlen, A.K.; Kleinegris, D.M.M.; Skjånes, K.; Rieder, A. Protein enrichment of wheat bread with microalgae: Microchloropsis gaditana, Tetraselmis chui and Chlorella vulgaris. Foods 2021, 10, 3078. [Google Scholar] [CrossRef]
- Coulombier, N.; Nicolau, E.; Déan, L.L.; Antheaume, C.; Jauffrais, T.; Lebouvier, N. Impact of light intensity on antioxidant activity of tropical microalgae. Mar. Drugs 2020, 18, 122. [Google Scholar] [CrossRef] [PubMed]
- Zanella, L.; Vianello, F. Microalgae of the genus Nannochloropsis: Chemical composition and functional implications for human nutrition. J. Funct. Foods 2020, 68, 103919. [Google Scholar] [CrossRef]
- Chowdury, K.H.; Nahar, N.; Deb, U.K. The growth factors involved in microalgae cultivation for biofuel production: A review. Comput. Water Energy Environ. Eng. 2020, 9, 185–215. [Google Scholar] [CrossRef]
- Dourou, M.; Dritsas, P.; Baeshen, M.N.; Elazzazy, A.; Al-Farga, A.; Aggelis, G. High-added value products from microalgae and prospects of aquaculture wastewaters as microalgae growth media. FEMS Microbiol. Lett. 2021, 367, fnaa081. [Google Scholar] [CrossRef]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 2018, 17, 36. [Google Scholar] [CrossRef]
- Lu, Q.; Li, H.; Xiao, Y.; Liu, H. A state-of-the-art review on the synthetic mechanisms, production technologies, and practical application of polyunsaturated fatty acids from microalgae. Algal Res. 2021, 55, 102281. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Dourou, M.; Tsolcha, O.N.; Tekerlekopoulou, A.G.; Bokas, D.; Aggelis, G. Fish farm effluents are suitable growth media for Nannochloropsis gaditana, a polyunsaturated fatty acid producing microalga. Eng. Life Sci. 2018, 18, 851–860. [Google Scholar] [CrossRef]
- Bellou, S.; Aggelis, G. Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. J. Biotechnol. 2012, 164, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Sumanta, N.; Haque, C.I.; Nishika, J.; Suprakash, R. Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res. J. Chem. Sci. 2014, 4, 63–69. [Google Scholar]
- Cecchin, M.; Berteotti, S.; Paltrinieri, S.; Vigliante, I.; Iadarola, B.; Giovannone, B.; Maffei, M.E.; Delledonne, M.; Ballottari, M. Improved lipid productivity in Nannochloropsis gaditana in nitrogen-replete conditions by selection of pale green mutants. Biotechnol. Biofuels 2020, 13, 78. [Google Scholar] [CrossRef]
- Bartley, M.L.; Boeing, W.J.; Dungan, B.N.; Holguin, F.O.; Schaub, T. pH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsis salina and invading organisms. J. Appl. Phycol. 2014, 26, 1431–1437. [Google Scholar] [CrossRef]
- Moheimani, N.R. Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella sp. (Chlorophyta) grown outdoors in bag photobioreactors. J. Appl. Phycol. 2013, 25, 387–398. [Google Scholar] [CrossRef]
- Jui, T.J.; Tasnim, A.; Islam, S.M.R.; Manjur, O.H.B.; Hossain, M.S.; Tasnim, N.; Karmakar, D.; Hasan, M.R.; Karim, M.R. Optimal growth conditions to enhance Chlorella vulgaris biomass production in indoor phyto tank and quality assessment of feed and culture stock. Heliyon 2024, 10, e31900. [Google Scholar] [CrossRef]
- Minhas, A.K.; Gaur, S.; Adholeya, A. Influence of light intensity and photoperiod on the pigment and, lipid production of Dunaliella tertiolecta and Nannochloropsis oculata under three different culture medium. Heliyon 2023, 9, e12801. [Google Scholar] [CrossRef]
- El-Kassas, H.Y. Growth and fatty acid profile of the marine microalga Picochlorum sp. grown under nutrient stress conditions. Egypt. J. Aquat. Res. 2013, 39, 233–239. [Google Scholar] [CrossRef]
- Abdelkarim, O.H.; Verhagen, R.A.; Wijffels, R.H.; Barbosa, M.J. Physiological, biochemical, and morphological responses to nitrogen starvation and biomass-specific photon supply rates of Nannochloropsis oceanica and Microchloropsis gaditana. J. Appl. Phycol. 2024, 2, 151–159. [Google Scholar] [CrossRef]
- Carvalho, A.P.; Silva, S.O.; Baptista, J.M.; Malcata, F.X. Light requirements in microalgal photobioreactors: An overview of biophotonic aspects. Appl. Microbiol. Biotechnol. 2011, 89, 1275–1288. [Google Scholar] [CrossRef]
- Saccardo, A.; Bezzo, F.; Sforza, E. Microalgae growth in ultra-thin steady-state continuous photobioreactors: Assessing self-shading effects. Front. Bioeng. Biotechnol. 2022, 10, 977429. [Google Scholar] [CrossRef] [PubMed]
- Yen, H.-W.; Chiang, W.-C. Effects of mutual shading, pressurization and oxygen partial pressure on the autotrophical cultivation of Scenedesmus obliquus. J. Taiwan Inst. Chem. Eng. 2012, 43, 820–824. [Google Scholar] [CrossRef]
- Nguyen, P.T.H.; Cao, P.; Vo, T. Effect of phosphorus on the growth, pigmentation and lipid accumulation in microalgae Picochlorum sp. Eur. J. Appl. Sci. Eng. Technol. 2024, 2, 151–159. [Google Scholar] [CrossRef]
- Vo, T.; Cao, P.; Nguyen, P.T.H. Effect of nitrate on the growth and lipid accumulation in microalgae Picochlorum sp. J. Basic Appl. Res. Int. 2023, 29, 33–40. [Google Scholar] [CrossRef]
- Anto, S.; Premalatha, M.; Mathimani, T. N:P Ratio and salinity as keys: A study on optimizing biomass and lipid production in marine Chlorella sp. NITT 02 and Picochlorum sp. NITT 04 for biodiesel production. Biomass Bioenergy 2024, 190, 107409. [Google Scholar] [CrossRef]
- Kim, S.Y.; Moon, H.; Kwon, Y.M.; Kim, K.W.; Kim, J.Y.H. Comparative analysis of the biochemical and molecular responses of Nannochloropsis gaditana to nitrogen and phosphorus limitation: Phosphorus limitation enhances carotenogenesis. Mar. Drugs 2024, 22, 567. [Google Scholar] [CrossRef]
- Rocha, J.M.S.; Garcia, J.E.C.; Henriques, M.H.F. Growth aspects of the marine microalga Nannochloropsis gaditana. Biomol. Eng. 2003, 20, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Mohammady, N. Growth and oil production of Nannochloropsis salina cultivated under multiple stressors. J. Pure Appl. Microbiol. 2014, 8, 2761–2772. [Google Scholar]
- Simionato, D.; Sforza, E.; Carpinelli, E.C.; Bertucco, A.; Giacometti, G.M.; Morosinotto, T. Acclimation of Nannochloropsis gaditana to different illumination regimes: Effects on lipids accumulation. Bioresour. Technol. 2011, 102, 6026–6032. [Google Scholar] [CrossRef]
- Yun, H.S.; Lee, H.; Park, Y.T.; Ji, M.K.; Kabra, A.N.; Jeon, C.; Jeon, B.H.; Choi, J. Isolation of novel microalgae from acid mine drainage and its potential application for biodiesel production. Appl. Biochem. Biotechnol. 2014, 173, 2054–2064. [Google Scholar] [CrossRef]
- Subasankari, K.; Thanappan, V.; Anantharaman, P. A comparative study on vitamin B12 and co-culture system promotes the growth of microalgae Nephroselmis astigmatica. Int. J. Pharm. Biol. Sci. 2018, 8, 314–319. [Google Scholar]
- Dahmen, I.; Chtourou, H.; Jebali, A.; Daassi, D.; Karray, F.; Hassairi, I.; Sayadi, S.; Abdelkafi, S.; Dhouib, A. Optimisation of the critical medium components for better growth of Picochlorum sp. and the role of stressful environments for higher lipid production. J. Sci. Food Agric. 2014, 94, 1628–1638. [Google Scholar] [CrossRef]
- LaPanse, A.J.; Krishnan, A.; Dennis, G.; Karns, D.A.J.; Dahlin, L.R.; Van Wychen, S.; Burch, T.A.; Guarnieri, M.T.; Weissman, J.C.; Posewitz, M.C. Proximate biomass characterization of the high productivity marine microalga Picochlorum celeri TG2. Plant Physiol. Biochem. 2024, 207, 108364. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Fujii, K. Isolation of high-level-CO2-preferring Picochlorum sp. strains and their biotechnological potential. Algal Res. 2016, 18, 135–143. [Google Scholar] [CrossRef]
- Maltsev, Y.; Maltseva, K.; Kulikovskiy, M.; Maltseva, S. Influence of light conditions on microalgae growth and content of lipids, carotenoids, and fatty acid composition. Biology 2021, 10, 1060. [Google Scholar] [CrossRef]
- Aditi; Bhardwaj, R.; Yadav, A.; Swapnil, P.; Meena, M. Characterization of microalgal β-carotene and astaxanthin: Exploring their health-promoting properties under the effect of salinity and light intensity. Biotechnol. Biofuels Bioprod. 2025, 18, 18. [Google Scholar] [CrossRef]
- Chin-On, R.; De Boer, M.; Van De Voort, C.; Camstra, J.; Barbosa, M.; Wijffels, R.H.; Janssen, M. Outdoor cultivation of Picochlorum sp. in a novel V-shaped photobioreactor on the Caribbean Island Bonaire. Front. Bioeng. Biotechnol. 2024, 12, 1347291. [Google Scholar] [CrossRef] [PubMed]
- Nana Annan, J. Growth and photosynthesis response of the green alga, Picochlorum oklahomensis to iron limitation and salinity stress. Int. J. Plant Physiol. Biochem. 2014, 6, 7–18. [Google Scholar] [CrossRef][Green Version]
- Magpusao, J.; Oey, I.; Kebede, B. Chemical, rheological, and volatile profiling of microalgae Arthrospira, Isochrysis, Nannochloropsis, and Tetraselmis species. Food Innov. Adv. 2024, 3, 75–87. [Google Scholar] [CrossRef]
- Niccolai, A.; Chini Zittelli, G.; Rodolfi, L.; Biondi, N.; Tredici, M.R. Microalgae of interest as food source: Biochemical composition and digestibility. Algal Res. 2019, 42, 101617. [Google Scholar] [CrossRef]
- Boussiba, S.; Vonshak, A.; Cohen, Z.; Avissar, Y.; Richmond, A. Lipid and biomass production by the halotolerant microalga Nannochloropsis salina. Biomass 1987, 12, 37–47. [Google Scholar] [CrossRef]
- Hoffmann, M.; Marxen, K.; Schulz, R.; Vanselow, K.H. TFA and EPA productivities of Nannochloropsis salina influenced by temperature and nitrate stimuli in turbidostatic controlled experiments. Mar. Drugs 2010, 8, 2526–2545. [Google Scholar] [CrossRef]
- Jia, J.; Han, D.; Gerken, H.G.; Li, Y.; Sommerfeld, M.; Hu, Q.; Xu, J. Molecular mechanisms for photosynthetic carbon partitioning into storage neutral lipids in Nannochloropsis oceanica under nitrogen-depletion conditions. Algal Res. 2015, 7, 66–77. [Google Scholar] [CrossRef]
- Rodolfi, L.; Chini Zittelli, G.; Bassi, N.; Padovani, G.; Biondi, N.; Bonini, G.; Tredici, M.R. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotech. Bioeng. 2009, 102, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Di Lena, G.; Casini, I.; Lucarini, M.; Lombardi-Boccia, G. Carotenoid profiling of five microalgae species from large-scale production. Food Res. Int. 2019, 120, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Thinh, L.-V.; Renaud, S.M.; Parry, D.L. Evaluation of recently isolated Australian tropical microalgae for the enrichment of the dietary value of brine shrimp, Artemia nauplii. Aquaculture 1999, 170, 161–173. [Google Scholar] [CrossRef]
- Hotos, G.; Avramidou, D.; Mastropetros, S.G.; Tsigkou, K.; Kouvara, K.; Makridis, P.; Kornaros, M. Isolation, identification, and chemical composition analysis of nine microalgal and cyanobacterial species isolated in lagoons of Western Greece. Algal Res. 2023, 69, 102935. [Google Scholar] [CrossRef]
- Ji, M.-K.; Yun, H.-S.; Hwang, B.S.; Kabra, A.N.; Jeon, B.-H.; Choi, J. Mixotrophic cultivation of Nephroselmis sp. using industrial wastewater for enhanced microalgal biomass production. Ecol. Eng. 2016, 95, 527–533. [Google Scholar] [CrossRef]
- Hotos, G.N.; Bekiari, V. Absorption spectra as predictors of algal biomass and pigment content of the cultured microalgae Amphidinium carterae, Isochrysis galbana, Nephroselmis sp., and Anabaena sp. Int. J. Plant Biol. 2023, 14, 879–895. [Google Scholar] [CrossRef]
- Dambeck, M.; Sandmann, G. Antioxidative activities of algal keto carotenoids acting as antioxidative protectants in the chloroplast. Photochem. Photobiol. 2014, 90, 814–819. [Google Scholar] [CrossRef]
- Manabe, Y.; Takii, Y.; Sugawara, T. Siphonaxanthin, a carotenoid from green algae, suppresses advanced glycation end product-induced inflammatory responses. J. Nat. Med. 2020, 74, 127–134. [Google Scholar] [CrossRef]
- Kallau, M.; Yang, H. Quantification of the total lipids in three aquaculture microalgae using BODIPYTM 505/515 stain and flow cytometry. J. World Aquac. Soc. 2025, 56, e70028. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Zuo, L.; Guo, S.; Song, P.; Kong, W.; Shen, B. Lipidomic analysis of microalgae and its application in microalgae cultivation and alternative liquid biofuel production. Biomass Conv. Bioref. 2025, 15, 75–97. [Google Scholar] [CrossRef]
- Guschina, I.A.; Harwood, J.L. Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res. 2006, 45, 160–186. [Google Scholar] [CrossRef] [PubMed]
- Harwood, J.L.; Guschina, I.A. The versatility of algae and their lipid metabolism. Biochimie 2009, 91, 679–684. [Google Scholar] [CrossRef]
- Zhong, Y.; Li, Y.; Xu, J.; Cao, J.; Zhou, C.; Yan, X. Isolation of chloroplasts from marine microalga Isochrysis galbana Parke for their lipid composition analysis. J. Ocean. Univ. China 2022, 21, 225–235. [Google Scholar] [CrossRef]
- Fernandes, T.; Cordeiro, N. Microalgae as sustainable biofactories to produce high-value lipids: Biodiversity, exploitation, and biotechnological applications. Mar. Drugs 2021, 19, 573. [Google Scholar] [CrossRef]
- Maltsev, Y.; Maltseva, K. Fatty acids of microalgae: Diversity and applications. Rev. Environ. Sci. Biotechnol. 2021, 20, 515–547. [Google Scholar] [CrossRef]
- Li, Y.; Lou, Y.; Mu, T.; Ke, A.; Ran, Z.; Xu, J.; Chen, J.; Zhou, C.; Yan, X.; Xu, Q.; et al. Sphingolipids in marine microalgae: Development and application of a mass spectrometric method for global structural characterization of ceramides and glycosphingolipids in three major phyla. Anal. Chim. Acta 2017, 986, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Miazek, K.; Lebecque, S.; Hamaidia, M.; Paul, A.; Danthine, S.; Willems, L.; Frédérich, M.; Pauw, E.D.; Deleu, M.; Richel, A.; et al. Sphingolipids: Promising lipid-class molecules with potential applications for industry. A review. Biotechnol. Agron. Soc. Environ. 2016, 20, 321–336. [Google Scholar] [CrossRef]
- Nzayisenga, J.C.; Farge, X.; Groll, S.L.; Sellstedt, A. Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnol. Biofuels 2020, 13, 4. [Google Scholar] [CrossRef] [PubMed]
- Fakas, S.; Papanikolaou, S.; Galiotou-Panayotou, M.; Komaitis, M.; Aggelis, G. Lipids of Cunninghamella echinulata with emphasis to γ-linolenic acid distribution among lipid classes. Appl. Microbiol. Biotechnol. 2006, 73, 676–683. [Google Scholar] [CrossRef]
- Khozin-Goldberg, I.; Cohen, Z. Unraveling algal lipid metabolism: Recent advances in gene identification. Biochimie 2011, 93, 91–100. [Google Scholar] [CrossRef]
- Damiani, M.C.; Popovich, C.A.; Constenla, D.; Leonardi, P.I. Lipid analysis in Haematococcus pluvialis to assess its potential use as a biodiesel feedstock. Bioresour. Technol. 2010, 101, 3801–3807. [Google Scholar] [CrossRef]
- Wang, X.; Shen, Z.; Miao, X. Nitrogen and hydrophosphate affects glycolipids composition in microalgae. Sci. Rep. 2016, 6, 30145. [Google Scholar] [CrossRef]
- Liang, K.; Zhang, Q.; Gu, M.; Cong, W. Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. J. Appl. Phycol. 2013, 25, 311–318. [Google Scholar] [CrossRef]
- Xin, L.; Hong-ying, H.; Ke, G.; Ying-xue, S. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour. Technol. 2010, 101, 5494–5500. [Google Scholar] [CrossRef]
- Benning, C.; Huang, Z.H.; Gage, D.A. Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation. Arch. Biochem. Biophys. 1995, 317, 103–111. [Google Scholar] [CrossRef]
- Rajaram, S. Health benefits of plant-derived α-linolenic acid. Am. J. Clin. Nutr. 2014, 100, 443S–448S. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Fleming, J.A. Emerging nutrition science on fatty acids and cardiovascular disease: Nutritionists’ perspectives. Adv. Nutr. 2015, 6, 326S–337S. [Google Scholar] [CrossRef]
- Poli, A.; Catapano, A.L.; Corsini, A.; Manzato, E.; Werba, J.P.; Catena, G.; Cetin, I.; Cicero, A.F.G.; Cignarella, A.; Colivicchi, F.; et al. LDL-cholesterol control in the primary prevention of cardiovascular diseases: An expert opinion for clinicians and health professionals. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Dinesh Kumar, S.; Ananth, S.; Santhanam, P.; Parveez Ahamed, A.; Thajuddin, N. Effect of photoperiod (PP) and photosynthetic photon flux intensity (PPFI) on nutrients consumption, growth and lipid profile of unusual microalga Picochlorum maculatum (PSDK01) in shrimp culture effluent. Indian. J. Exp. Biol. 2019, 57, 105–115. [Google Scholar]
- Jesionowska, M.; Ovadia, J.; Hockemeyer, K.; Clews, A.C.; Xu, Y. EPA and DHA in microalgae: Health benefits, biosynthesis, and metabolic engineering advances. J. Am. Oil Chem. Soc. 2023, 100, 831–842. [Google Scholar] [CrossRef]
- Tran, D.; Giordano, M.; Louime, C.; Tran, N.; Vo, T.; Nguyen, D.; Hoang, T. An isolated Picochlorum species for aquaculture, food, and biofuel. N. Am. J. Aquac. 2014, 76, 305–311. [Google Scholar] [CrossRef]
- Bellou, S.; Baeshen, M.N.; Elazzazy, A.M.; Aggeli, D.; Sayegh, F.; Aggelis, G. Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol. Adv. 2014, 32, 1476–1493. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Mai, Q.; Chen, Z.; Lin, T.; Cai, Y.; Han, J.; Wang, Y.; Zhang, M.; Tan, S.; Wu, Z.; et al. Dietary palmitoleic acid reprograms gut microbiota and improves biological therapy against colitis. Gut Microbes 2023, 15, 2211501. [Google Scholar] [CrossRef]
- Yan, D.; Ye, S.; He, Y.; Wang, S.; Xiao, Y.; Xiang, X.; Deng, M.; Luo, W.; Chen, X.; Wang, X. Fatty acids and lipid mediators in inflammatory bowel disease: From mechanism to treatment. Front. Immunol. 2023, 14, 1286667. [Google Scholar] [CrossRef]
- Hu, Q.; Xiang, W.; Dai, S.; Li, T.; Yang, F.; Jia, Q.; Wang, G.; Wu, H. The influence of cultivation period on growth and biodiesel properties of microalga Nannochloropsis gaditana 1049. Bioresour. Technol. 2015, 192, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Castejón, N.; Marko, D. Fatty acid composition and cytotoxic activity of lipid extracts from Nannochloropsis gaditana produced by green technologies. Molecules 2022, 27, 3710. [Google Scholar] [CrossRef]
- Abdelkarim, O.H.; Wijffels, R.H.; Barbosa, M.J. Microalgal lipid production: A comparative analysis of Nannochlo-ropsis and Microchloropsis strains. J. Appl. Phycol. 2025, 37, 15–34. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Z.; Yu, C.; Yin, Y.; Zhou, G. Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production. Bioresour. Technol. 2014, 167, 503–509. [Google Scholar] [CrossRef]
- Van Wagenen, J.; Miller, T.W.; Hobbs, S.; Hook, P.; Crowe, B.; Huesemann, M. Effects of light and temperature on fatty acid production in Nannochloropsis salina. Energies 2012, 5, 731–740. [Google Scholar] [CrossRef]
- Venkata Subhash, G.; Rohit, M.V.; Devi, M.P.; Swamy, Y.V.; Venkata Mohan, S. Temperature induced stress influence on biodiesel productivity during mixotrophic microalgae cultivation with wastewater. Bioresour. Technol. 2014, 169, 789–793. [Google Scholar] [CrossRef]
- Tian, L.; Chi, G.; Lin, S.; Ling, X.; He, N. Marine microorganisms: Natural factories for polyunsaturated fatty acid production. Blue Biotechnol. 2024, 1, 15. [Google Scholar] [CrossRef]
- Alboresi, A.; Perin, G.; Vitulo, N.; Diretto, G.; Block, M.; Jouhet, J.; Meneghesso, A.; Valle, G.; Giuliano, G.; Maréchal, E.; et al. Light remodels lipid biosynthesis in Nannochloropsis gaditana by modulating carbon partitioning between organelles. Plant Physiol. 2016, 171, 2468–2482. [Google Scholar] [CrossRef] [PubMed]
Compound | Supplier | Concentration (g/L) |
NaCl | PENTA (Prague, Czech Republic) | 27.0 |
MgSO4·7H2O | PanReac AppliChem (Darmstadt, Germany) | 6.6 |
CaCl2 | PENTA | 1.5 |
KNO3 | Scharlau (Barcelona, Spain) | 1.0 |
KH2PO4 | Himedia (Mumbai, India) | 0.07 |
FeCl3·6H2O | BDH (Poole, UK) | 0.014 |
Na2EDTA | Merck (Darmstadt, Germany) | 0.019 |
Microelement solution | ||
Compound | Supplier | Concentration (mg/L) |
ZnSO4·7H2O | Merck | 40.0 |
H3BO3 | Fluka (Steinheim, Germany) | 600.0 |
CoCl2·6H2O | Sigma-Aldrich (St. Louis, MO, USA) | 1.5 |
CuSO4·5H2O | BDH | 40.0 |
MnCl2 | Sigma-Aldrich | 400.0 |
(NH4)6MO7O24·4H2O | Sigma-Aldrich | 370.0 |
a | Growth Medium | t (h) | Biomass (x) | Lipids (L) | Polysaccharides(S) | Proteins (P) | Pigments | GrowthParameters | ||||||||
x (mg/L) | L/x (%) | Lipid Fractions (%) | S/x (%) | P/x (%) | TCh/x (%) | TC/x (%) | μ (1/d) | R2 | ||||||||
N | G + S | P | ||||||||||||||
Balanced growth | Control | 240 | 100.7 ± 12.4 | 22.9 ± 1.9 | UND | UND | UND | 12.1 ± 0.1 | 45.1 ± 6.4 | 0.4 ± 0.0 | 0.2 ± 0.0 | 0.19 ± 0.00 | 0.97 | |||
450 | 269.1 ± 6.7 | 16.1 ± 0.0 | 16.6 ± 0.3 | 54.9 ± 6.2 | 28.5 ± 6.5 | 15.2 ± 0.3 | 51.0 ± 2.5 | 5.1 ± 0.2 | 2.4 ± 0.8 | |||||||
Nutrient limitation | mASW.N− | 240 | 51.5 ± 0.6 | 3.7 ± 0.1 | UND | UND | UND | 8.2 ± 0.0 | 15.3 ± 0.0 | UND | UND | 0.16 ± 0.04 | 0.99 | |||
450 | 245.6 ± 8.9 | 10.4 ± 0.3 | 12.1 ± 2.5 | 70.5 ± 7.7 | 17.4 ± 1.9 | 10.0 ± 0.0 | 24.5 ± 0.7 | 0.3 ± 0.0 | 0.3 ± 0.0 | |||||||
mASW.P− | 240 | 168.3 ± 28.0 | 5.6 ± 0.9 | UND | UND | UND | 7.3 ± 0.1 | 74.1 ± 4.1 | UND | UND | 0.13 ± 0.03 | 0.95 | ||||
450 | 201.6 ± 0.4 | 16.1 ± 0.0 | 16.5 ± 0.2 | 68.7 ± 3.1 | 14.9 ± 3.3 | 1.5 ± 0.2 | 35.6 ± 0.4 | 0.7 ± 0.0 | 0.3 ± 0.0 | |||||||
b | Growth medium | t (h) | Lipid fraction | Fatty acid composition of total lipids and their fractions (%, wt/wt) | ||||||||||||
14:0 | 14:1(n-5) | 16:0 | 16:1(n-7) | 17:0 | 18:0 | 18:1(n-9) | 18:2(n-6) | 18:3(n-3) | 18:4(n-3) | 20:1(n-9) | 20:5(n-3) | * Others | ||||
Balanced growth | Control | 240 | TL | 5.1 ± 1.1 | 3.2 ± 0.1 | 16.5 ± 0.8 | 24.0 ± 4.0 | <0.1 | 1.5 ± 0.0 | 25.2 ± 5.6 | 4.8 ± 1.8 | <0.5 | ND | 2.5 ± 0.6 | 16.4 ± 3.2 | 1.7 ± 0.3 |
450 | TL | 4.0 ± 1.4 | 3.3 ± 1.0 | 17.2 ± 2.4 | 20.0 ± 4.6 | <0.1 | 1.5 ± 0.4 | 30.8 ± 11.5 | 6.5 ± 2.6 | <0.5 | ND | 1.9 ± 0.3 | 13.2 ± 4.4 | 1.5 ± 0.5 | ||
N | 3.8 ± 1.5 | 3.8 ± 1.7 | 25.0 ± 1.5 | 26.4 ± 6.5 | <0.5 | 1.9 ± 0.7 | 26.3 ± 12.6 | 2.6 ± 1.5 | 0.7 ± 0.0 | ND | 3.5 ± 2.7 | 3.6 ± 1.1 | 2.1 ± 0.9 | |||
G | 9.0 ± 0.5 | 4.7 ± 1.8 | 19.1 ± 2.3 | 29.1 ± 2.3 | <0.5 | 1.1 ± 0.8 | 6.6 ± 0.1 | 1.8 ± 0.3 | <0.5 | ND | 1.9 ± 0.1 | 21.8 ± 3.8 | 2.4 ± 0.6 | |||
P | 1.3 ± 0.3 | 1.1 ± 0.6 | 16.4 ± 1.4 | 18.0 ± 2.9 | <0.5 | 1.3 ± 0.2 | 39.4 ± 10.1 | 7.0 ± 0.6 | 0.7 ± 0.4 | ND | 4.5 ± 2.9 | 9.4 ± 2.6 | 1.0 ± 0.1 | |||
Nutrient limitation | mASW.N− | 240 | TL | 4.9 ± 0.4 | <0.5 | 22.0 ± 0.4 | 24.6 ± 0.5 | 1.0 ± 0.1 | <0.1 | 5.3 ± 0.5 | 1.6 ± 0.4 | 12.7 ± 1.0 | 3.0 ± 0.3 | 3.9 ± 0.6 | 13.9 ± 0.5 | 9.9 ± 1.0 |
450 | TL | 7.7 ± 0.6 | 4.7 ± 0.6 | 22.4 ± 1.5 | 30.5 ± 1.0 | 0.6 ± 0.1 | 6.5 ± 0.3 | 4.9 ± 1.1 | 1.1 ± 0.3 | ND | ND | 3.1 ± 0.8 | 21.0 ± 0.9 | 8.3 ± 0.2 | ||
N | 6.4 ± 1.3 | 16.0 ± 2.8 | 23.4 ± 1.0 | 28.4 ± 2.2 | 0.5 ± 0.1 | 1.5 ± 0.0 | 6.6 ± 0.9 | 1.2 ± 0.1 | ND | ND | 1.5 ± 0.4 | 6.4 ± 0.4 | 7.0 ± 0.9 | |||
G | 9.5 ± 0.9 | 2.7 ± 1.0 | 21.6 ± 0.4 | 30.7 ± 0.1 | 0.6 ± 0.0 | 1.4 ± 0.1 | 3.8 ± 0.3 | 1.1 ± 0.0 | ND | ND | 3.1 ± 0.0 | 24.6 ± 1.8 | 1.5 ± 0.5 | |||
P | 3.0 ± 0.3 | 0.5 ± 0.0 | 21.4 ± 0.5 | 28.5 ± 1.0 | 0.9 ± 0.2 | <0.5 | 11.8 ± 1.7 | 3.9 ± 0.7 | <0.5 | ND | 6.2 ± 0.8 | 20.8 ± 0.1 | 2.5 ± 0.3 | |||
mASW.P− | 240 | TL | 7.2 ± 0.0 | 2.8 ± 0.1 | 24.9 ± 0.4 | 28.5 ± 1.6 | <0.5 | 0.6 ± 0.2 | 6.6 ± 0.5 | 1.7 ± 0.6 | 0.5 ± 0.3 | 2.3 ± 0.0 | 4.6 ± 2.0 | 19.6 ± 2.6 | 1.5 ± 0.2 | |
450 | TL | 7.0 ± 0.2 | 2.6 ± 0.2 | 25.7 ± 0.8 | 26.9 ± 1.6 | <0.5 | 1.5 ± 0.7 | 8.4 ± 1.3 | 1.4 ± 0.2 | ND | <0.5 | 3.9 ± 0.0 | 17.4 ± 3.0 | 5.1 ± 3.4 | ||
N | 4.1 ± 0.6 | 21.5 ± 0.2 | 17.2 ± 0.4 | 23.2 ± 2.0 | ND | 0.7 ± 0.0 | 5.8 ± 0.6 | <0.5 | ND | 2.7 ± 0.0 | 3.0 ± 0.3 | 9.5 ± 1.6 | 10.8 ± 1.4 | |||
G | 8.3 ± 1.0 | 3.1 ± 1.2 | 24.6 ± 0.7 | 32.0 ± 0.8 | ND | <0.5 | 4.4 ± 1.6 | 1.4 ± 0.4 | ND | <0.5 | 2.9 ± 0.1 | 19.3 ± 3.0 | 3.3 ± 0.8 | |||
P | 5.0 ± 2.3 | 2.6 ± 1.7 | 25.6 ± 0.3 | 30.4 ± 0.8 | ND | <0.5 | 9.1 ± 3.0 | 2.6 ± 0.8 | 0.9 ± 0.1 | ND | 6.9 ± 1.0 | 16.3 ± 0.0 | 1.0 ± 0.1 |
a | Growth Medium | t (h) | Biomass (x) | Lipids (L) | Polysaccharides(S) | Proteins (P) | Pigments | GrowthParameters | ||||||
x (mg/L) | L/x (%) | Lipid Fractions (%) | S/x (%) | P/x (%) | TCh/x (%) | TC/x (%) | μ (1/d) | R2 | ||||||
N | G + S | P | ||||||||||||
Balanced growth | Control | 240 | 100.0 ± 9.1 | 13.9 ± 1.5 | UND | UND | UND | 13.1 ± 0.6 | 58.4 ± 0.9 | 25.2 ± 1.7 | 4.7 ± 0.5 | 0.23 ± 0.03 | 0.96 | |
450 | 421.1 ± 30.8 | 11.5 ± 0.3 | 34.9 ± 2.3 | 54.4 ± 3.9 | 12.9 ± 1.6 | 8.8 ± 0.6 | 49.2 ± 4.8 | 9.0 ± 2.8 | 1.5 ± 0.6 | |||||
Nutrient limitation | mASW.N− | 240 | 49.3 ± 5.3 | 3.8 ± 0.0 | UND | UND | UND | 8.2 ± 0.0 | 15.3 ± 0.0 | 2.3 ± 0.3 | 0.7 ± 0.1 | 0.30 ± 0.06 | 0.92 | |
450 | 98.0 ± 4.6 | 5.1 ± 1.0 | UND | UND | UND | 8.9 ± 0.6 | 29.1 ± 3.9 | 5.4 ± 0.7 | 1.0 ± 0.0 | |||||
mASW.P− | 240 | 45.2 ± 5.4 | 10.4 ± 0.5 | UND | UND | UND | 13.0 ± 1.1 | 28.1 ± 4.0 | 10.2 ± 0.9 | 1.7 ± 0.1 | 0.26 ± 0.08 | 0.81 | ||
450 | 125.3 ± 4.1 | 6.0 ± 2.5 | UND | UND | UND | 11.5 ± 2.6 | 45.9 ± 6.4 | 15.4 ± 8.8 | 2.8 ± 1.5 | |||||
b | Growth medium | t (h) | Lipid fraction | Fatty acid composition of total lipids and their fractions (%, wt/wt) | ||||||||||
14:0 | 14:1(n-5) | 16:0 | 16:1(n-7) | 17:0 | 18:0 | 18:1(n-9) | 18:2(n-6) | 18:3(n-3) | 18:4(n-3) | * Others | ||||
Balanced growth | Control | 240 | TL | 4.8 ± 0.7 | 2.7 ± 0.5 | 14.3 ± 0.9 | 2.3 ± 0.6 | 2.9 ± 0.7 | 7.5 ± 0.3 | 20.9 ± 2.4 | 4.8 ± 0.1 | 22.1 ± 2.4 | 4.5 ± 4.0 | 2.7 ± 0.5 |
450 | TL | 1.7 ± 0.2 | 6.9 ± 0.6 | 17.1 ± 1.8 | 3.0 ± 0.3 | <0.5 | 7.3 ± 1.4 | 14.7 ± 0.1 | 21.4 ± 0.8 | 23.0 ± 0.6 | 0.5 ± 0.0 | 6.9 ± 0.6 | ||
N | 5.6 ± 0.3 | 26.7 ± 2.9 | 10.6 ± 1.2 | 2.1 ± 0.3 | 1.6 ± 0.3 | 3.1 ± 0.2 | 9.2 ± 2.4 | 18.0 ± 2.0 | 9.5 ± 0.2 | 1.4 ± 0.5 | 26.7 ± 2.9 | |||
G | <0.5 | <0.5 | 18.6 ± 0.2 | 2.1 ± 0.1 | ND | 13.6 ± 0.0 | 14.4 ± 0.6 | 27.5 ± 0.0 | 20.3 ± 0.3 | 3.3 ± 0.5 | <0.5 | |||
P | 1.0 ± 0.3 | 11.4 ± 2.6 | 11.8 ± 3.6 | 3.3 ± 1.0 | 1.3 ± 0.1 | 5.8 ± 2.4 | 12.5 ± 0.8 | 37.5 ± 2.0 | 17.7 ± 1.1 | 1.9 ± 0.8 | 11.4 ± 2.6 | |||
Nutrient limitation | mASW.N− | 240 | TL | 0.5 ± 0.0 | 6.7 ± 0.4 | 15.2 ± 0.4 | 3.8 ± 0.9 | 6.1 ± 1.9 | 10.9 ± 2.7 | 23.3 ± 1.9 | 19.1 ± 8.3 | 13.8 ± 0.6 | ND | 3.7 ± 1.0 |
450 | TL | 1.1 ± 0.1 | 7.9 ± 0.3 | 14.9 ± 0.3 | 3.7 ± 0.1 | 7.2 ± 1.1 | 2.6 ± 0.2 | 17.6 ± 3.8 | 23.1 ± 4.0 | 13.6 ± 0.4 | 4.6 ± 0.6 | 3.9 ± 1.2 | ||
mASW.P− | 240 | TL | 5.5 ± 1.0 | 7.6 ± 0.5 | 17.4 ± 2.1 | 3.5 ± 0.1 | 3.6 ± 0.0 | 5.9 ± 2.5 | 17.3 ± 2.7 | 25.4 ± 4.9 | 13.2 ± 3.2 | ND | 4.6 ± 0.0 | |
450 | TL | 7.7 ± 3.5 | 10.3 ± 1.8 | 8.2 ± 0.0 | 2.9 ± 0.2 | 10.2 ± 2.2 | 15.2 ± 1.7 | 22.1 ± 3.5 | 7.9 ± 0.0 | 18.3 ± 0.0 | ND | 2.8 ± 0.0 |
a | Growth Medium | t (h) | Biomass (x) | Lipids (L) | Polysaccharides (S) | Proteins (P) | Pigments | Growth Parameters | |||||||||
x (mg/L) | L/x (%) | Lipid Fractions (%) | S/x (%) | P/x (%) | TCh/x (%) | TC/x (%) | μ (1/d) | R2 | |||||||||
N | G + S | P | |||||||||||||||
Balanced growth | Control | 240 | 90.7 ± 4.9 | 8.6 ± 2.0 | UND | UND | UND | 11.2 ± 0.8 | 35.0 ± 1.9 | 1.5 ± 0.1 | 0.3 ± 0.0 | 0.21 ± 0.06 | 0.87 | ||||
450 | 299.3 ± 13.6 | 9.4 ± 1.5 | 16.9 ± 0.9 | 68.7 ± 0.3 | 15.4 ± 1.1 | 13.1 ± 0.7 | 43.8 ± 2.3 | 4.7 ± 1.1 | 1.3 ± 0.0 | ||||||||
Nutrient limitation | mASW.N− | 240 | 80.4 ± 5.9 | 2.1 ± 0.4 | UND | UND | UND | 11.9 ± 2.7 | 8.9 ± 3.5 | 2.0 ± 1.8 | 0.4 ± 0.3 | 0.13 ± 0.07 | 0.90 | ||||
450 | 195.7 ± 14.4 | 1.2 ± 0.0 | UND | UND | UND | 10.9 ± 1.1 | 14.2 ± 4.0 | 3.9 ± 0.2 | 0.8 ± 0.0 | ||||||||
mASW.P− | 240 | 95.9 ± 12.3 | 7.6 ± 3.0 | UND | UND | UND | 13.0 ± 1.1 | 29.5 ± 4.2 | 3.3 ± 0.3 | 0.7 ± 0.2 | 0.20 ± 0.03 | 0.95 | |||||
450 | 529.0 ± 52.2 | 5.7 ± 1.6 | 26.1 ± 2.5 | 67.4 ± 3.7 | 5.1 ± 0.3 | 10.6 ± 1.5 | 38.2 ± 1.4 | 2.6 ± 0.2 | 0.5 ± 0.0 | ||||||||
b | Growth medium | t (h) | Lipid fraction | Fatty acid composition of total lipids and their fractions (%, wt/wt) | |||||||||||||
14:0 | 14:1(n-5) | 16:0 | 16:1(n-7) | 17:0 | 18:0 | 18:1(n-9) | 18:2(n-6) | 18:3(n-6) | 18:3 (n-3) | 18:4(n-3) | 20:1(n-9) | * Others | |||||
Balanced growth | Control | 240 | TL | 4.1 ± 1.9 | 2.2 ± 0.6 | 13.4 ± 0.1 | 1.7 ± 0.1 | 2.2 ± 0.6 | 4.7 ± 1.1 | 18.4 ± 0.7 | 4.7 ± 1.8 | 7.6 ± 1.0 | 19.7 ± 5.0 | 8.5 ± 2.4 | ND | 12.8 ± 1.7 | |
450 | TL | 1.7 ± 0.2 | 6.9 ± 0.6 | 17.1 ± 1.8 | 3.0 ± 0.3 | <0.5 | 7.3 ± 1.4 | 14.7 ± 0.1 | 21.4 ± 0.8 | <0.5 | 23.0 ± 0.6 | 1.0 ± 0.0 | ND | 4.4 ± 0.3 | |||
N | 16.4 ± 0.4 | 13.1 ± 0.4 | 14.1 ± 0.5 | 3.1 ± 0.1 | 2.1 ± 0.0 | 0.8 ± 0.0 | 11.5 ± 0.4 | 17.3 ± 0.8 | 4.3 ± 0.2 | 13.2 ± 1.0 | 0.6 ± 0.2 | 1.6 ± 0.3 | 2.6 ± 0.1 | ||||
G | 0.5 ± 0.1 | 0.6 ± 0.1 | 18.8 ± 0.6 | 2.4 ± 0.0 | <0.5 | 11.0 ± 0.1 | 19.0 ± 0.5 | 21.0 ± 0.7 | ND | 24.4 ± 1.5 | 2.1 ± 0.0 | ND | <0.5 | ||||
P | 0.6 ± 0.1 | 0.8 ± 0.2 | 26.5 ± 0.0 | 5.6 ± 0.5 | 0.9 ± 0.2 | 2.5 ± 0.3 | 15.9 ± 1.7 | 26.9 ± 0.6 | ND | 16.3 ± 1.1 | 2.8 ± 0.0 | ND | 1.2 ± 0.5 | ||||
Nutrient limitation | mASW.N− | 240 | TL | 3.6 ± 0.4 | 7.6 ± 2.2 | 18.3 ± 1.6 | 7.0 ± 1.1 | 7.2 ± 1.2 | 2.6 ± 1.7 | 9.0 ± 0.9 | 5.7 ± 0.5 | ND | 10.3 ± 0.0 | ND | ND | 33.8 ± 4.9 | |
450 | TL | 2.5 ± 0.0 | 10.1 ± 0.1 | 15.2 ± 0.9 | 4.7 ± 0.7 | 7.6 ± 0.1 | 3.1 ± 0.1 | 17.0 ± 0.5 | 19.9 ± 0.5 | ND | 13.5 ± 0.5 | ND | ND | 6.4 ± 0.5 | |||
mASW.P− | 240 | TL | 1.1 ± 0.6 | 4.8 ± 1.8 | 17.7 ± 2.2 | 3.7 ± 1.2 | 4.4 ± 1.1 | 0.7 ± 0.1 | 18.2 ± 1.4 | 21.1 ± 1.5 | 1.7 ± 0.0 | 19.3 ± 0.2 | 3.2 ± 0.4 | ND | 4.9 ± 1.3 | ||
450 | TL | 2.6 ± 1.1 | 10.1 ± 1.9 | 13.4 ± 6.1 | 2.6 ± 0.2 | 5.8 ± 0.3 | 0.6 ± 0.0 | 15.3 ± 2.6 | 21.1 ± 3.2 | ND | 19.7 ± 3.2 | 2.4 ± 1.5 | ND | 6.4 ± 2.5 | |||
N | 2.6 ± 0.2 | 10.7 ± 0.1 | 17.7 ± 0.3 | 3.5 ± 0.3 | 5.9 ± 0.7 | <0.5 | 14.4 ± 2.0 | 20.9 ± 0.4 | ND | 18.3 ± 0.4 | <0.5 | ND | 5.9 ± 0.2 | ||||
G | 0.5 ± 0.2 | 1.3 ± 0.1 | 15.5 ± 0.2 | 2.7 ± 0.3 | 13.2 ± 0.2 | <0.5 | 16.9 ± 0.6 | 23.7 ± 0.1 | ND | 22.1 ± 0.1 | 3.0 ± 0.5 | ND | 1.3 ± 0.3 | ||||
P | <0.5 | <0.5 | 20.4 ± 1.1 | 5.0 ± 0.1 | 1.5 ± 0.0 | 4.8 ± 0.2 | 14.3 ± 0.3 | 32.7 ± 1.3 | ND | 17.7 ± 0.7 | <0.5 | ND | 2.5 ± 0.2 |
a | Growth Medium | t (h) | Biomass (x) | Lipids (L) | Polysaccharides(S) | Proteins (P) | Pigments | GrowthParameters | ||||||||
x (mg/L) | L/x (%) | Lipid Fractions (%) | S/x (%) | P/x (%) | TCh/x (%) | TC/x (%) | μ (1/d) | R2 | ||||||||
N | G + S | P | ||||||||||||||
Balanced growth | Control | 240 | 109.3 ± 36.5 | 10.7 ± 2.7 | UND | UND | UND | 7.0 ± 0.4 | 18.7 ± 0.5 | 3.2 ± 0.8 | 1.5 ± 0.2 | 0.25 ± 0.05 | 0.95 | |||
450 | 523.0 ± 136.0 | 11.8 ± 3.5 | 34.4 ± 9.1 | 56.9 ± 5.7 | 5.4 ± 0.1 | 9.7 ± 0.4 | 21.9 ± 4.9 | 0.4 ± 0.1 | 0.6 ± 0.4 | |||||||
Nutrient limitation | mASW.N− | 240 | 97.4 ± 24.6 | 10.1 ± 0.8 | UND | UND | UND | 8.7 ± 1.1 | 12.5 ± 1.2 | 3.3 ± 0.2 | 1.3 ± 0.2 | 0.24 ± 0.04 | 0.94 | |||
450 | 393.9 ± 22.1 | 11.9 ± 0.3 | 15.2 ± 4.2 | 71.5 ± 4.0 | 13.4 ± 0.2 | 10.7 ± 0.2 | 16.2 ± 2.0 | 2.8 ± 1.8 | 1.3 ± 0.3 | |||||||
mASW.P− | 240 | 220.7 ± 1.0 | 10.2 ± 2.6 | UND | UND | UND | 7.3 ± 0.2 | 17.1 ± 4.5 | 0.8 ± 0.1 | 0.8 ± 0.1 | 0.20 ± 0.04 | 0.94 | ||||
450 | 392.2 ± 38.0 | 19.2 ± 2.2 | 27.2 ± 9.3 | 55.2 ± 8.6 | 17.6 ± 0.6 | 9.7 ± 0.4 | 35.1 ± 3.5 | 0.2 ± 0.0 | 0.3 ± 0.1 | |||||||
b | Growth medium | t (h) | Lipid fraction | Fatty acid composition of total lipids and their fractions (%, wt/wt) | ||||||||||||
14:0 | 14:1(n-5) | 16:0 | 16:1(n-7) | 17:0 | 18:0 | 18:1(n-9) | 18:2(n-6) | 18:3(n-3) | 18:4(n-3) | 20:1(n-9) | 20:5(n-3) | * Others | ||||
Balanced growth | Control | 240 | TL | 6.9 ± 1.2 | 1.9 ± 1.0 | 23.2 ± 0.0 | 28.5 ± 3.6 | <0.5 | 0.8 ± 0.4 | 7.5 ± 0.2 | 1.9 ± 0.6 | 1.8 ± 0.8 | <0.5 | 3.5 ± 1.0 | 17.6 ± 1.4 | 6.2 ± 3.4 |
450 | TL | 6.6 ± 0.9 | 3.8 ± 0.9 | 22.8 ± 0.4 | 31.3 ± 0.8 | <0.5 | <0.5 | 6.8 ± 0.9 | 2.0 ± 0.5 | 0.7 ± 0.2 | <0.5 | 2.9 ± 0.4 | 20.0 ± 1.0 | 2.5 ± 0.3 | ||
N | 5.7 ± 1.4 | 3.0 ± 1.2 | 28.6 ± 0.4 | 34.9 ± 2.7 | 0.5 ± 0.3 | 0.6 ± 0.1 | 8.1 ± 1.2 | 1.4 ± 0.1 | ND | 1.8 ± 0.6 | 2.5 ± 0.6 | 8.5 ± 1.0 | 4.9 ± 0.3 | |||
G | 9.1 ± 0.0 | 5.6 ± 0.8 | 20.8 ± 2.0 | 28.1 ± 2.8 | <0.5 | ND | 6.4 ± 1.1 | 1.3 ± 0.4 | ND | ND | 2.0 ± 0.7 | 22.3 ± 3.0 | 4.1 ± 0.5 | |||
P | 2.4 ± 0.1 | 0.6 ± 0.0 | 21.9 ± 0.2 | 31.8 ± 0.8 | 0.8 ± 0.3 | <0.5 | 16.3 ± 1.5 | 4.4 ± 0.1 | 0.6 ± 0.2 | ND | 3.5 ± 0.9 | 15.7 ± 0.7 | 2.0 ± 0.4 | |||
Nutrient limitation | mASW.N− | 240 | TL | 7.1 ± 0.0 | 3.6 ± 0.1 | 21.5 ± 3.3 | 28.7 ± 2.1 | <0.5 | <0.5 | 5.8 ± 0.1 | 2.2 ± 0.7 | ND | ND | 2.8 ± 0.0 | 20.9 ± 3.7 | 8.3 ± 1.4 |
450 | TL | 7.6 ± 0.5 | 3.7 ± 0.0 | 23.0 ± 1.8 | 26.9 ± 0.3 | <0.5 | <0.5 | 10.0 ± 4.1 | 1.4 ± 0.2 | <0.5 | ND | 2.9 ± 0.1 | 20.8 ± 3.7 | 3.2 ± 1.8 | ||
N | 8.3 ± 0.6 | 7.0 ± 0.5 | 26.2 ± 0.5 | 32.2 ± 0.6 | 0.5 ± 0.3 | 3.6 ± 2.8 | 7.2 ± 0.8 | 2.0 ± 0.6 | ND | ND | 2.8 ± 0.0 | 9.2 ± 1.3 | 1.1 ± 0.4 | |||
G | 10.1 ± 0.2 | 4.1 ± 0.2 | 22.8 ± 0.1 | 30.0 ± 0.9 | 0.6 ± 0.3 | 0.6 ± 0.0 | 4.3 ± 0.8 | 1.6 ± 0.3 | ND | ND | 2.2 ± 0.0 | 22.6 ± 0.1 | 3.8 ± 0.7 | |||
P | 3.2 ± 0.0 | 1.1 ± 0.1 | 23.7 ± 0.8 | 30.8 ± 0.1 | 0.5 ± 0.1 | <0.5 | 15.9 ± 1.2 | 3.5 ± 0.2 | 0.6 ± 0.0 | ND | 4.6 ± 1.1 | 15.1 ± 1.7 | 0.8 ± 0.3 | |||
mASW.P− | 240 | TL | 6.8 ± 1.5 | 3.6 ± 0.2 | 21.8 ± 1.3 | 28.7 ± 0.0 | <0.5 | <0.5 | 7.3 ± 4.0 | 2.7 ± 0.8 | <0.5 | 0.9 ± 0.1 | 2.8 ± 0.6 | 20.6 ± 1.4 | 3.8 ± 1.2 | |
450 | TL | 6.9 ± 0.1 | 4.8 ± 0.2 | 19.9 ± 0.9 | 29.1 ± 0.4 | <0.5 | <0.5 | 6.4 ± 2.0 | 1.8 ± 0.6 | 0.7 ± 0.3 | 0.6 ± 0.0 | 4.3 ± 0.1 | 22.9 ± 2.9 | 2.3 ± 0.9 | ||
N | 5.8 ± 0.2 | 4.7 ± 0.3 | 29.9 ± 1.2 | 29.4 ± 1.1 | 0.5 ± 0.0 | 1.2 ± 0.1 | 11.4 ± 0.8 | 1.7 ± 0.2 | ND | 2.6 ± 1.0 | 2.9 ± 0.3 | 7.9 ± 1.1 | 2.4 ± 0.4 | |||
G | 9.0 ± 0.0 | 4.6 ± 1.0 | 19.9 ± 2.9 | 27.3 ± 0.4 | <0.5 | <0.5 | 7.7 ± 0.3 | 1.4 ± 0.4 | <0.5 | <0.5 | 3.0 ± 0.3 | 24.3 ± 1.8 | 2.3 ± 0.2 | |||
P | 2.7 ± 0.1 | 1.0 ± 0.0 | 18.2 ± 0.7 | 25.4 ± 0.5 | <0.5 | 0.6 ± 0.1 | 13.9 ± 2.1 | 5.6 ± 2.0 | 2.1 ± 0.1 | <0.5 | 7.4 ± 1.9 | 22.1 ± 3.0 | 0.8 ± 0.2 |
a | Growth Medium | t (h) | Biomass (x) | Lipids (L) | Polysaccharides(S) | Proteins (P) | Pigments | GrowthParameters | |||||
x (mg/L) | L/x (%) | Lipid Fractions (%) | S/x (%) | P/x (%) | TCh/x (%) | TC/x (%) | μ (1/d) | R2 | |||||
N | G + S | P | |||||||||||
Balanced growth | Control | 240 | 137.9 ± 32.8 | 6.7 ± 0.2 | UND | UND | UND | 11.6 ± 1.1 | 21.8 ± 1.8 | 1.4 ± 0.1 | 0.4 ± 0.0 | 0.22 ± 0.03 | 0.95 |
450 | 471.4 ± 27.6 | 5.5 ± 1.6 | 41.5 ± 1.5 | 53.6 ± 3.1 | 5.0 ± 1.8 | 15.3 ± 0.9 | 37.8 ± 3.8 | 0.8 ± 0.1 | 0.2 ± 0.0 | ||||
Nutrient limitation | mASW.N− | 240 | 122.1 ± 15.4 | 3.6 ± 0.1 | UND | UND | UND | 11.9 ± 0.6 | 25.2 ± 2.2 | 3.5 ± 1.1 | 0.8 ± 0.3 | ** 0.24 ± 0.07 | 0.94 |
450 | 162.0 ± 53.0 | 6.2 ± 1.6 | UND | UND | UND | 31.6 ± 2.4 | 23.1 ± 3.7 | 1.5 ± 0.5 | 0.5 ± 0.2 | ||||
mASW.P− | 240 | 386.6 ± 7.6 | 2.5 ± 0.0 | UND | UND | UND | 16.2 ± 0.0 | 12.0 ± 0.0 | 0.9 ± 0.1 | 0.2 ± 0.0 | 0.25 ± 0.06 | 0.92 | |
450 | 452.2 ± 21.0 | 1.7 ± 0.1 | UND | UND | UND | 21.8 ± 0.7 | 22.1 ± 0.3 | 2.3 ± 0.0 | 0.0 ± 0.0 | ||||
b | Growth medium | t (h) | Lipid fraction | Fatty acid composition of total lipids and their fractions (%, wt/wt) | |||||||||
14:0 | 14:1(n-5) | 16:0 | 16:1(n-7) | 18:0 | 18:1(n-9) | 18:2(n-6) | * Others | ||||||
Balanced growth | Control | 240 | TL | 30.2 ± 0.2 | 8.3 ± 0.6 | 9.8 ± 0.0 | 40.0 ± 4.1 | 2.6 ± 1.6 | 5.6 ± 1.7 | 1.9 ± 0.0 | 2.4 ± 0.3 | ||
450 | TL | 31.0 ± 0.7 | 4.4 ± 1.1 | 9.4 ± 0.9 | 39.0 ± 3.9 | 2.7 ± 2.0 | 5.4 ± 2.2 | 0.8 ± 0.3 | 7.3 ± 1.8 | ||||
N | 34.6 ± 1.2 | 5.7 ± 0.4 | 10.0 ± 0.6 | 41.1 ± 0.9 | 0.9 ± 0.0 | 2.3 ± 0.2 | 1.3 ± 0.1 | 7.7 ± 0.4 | |||||
G | 31.7 ± 0.2 | 4.7 ± 1.3 | 8.6 ± 0.8 | 39.4 ± 0.3 | 3.3 ± 2.2 | 3.9 ± 1.4 | 0.7 ± 0.4 | 4.1 ± 0.8 | |||||
P | 14.4 ± 1.8 | 10.0 ± 0.0 | 13.7 ± 1.1 | 29.6 ± 0.4 | 4.7 ± 0.9 | 17.1 ± 2.4 | 5.2 ± 2.8 | 5.8 ± 0.3 | |||||
Nutrient limitation | mASW.N− | 240 | TL | 32.2 ± 1.3 | 4.5 ± 0.3 | 11.6 ± 0.4 | 38.6 ± 3.2 | 1.3 ± 0.3 | 2.1 ± 0.3 | ND | 9.7 ± 3.2 | ||
450 | TL | 28.4 ± 3.8 | 3.4 ± 1.1 | 13.2 ± 1.6 | 42.1 ± 0.9 | 2.4 ± 1.1 | 4.5 ± 2.1 | <0.1 | 9.7 ± 3.2 | ||||
mASW.P− | 240 | TL | 26.8 ± 0.3 | 3.5 ± 0.2 | 11.0 ± 0.1 | 34.9 ± 0.4 | 2.3 ± 0.7 | 9.1 ± 0.5 | 2.8 ± 1.1 | 9.7 ± 0.1 | |||
450 | TL | 23.3 ± 0.8 | 7.5 ± 0.3 | 9.9 ± 0.2 | 40.4 ± 1.3 | 1.7 ± 0.6 | 7.4 ± 2.4 | 1.1 ± 0.0 | 9.4 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dritsas, P.; Aggelis, G. Metabolic Responses of Newly Isolated Microalgal Strains Cultured in an Open Pond Simulating Reactor Under Balanced Conditions and Nutrient Limitation. Life 2025, 15, 1427. https://doi.org/10.3390/life15091427
Dritsas P, Aggelis G. Metabolic Responses of Newly Isolated Microalgal Strains Cultured in an Open Pond Simulating Reactor Under Balanced Conditions and Nutrient Limitation. Life. 2025; 15(9):1427. https://doi.org/10.3390/life15091427
Chicago/Turabian StyleDritsas, Panagiotis, and George Aggelis. 2025. "Metabolic Responses of Newly Isolated Microalgal Strains Cultured in an Open Pond Simulating Reactor Under Balanced Conditions and Nutrient Limitation" Life 15, no. 9: 1427. https://doi.org/10.3390/life15091427
APA StyleDritsas, P., & Aggelis, G. (2025). Metabolic Responses of Newly Isolated Microalgal Strains Cultured in an Open Pond Simulating Reactor Under Balanced Conditions and Nutrient Limitation. Life, 15(9), 1427. https://doi.org/10.3390/life15091427