Fungal Diversity in Lichens: From Extremotolerance to Interactions with Algae
Abstract
:1. Introduction
2. Diversity of the Lichen Mycobiome as Revealed by High-Throughput Sequencing
3. Systematics and Evolution of Extremotolerant Endolichenic Fungi
4. Lichen Mycobiota in Axenic Culture
4.1. Isolation, Growth, and Diversity of Lichen Mycobiota in Culture
4.2. Lichen Mycobiota as Sources of New, Bioactive Secondary Metabolites
5. Lichen-Associated Fungi and Their Interaction with Photobionts
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Hawksworth, D.L.; Honegger, R. The lichen thallus: A symbiotic phenotype of nutritionally specialized fungi and its response to gall producers. In Systematics Association Special Volume; Williams, M.A.J., Ed.; Clarendon Press: Oxford, UK, 1994; pp. 77–98. [Google Scholar]
- Cardinale, M.; Vieira de Castro, J., Jr.; Müller, H.; Berg, G.; Grube, M. In situ analysis of the bacterial community associated with the reindeer lichen Cladonia arbuscula reveals predominance of Alphaproteobacteria. FEMS Microbiol. Ecol. 2008, 66, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Grube, M.; Cardinale, M.; Vieira De Castro, J., Jr.; Müller, H.; Berg, G. Species-specific structural and functional diversity of bacterial communities in lichen symbiosis. ISME J. 2009, 3, 1105–1115. [Google Scholar] [CrossRef] [PubMed]
- Grube, M.; Cernava, T.; Soh, J.; Fuchs, S.; Aschenbrenner, I.; Lassek, C.; Wegner, U.; Becher, D.; Riedel, K.; Sensen, C.W.; et al. Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J. 2015, 9, 412–424. [Google Scholar] [CrossRef] [PubMed]
- Bates, S.T.; Cropsey, G.W.; Caporaso, J.G.; Knight, R.; Fierer, N. Bacterial communities associated with the lichen symbiosis. Appl. Environ. Microbiol. 2011, 77, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- Bates, S.T.; Berg-Lyons, D.; Lauber, C.L.; Walters, W.A.; Knight, R.; Fierer, N. A preliminary survey of lichen associated eukaryotes using pyrosequencing. Lichenologist 2012, 44, 137–146. [Google Scholar] [CrossRef]
- Aschenbrenner, I.; Cernava, T.; Berg, G.; Grube, M. Understanding microbial multi-species symbioses. Front. Microbiol. 2016, 7, 180. [Google Scholar] [CrossRef] [PubMed]
- Moya, P.; Molins, A.A.; Ânez-Alberola, F.M.; Muggia, L.; Barreno, E. Unexpected associated microalgal diversity in the lichen Ramalina farinacea is uncovered by pyrosequencing analyses. PLoS ONE 2017, 12, e0175091. [Google Scholar] [CrossRef] [PubMed]
- Molins, A.; Moya, P.; García-Breijo, F.J.; Reig-Armiñana, J.; Barreno, E. A multi-tool approach to assess microalgal diversity in lichens: Isolation, Sanger sequencing, HTS and ultrastructural correlations. Lichenologist 2018, 50, 123–138. [Google Scholar] [CrossRef]
- Lawrey, J.D.; Diederich, P. Lichenicolous fungi: Interactions, evolution, and biodiversity. Bryologist 2003, 106, 80–120. [Google Scholar] [CrossRef]
- Arnold, A.E.; Miadlikowska, J.; Higgins, K.L.; Sarvate, S.D.; Gugger, P.; Way, A.; Hofstetter, V.; Kauff, F.; Lutzoni, F. A phylogenetic estimation of trophic transition networks for ascomycetous fungi: Are lichens cradles of symbiotrophic fungal diversification? Syst. Biol. 2009, 58, 283–297. [Google Scholar] [CrossRef] [PubMed]
- Muggia, L.; Grube, M. Fungal composition of lichen thalli assessed by single strand conformation polymorphism. Lichenologist 2010, 42, 1–13. [Google Scholar] [CrossRef]
- U’Ren, J.M.; Lutzoni, F.; Miadlikovska, J.; Arnold, A.E. Community analysis reveals close affinities between endophytic and endolichenic fungi in mosses and lichens. Microb. Ecol. 2010, 60, 340–353. [Google Scholar] [CrossRef] [PubMed]
- Fleischhacker, A.; Grube, M.; Kopun, T.; Muggia, L. Community analyses uncover high diversity of lichenicolous fungi in alpine habitats. Microb. Ecol. 2015, 70, 348–360. [Google Scholar] [CrossRef] [PubMed]
- Muggia, L.; Fleischhacker, A.; Kopun, T.; Grube, M. Extremotolerant fungi from alpine rock lichens and their phylogenetic relationships. Fungal Divers. 2016, 76, 119–142. [Google Scholar] [CrossRef] [PubMed]
- Spribille, T.; Tuovinen, V.; Resl, P.; Vanderpool, D.; Wolinski, H.; Aime, M.C.; Schneider, K.; Stabentheiner, E.; Toome-Heller, M.; Thor, G.; et al. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 2016, 353, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Spribille, T. Relative symbiont input and the lichen symbiotic outcome. Curr. Opin. Plant Biol. 2018, 44, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Tulasne, L.-R. Mémoire pour servir à l’histoire organographique et physiologique des lichens. Ann. Sci. Nat. 1852, 17, 153–249. [Google Scholar]
- Lawrey, J.D.; Diederich, P. Lichenicolous Fungi—Worldwide Checklist, Including Isolated Cultures and Sequences Available. 2018. Available online: http://www.lichenicolous.net (accessed on 1 March 2018).
- Fleischhacker, A. The Lichenicolous Fungi Invading Xanthoria parietina. Master’s Thesis, University of Graz, Graz, Austria, December 2011. [Google Scholar]
- Tsurykau, A.; Etayo, J. Capronia suijae (Herpotrichiellaceae, Eurotiomycetes), a new fungus on Xanthoria parietina from Belarus, with a key to the lichenicolous species growing on Xanthoria s. str. Lichenologist 2017, 49, 1–12. [Google Scholar] [CrossRef]
- Hahn, C. Pilze an Xanthoria—Weltschlüssel. 2017. Available online: http://forum.pilze-bayern.de/index.php/topic,1556.0.html (accessed on 8 January 2018).
- Hafellner, J. The lichenicolous fungi inhabiting Tephromela species. In Lichenologische Nebenstunden. Contributions to Lichen Taxonomy and Ecology in Honour of Klaus Kalb. Bibliotheca Lichenologica; Frisch, A., Lange, U., Staiger, B., Eds.; J. Cramer in der Gebrüder Borntraeger Verlagsbuchhandlung: Berlin, Germany; Stuttgart, Germany, 2007; Volume 96, pp. 103–128. ISSN 1436-1698. [Google Scholar]
- Grube, M.; Lücking, R. Fine structures of foliicolous lichens and their lichenicolous fungi studied by epifluorescence. Symbiosis 2002, 32, 229–246. [Google Scholar]
- Grube, M.; Hafellner, J. Studies on lichenicolous fungus of the genus Didymella (Ascomycetes, Dothideales). Nova Hedwig. 1990, 51, 283–360. [Google Scholar]
- De los Ríos, A.; Ascaso, C.; Grube, M. Infection mechanisms of lichenicolous fungi studied by various microscopic techniques. Bibl. Lichenol. 2002, 82, 153–161. [Google Scholar]
- Harutyunyan, S.; Muggia, L.; Grube, M. Black fungi in lichens from seasonally arid habitats. Stud. Mycol. 2008, 61, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Selbmann, L.; Grube, M.; Onofri, S.; Isola, D.; Zucconi, L. Antarctic epilithic lichens as niches for black meristematic fungi. Biology 2013, 2, 784–797. [Google Scholar] [CrossRef] [PubMed]
- Gostinčar, C.; Grube, M.; de Hoog, S.; Zalar, P.; Gund-Cimerman, N. Extremotolerance in fungi: Evolution on the edge. FEMS Microbiol. Ecol. 2010, 71, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Selbmann, L.; Zucconi, L.; Isola, D.; Onofri, S. Rock black fungi: Excellence in the extremes, from the Antarctic to space. Curr. Genet. 2015, 61, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Gorbushina, A.A. Life on the rocks. Environ. Microbiol. 2007, 9, 1613–1631. [Google Scholar] [CrossRef] [PubMed]
- Gorbushina, A.A.; Broughton, W.J. Microbiology of the atmosphere-rock interface (how biological interactions and physical stresses regulate a sophisticated microbial system. Ann. Rev. Microbiol. 2009, 63, 431–450. [Google Scholar] [CrossRef] [PubMed]
- Gostinčar, C.; Muggia, L.; Grube, M. Polyextremotolerant black fungi: Oligotrophism, adaptive potential, and a link to lichen symbioses. Front. Microbiol. 2012, 3, 390. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wie, X.L.; Zhang, Y.Q.; Liu, H.Y.; Yu, L.Y. Diversity and distribution of lichen-associated fungi in the Ny-Ålesund Region (Svalbard, High Arctic) as revealed by 454 pyrosequencing. Sci. Rep. 2015, 5, 14850. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Mendoza, F.; Fleischhacker, A.; Kopun, T.; Grube, M.; Muggia, L. ITS1 metabarcoding highlights low specificity of lichen mycobiomes at a local scale. Mol. Ecol. 2017, 26, 4811–4830. [Google Scholar] [CrossRef] [PubMed]
- Lücking, R.; Dal-Forno, M.; Sikaroodi, M.; Gillevet, P.M.; Bungartz, F.; Moncada, B.; Yánez-Ayabaca, A.; Chaves, J.L.; Coca, L.F.; Lawrey, J.D. A single macrolichen constitutes hundreds of unrecognized species. Proc. Natl. Acad. Sci. USA 2014, 111, 11091–11096. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.I.; Amend, A.S.; Taylor, J.W.; Bruns, T.D. A unique signal distorts the perception of species richness and composition in high-throughput sequencing surveys of microbial communities: A case study of fungi in indoor dust. Microb. Ecol. 2013, 66, 735–741. [Google Scholar] [CrossRef] [PubMed]
- U’Ren, J.M.; Riddle, J.M.; Monacell, J.T.; Carbone, I.; Miadlikowska, J.; Arnold, A.E. Tissue storage and primer selection influence pyrosequencing-based inferences of diversity and community composition of endolichenic and endophytic fungi. Mol. Ecol. Res. 2014, 14, 1032–1048. [Google Scholar] [CrossRef] [PubMed]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W. Fungal Barcoding Consortium. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 1–6. [Google Scholar] [CrossRef] [PubMed]
- U’Ren, J.M.; Lutzoni, F.; Miadlikowska, J.; Laetsch, A.D.; Arnold, E. Host and geographic structure of endophytic and endolichenic fungi at a continental scale. Am. J. Bot. 2012, 99, 898–914. [Google Scholar] [CrossRef] [PubMed]
- Mark, K.; Cornejo, C.; Keller, C.; Flück, D.; Scheidegger, C. Barcoding lichen-forming fungi using 454 pyrosequencing is challenged by artifactual and biological sequence variation. Genome 2016, 59, 685–704. [Google Scholar] [CrossRef] [PubMed]
- Bazzicalupo, A.L.; Bálint, M.; Schmitt, I. Comparison of ITS1 and ITS2 rDNA in 454 sequencing of hyperdiverse fungal communities. Fungal Ecol. 2013, 6, 102–109. [Google Scholar] [CrossRef]
- Döbbeler, P. Moosbewohnende Ascomyceten I. Die Pyrenocarpen, den Gametophyten Besiedelnden Arten; Mitt Botanische Staatssammlung: München, Germany, 1978; Volume 14, pp. 1–360. [Google Scholar]
- Döbbeler, P. Biodiversity of bryophilous ascomycetes. Biodivers. Conserv. 1977, 6, 721–738. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, Y.; Wang, X.; Wie, X.; Wie, J. Lichen-associated fungal communityin Hypogymnia hypotrypa (Parmeliaceae, Ascomycota) affected by geographic distribution and altitude. Front. Microbiol. 2016, 7, 1231. [Google Scholar] [CrossRef] [PubMed]
- Persoh, D.; Rambold, G. Lichen-associated fungi of the Letharietum vulpinae. Mycol. Prog. 2012, 11, 1–8. [Google Scholar] [CrossRef]
- Hawksworth, D.L. The lichenicolous Hyphomycetes. Bull. Br. Mus. (Nat. Hist.) Bot. Ser. 1979, 6, 183–300. [Google Scholar]
- Hawksworth, D.L. The lichenicolous Coleomycetes. Bull. Br. Mus. (Nat. Hist.) Bot. Ser. 1981, 9, 1–98. [Google Scholar]
- Lawrey, J.D.; Diederich, P.; Nelsen, M.P.; Sikaroodi, M.; Gillevet, P.M.; Brand, A.M.; van den Boom, P. The obligately lichenicolous genus Lichenoconium represents a novel lineage in the Dothideomycetes. Fungal Biol. 2011, 115, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Lawrey, J.D.; Diederich, P.; Nelsen, M.P.; Freebury, C.; Van den Broeck, D.; Sikaroodi, M.; Ertz, D. Phylogenetic placement of lichenicolous Phoma species in the Phaeosphaeriaceae (Pleosporales, Dothideomycets). Fungal Divers. 2012, 55, 195–213. [Google Scholar] [CrossRef]
- Ertz, D.; Heuchert, B.; Braun, U.; Freebury, C.E.; Common, R.S.; Diederich, P. Contributionto the phylogeny and taxonomy of the genus Taeniolella with a focus on lichenicolous taxa. Fungal Biol. 2016, 120, 1416–1447. [Google Scholar] [CrossRef] [PubMed]
- Muggia, L.; Kopun, T.; Ertz, D. Phylogenetic placement of the lichenicolous, anamorphic genus Lichenodiplis and its connection to Muellerella-like teleomorphs. Fungal Biol. 2015, 119, 1115–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gueidan, C.; Villaseñor, C.R.; de Hoog, G.S.; Gorbushina, A.A.; Untereiner, W.A.; Lutzoni, F. A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages. Stud. Mycol. 2008, 61, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Gueidan, C.; Ruibal, C.; de Hoog, G.S.; Schneider, H. Rock-inhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic. Fungal Biol. 2011, 115, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Kirk, P.M.; Cannon, P.F.; Minter, D.W.; Stalpers, J.A. Ainsworth & Bisby’s Dictionary of the Fungi, 10th ed.; CAB International: Wallingford, UK, 2008; ISBN 0851998267. [Google Scholar]
- Schoch, C.L.; Crous, P.W.; Groenewald, J.Z.; Boehm, E.W.A.; Burgess, T.I.; De Gruyter, J.; De Hoog, G.S.; Dixon, L.J.; Grube, M.; Gueidan, C.; et al. A class-wide phylogenetic assessment of Dothideomycetes. Stud. Mycol. 2009, 64, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Onofri, S.; Selbmann, L.; Zucconi, L.; de Hoog, G.S.; de los Rios, A.; Ruisi, S.; Grube, M. Fungal associations at the cold edge of life. In Algae and Cyanobacteria in Extreme Environments; Seckbach, J., Ed.; Springer: Dorotech, The Netherlands, 2007; pp. 735–757. ISBN 978-1-4020-6112-7. [Google Scholar]
- Selbmann, L.; de Hoog, G.S.; Mazzaglia, A.; Friedmann, E.I.; Onofri, S. Fungi at the edge of life: Cryptoendolithic black fungi from Antarctic Desert. Stud. Mycol. 2005, 51, 1–32. [Google Scholar]
- Egidi, E.; de Hoog, S.; Isola, D.; Onofri, S.; Quaedvlieg, W.; de Vries, M.; Verkley, G.J.M.; Stielow, J.B.; Zucconi, L.; Selbmann, L. Phylogeny and taxonomy of meristematic rock-inhabiting black fungi in the Dothideomycetes based on multi-locus phylogenies. Fungal Divers. 2014, 65, 127–165. [Google Scholar] [CrossRef]
- Selbmann, L.; Isola, D.; Egidi, E.; Zucconi, L.; Gueidan, C.; de Hoog, G.S.; Onofri, S. Mountain tips as reservoirs for new rock-fungal entities: Saxomyces gen. nov. and four new species from the Alps. Fungal Divers. 2014, 65, 167–182. [Google Scholar] [CrossRef]
- Muggia, L.; Kocourkova, J.; Knudsen, K. Disentangling the complex of Lichenothelia species from rock communities in the desert. Mycologia 2015, 107, 1233–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunde-Cimerman, N.; Zalar, P.; de Hoog, S.; Plemenitaš, A. Hypersaline waters in salterns—Natural ecological niches for halophilic black yeasts. FEMS Microbiol. Ecol. 2000, 32, 235–240. [Google Scholar] [CrossRef]
- Muggia, L.; Hafellner, J.; Wirtz, N.; Hawksworth, D.L.; Grube, M. The sterile microfilamentous lichenized fungi Cystocoleus ebeneus and Racodium rupestre are relatives of plant pathogens and clinically important dothidealean fungi. Mycol. Res. 2008, 112, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Texteira, M.M.; Moreno, L.F.; Stielow, B.J.; Muszewska, A.; Hainaut, M.; Gonzaga, L.; Abouelleil, A.; Patané, J.S.L.; Priest, M.; Souza, R.; et al. Exploring the genomic diversity of black yeats and relatives (Chaetothyriales, Ascomycota). Stud. Mycol. 2017, 86, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Muggia, L.; Kopun, T.; Grube, M. Effects of growth media on the diversity of culturable fungi from lichens. Molecules 2017, 22, 824. [Google Scholar] [CrossRef] [PubMed]
- Hyde, K.D.; Jones, E.G.; Liu, J.K.; Ariyawansa, H.; Boehm, E.; Boonmee, S.; Braun, U.; Chomnunti, P.; Crous, P.W.; Dai, D.Q.; et al. Families of Dothideomycetes. Fungal Divers. 2013, 63, 1–313. [Google Scholar] [CrossRef]
- Gueidan, C.; Aptroot, A.; da Silva Cáceres, M.E.; Badali, H.; Stenroos, S. A reappraisal of orders and families within the subclass Chaetothyriomycetidae (Eurotiomycetes, Ascomycota). Mycol. Prog. 2014, 13, 1027–1039. [Google Scholar] [CrossRef]
- Chen, K.H.; Miadlikowska, J.; Molnár, K.; Arnold, A.E.; U’Ren, J.M.; Gaya, E.; Gueidan, C.; Lutzoni, F. Phylogenetic analyses of eurotiomycetous endophytes reveal their close affinities to Chaetothyriales, Eurotiales, and a new order—Phaeomoniellales. Mol. Phylogenet. Evol. 2015, 85, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.K.; Hyde, K.D.; Jeewon, R.; Phillips, A.J.L.; Maharachchikumbura, S.S.N.; Ryberg, M.; Liu, Z.Y.; Zhao, Q. Ranking higher taxa using divergence times: A case study in Dothideomycetes. Fungal Divers. 2017, 84, 75–99. [Google Scholar] [CrossRef]
- Petrini, O.; Hake, U.; Dreyfuss, M.M. An analysis of fungal communities isolated from fruticose lichens. Mycologia 1990, 82, 444–451. [Google Scholar] [CrossRef]
- Girlanda, M.; Isocrono, D.; Bianco, C.; Luppi-Mosca, A.M. Two foliose lichens as microfungal ecological niches. Mycologia 1997, 89, 531–536. [Google Scholar] [CrossRef]
- Crittenden, P.D.; David, J.C.; Hawksworth, D.L.; Campbell, F.S. Attempted isolation and success in the culturing of a broad spectrum of lichen-forming and lichenicolous fungi. New Phytol. 1995, 130, 267–297. [Google Scholar] [CrossRef]
- Yoshimura, I.; Yamamoto, Y.; Nakano, T.; Finnie, J. Isolation and culture of lichen photobionts and mycobionts. In Protocols in Lichenology. Culturing, Biochemistry, Ecophysiology and Use in Biomonitoring; Kranner, I., Beckett, R.P., Varma, A.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 3–33. ISBN 3-540-41139-9. [Google Scholar]
- Suryanarayanan, T.S.; Thirunavukkarasu, N.; Hariharan, G.; Balaji, P. Occurrence of non obligate microfungi inside lichen thalli. Sydowia 2005, 57, 120. [Google Scholar]
- Stocker-Wörgötter, E. Investigating the production of secondary compounds in cultured lichen mycobiont. In Protocols in Lichenology. Culturing, Biochemistry, Ecophysiology and Use in Biomonitoring; Kranner, I., Beckett, R.P., Varma, A.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 296–306. ISBN 3-540-41139-9. [Google Scholar]
- Vinayaka, K.S.; Krishnamurthy, Y.L.; Banakar, S.; Kekuda, T.R.P. Association and variation of endophytic fungi among some macrolichens in central Western Ghats, Southern India. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 115–124. [Google Scholar] [CrossRef]
- Ruibal, C.; Gueidan, C.; Selbmann, L.; Gorbushina, A.A.; Crous, P.W.; Groenewald, J.Z.; Staley, J.T. Phylogeny of rock-inhabiting fungi related to Dothideomycetes. Stud. Mycol. 2009, 64, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Untereiner, W.A.; Gueidan, C.; Orr, M.J.; Diederich, P. The phylogenetic position of the lichenicolous ascomycete Capronia peltigerae. Fungal Divers. 2011, 49, 225–233. [Google Scholar] [CrossRef]
- Diederich, P.; Ertz, D.; Lawrey, J.D.; Sikaroodi, M.; Untereiner, W.A. Molecular data place the hyphomycetous lichenicolous genus Sclerococcum close to Dactylospora (Eurotiomycetes) and S. parmeliae in Cladophialophora (Chaetotyriales). Fungal Divers. 2013, 58, 61–72. [Google Scholar] [CrossRef]
- Hocking, A.D.; Pitt, J.I. Dichloran-glycerol medium for enumeration of xerophilic fungi from low moisture foods. Appl. Environ. Microbiol. 1980, 39, 488–492. [Google Scholar] [PubMed]
- Lilly, H.L.; Barnett, V.G. Physiology of the Fungi, 1st ed.; McGraw Hill Book Co.: New York, NY, USA, 1951; p. 464. [Google Scholar]
- Pagano, J.; Levin, J.D.; Trejo, W. Diagnostic medium for the differentiation of species of Candida. Antibiot. Annu. 1910, 5, 137–143. [Google Scholar]
- Kellogg, J.; Raja, H.A. Endolichenic fungi: A new source of rich bioactive secondary metabolites on the horizon. Phytochem. Rev. 2017, 16, 271–293. [Google Scholar] [CrossRef]
- Calcott, M.J.; Ackerley, D.F.; Knight, A.; Keyzers, R.A.; Owen, J.G. Secondary metabolism in the lichen symbiosis. Chem. Soc. Rev. 2018, 47, 1730–1760. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, Z.; Liu, S.; Zhang, H.; Li, E.; Guo, L.; Che, Y. Oxepinochromenones, furochromenone, and their putative precursors from the endolichenic fungus Coniochaeta sp. J. Nat. Prod. 2010, 73, 920–924. [Google Scholar] [CrossRef] [PubMed]
- Kannangara, B.T.S.D.P.; Rajapaksha, R.S.C.G.; Paranagama, P.A. Nature and bioactivities of endolichenic fungi in Pseudocyphellaria sp., Parmotrema sp. and Usnea sp. at Hakgala montane forest in Sri Lanka. Lett. Appl. Microbiol. 2009, 48, 203–209. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Bigelis, R.; Yang, H.Y.; Chang, L.P.; Singh, M.P. Lichenicolins A and B, new bisnaphthopyrones from an unidentified lichenicolous fungus Strain LL-RB0668. J. Antibiot. 2005, 58, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Millanes, A.M.; Diederich, P.; Wedin, M. Cyphobasidium gen. nov., a new lichen-inhabiting lineage in the Cystobasidiomycetes (Pucciniomycotina, Basidiomycota, Fungi). Fungal Biol. 2016, 120, 1466–1477. [Google Scholar] [CrossRef] [PubMed]
- Lopandic, K.; Molnár, O.; Prillinger, H. Fellomyces mexicanus sp. nov., a new member of the yeast genus Fellomyces isolated from lichen Cryptothecia rubrocincta collected in Mexico. Microbiol. Res. 2005, 160, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Upreti, D.K.; Gupta, V.K.; Dai, X.F.; Jiang, Y. Endolichenic fungi: A hidden reservoir of Next Generation Biopharmaceuticals. Trends Biotechnol. 2017, 35, 808–813. [Google Scholar] [CrossRef] [PubMed]
- Hawksworth, D.L.; Paterson, R.R.M.; Vote, N. An investigation into the occurrence of metabolites in obligately lichenicolous fungi from thirty genera. In Phytochemistry and Chemotaxonomy of Lichenized Ascomycetes—A Festschrift in Honour of Siegfried Huneck; Feige, G.B., Lumbsch, H.T., Eds.; Bibliotheca Lichenologica, J. Cramer: Berlin, Germany; Stuttgart, Germany, 1993; pp. 101–108. ISBN 3-443-58032-7. [Google Scholar]
- Wijeratne, E.M.K.; Bashyal, B.P.; Gunatilaka, M.K.; Arnold, A.E.; Gunatilaka, A.A.L. Maximizing chemical diversity of fungal metabolites: Biogenetically related heptaketides of the endolichenic fungus Corynespora sp. J. Nat. Prod. 2010, 73, 1156–1159. [Google Scholar] [CrossRef] [PubMed]
- Padhi, S.; Tayung, K. In vitro antimicrobial potentials of endolichenic fungi isolated from thalli of Parmelia lichen against some human pathogens. Beni-Suef Univ. J. Basic Appl. Sci. 2015, 4, 299–306. [Google Scholar] [CrossRef]
- Goers, L.; Freemont, P.; Polizzi, K.M. Co-culture systems and technologies: Taking synthetic biology to the next level. J. R. Soc. Interface 2014, 11, 20140065. [Google Scholar] [CrossRef] [PubMed]
- Muggia, L.; Kraker, S.; Gößler, T.; Grube, M. Enforced fungal-algal symbiosis in alginate spheres. FEMS Microbiol. Lett. 2018. [Google Scholar] [CrossRef] [PubMed]
- Hom, E.F.Y.; Murray, A.W. Niche engineering demonstrates a latent capacity for fungal-algal mutualism. Science 2014, 345, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Gorbushina, A.A.; Beck, A.; Schulte, A. Microcolonial rock inhabiting fungi and lichen photobionts: Evidence for mutualistic interactions. Mycol. Res. 2005, 109, 1288–1296. [Google Scholar] [CrossRef] [PubMed]
- Brunauer, G.; Blaha, J.; Hager, A.; Turk, R.; Stocker-Wörgötter, E.; Grube, M. An isolated lichenicolous fungus forms lichenoid structures when co-cultured with various coccoid algae. Symbiosis 2007, 44, 127–136. [Google Scholar]
- Ametrano, C.G.; Selbmann, L.; Muggia, L. A standardized approach for co-culturing Dothidealean rock-inhabiting fungi and lichen photobionts in vitro. Symbiosis 2017, 73, 35–44. [Google Scholar] [CrossRef]
- Hawksworth, D.L. Lichenothelia, a new genus for the Microthelia aterrima group. Lichenologist 1981, 13, 141–153. [Google Scholar] [CrossRef]
- Muggia, L.; Gueidan, C.; Knudsen, K.; Perlmutter, G.; Grube, M. The lichen connections of black fungi. Mycopathologia 2013, 175, 523–535. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muggia, L.; Grube, M. Fungal Diversity in Lichens: From Extremotolerance to Interactions with Algae. Life 2018, 8, 15. https://doi.org/10.3390/life8020015
Muggia L, Grube M. Fungal Diversity in Lichens: From Extremotolerance to Interactions with Algae. Life. 2018; 8(2):15. https://doi.org/10.3390/life8020015
Chicago/Turabian StyleMuggia, Lucia, and Martin Grube. 2018. "Fungal Diversity in Lichens: From Extremotolerance to Interactions with Algae" Life 8, no. 2: 15. https://doi.org/10.3390/life8020015
APA StyleMuggia, L., & Grube, M. (2018). Fungal Diversity in Lichens: From Extremotolerance to Interactions with Algae. Life, 8(2), 15. https://doi.org/10.3390/life8020015