Data-Driven Astrochemistry: One Step Further within the Origin of Life Puzzle
Abstract
:1. Astrochemistry and Meteoritics
1.1. Interstellar Medium and Circumstellar Environments
1.2. Molecular Complexity
1.3. Chemical Evolution
- astrophysical energy gradients and sources
- combinatorial effects of molecular synthesis, influenced by local elemental abundances
- intrinsic life-times of molecules (chemical stability)
- encapsulation within stabilizing molecular structures (early molecular preservation)
- molecular assembly potential (minimal chemical communication systems)
- molecular environments as compartmentalized systems (different energetic conditions)
1.4. Comet Chemistry
1.5. Laboratory Astrophysics
2. Meteorites
2.1. Classification of Meteorites
2.2. Chondrules, CAIs, Cosmochemistry
3. Organic and Metalorganic Material in Meteorites
3.1. Insoluble Organic Matter
3.2. Soluble Organic Matter: Amino Acids and Beyond
3.2.1. Amino Acids
3.2.2. Nucleobases
3.2.3. Sugars
3.2.4. Carboxylic Acids
3.2.5. Chirality
3.3. High-Resolving Chemical Analytics
3.3.1. In-Depth Compositional Profiling: Ultrahigh-Resolving MS
3.3.2. Data-Driven Astrochemistry
3.3.3. Structural Chemical Information: Organic Spectroscopy
3.3.4. Insights on Chemical Isomers: Chromatography
3.4. Targeted versus Non-Targeted Analysis
3.4.1. Thoughts on Comprehensive Chemical Analysis
Targeted | Analytes are single molecules |
→ Quantification/monitoring of single molecules/studying molecules on a mechanistic level | |
Semi-targeted | Analytes are a set of molecules |
→ Relationships of chemically similar molecules | |
Non-targeted | Analytes are all present molecules (in theory) |
→ Information on as many molecules and their in-between interactions/screening of global chemical spaces |
3.4.2. Non-Targeted Analysis in Practice
3.5. Combining Experimental and Computational Techniques
3.6. Comprehensive Chemical Profiling of Meteoritic Organic Matter
3.6.1. Nitrogen Chemistry
3.6.2. Sulfur Chemistry
3.7. Metalorganics in Astrochemistry
4. Relevance of (Metal) Organic Astrochemistry: Implications on the Origin of Life
- metabolism
- growth
- reproduction
- adaptation to environment
• Thermodynamic disequilibrium | assuming Darwinian evolution to be a progressive process and “that life actually does something” |
• Bonding | covalent bond, e.g., C-C |
• Isolation within the environment | the Darwinian cycle can proceed only if it replicates itself in preference to others; compartmentalization |
• Carbon-like scaffolding | “machinery’s nutrients” |
• Energetic patterns in metabolism | no equilibrium, but energy transfer |
• Solvent | efficiency of chemical reactions within the liquid phase |
- Are intermediate states within chemical evolution required to preserve organic compounds?
- Can minerals stabilize organic molecules within geological time scales?
5. Conclusions
Conflicts of Interest
References
- De Becker, M. Astrochemistry: The issue of molecular complexity in astrophysical environments. arXiv, 2013; arXiv:1305.6243. [Google Scholar]
- Molecules in Space. Available online: http://www.astro.uni-koeln.de/cdms/molecules/ (accessed on 24 November 2017).
- Science Highlights—1000th ALMA Paper—Spatial Variations in Titan’s Atmospheric Temperature: ALMA and Cassini Comparisons from 2012 to 2015. Available online: http://almascience.eso.org/ (accessed on 25 November 2017).
- Anglada, G.; Amado, P.J.; Ortiz, J.L.; Gómez, J.F.; Macías, E.; Alberdi, A.; Osorio, M.; Gómez, J.L.; de Gregorio-Monsalvo, I.; Pérez-Torres, M.A.; et al. ALMA Discovery of Dust Belts around Proxima Centauri. Astrophys. J. Lett. 2017, 850, L6. [Google Scholar] [CrossRef] [Green Version]
- Cordiner, M.; Biver, N.; Crovisier, J.; Bockelée-Morvan, D.; Mumma, M.; Charnley, S.; Villanueva, G.; Paganini, L.; Lis, D.; Milam, S.; et al. Thermal physics of the inner coma: ALMA studies of the methanol distribution and excitation in comet C/2012 K1 (PanSTARRS). Astrophys. J. 2017, 837, 177. [Google Scholar] [CrossRef]
- Andrews, S.M.; Wilner, D.J.; Zhu, Z.; Birnstiel, T.; Carpenter, J.M.; Pérez, L.M.; Bai, X.N.; Öberg, K.I.; Hughes, A.M.; Isella, A.; et al. Ringed Substructure and a Gap at 1 au in the Nearest Protoplanetary Disk. Astrophys. J. Lett. 2016, 820, L40. [Google Scholar] [CrossRef]
- Herschel. Available online: http://sci.esa.int/herschel/ (accessed on 25 November 2017).
- Bergin, E.A.; Cleeves, L.I.; Gorti, U.; Zhang, K.; Blake, G.A.; Green, J.D.; Andrews, S.M.; Evans, N.J., II; Henning, T.; Öberg, K.; et al. An old disk still capable of forming a planetary system. Nature 2013, 493, 644–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Hendecourt, L.L.S. Molecular Complexity in Astrophysical Environments: From Astrochemistry to “Astrobiology”. In EPJ Web of Conferences; EDP Sciences: Les Ulis, France, 2011; Volume 18, p. 06001. [Google Scholar]
- Bonchev, D.D.; Rouvray, D. Complexity in Chemistry, Biology, and Ecology; Springer Science & Business Media: New York, NY, USA, 2007. [Google Scholar]
- Whitesides, G.M.; Ismagilov, R.F. Complexity in chemistry. Science 1999, 284, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Randić, M.; Plavšić, D. On the concept of molecular complexity. Croat. Chem. Acta 2002, 75, 107–116. [Google Scholar]
- Bertz, S.H. The first general index of molecular complexity. J. Am. Chem. Soc. 1981, 103, 3599–3601. [Google Scholar] [CrossRef]
- Bertz, S.H. Convergence, molecular complexity, and synthetic analysis. J. Am. Chem. Soc. 1982, 104, 5801–5803. [Google Scholar] [CrossRef]
- Bertz, S.H. On the complexity of graphs and molecules. Bull. Math. Biol. 1983, 45, 849–855. [Google Scholar] [CrossRef]
- Shannon, C. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Böttcher, T. From Molecules to Life: Quantifying the Complexity of Chemical and Biological Systems in the Universe. J. Mol. Evol. 2018, 86, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Corey, E.; Cheng, X. The Logic of Chemical Synthesis; John Wiley: New York, NY, USA, 1989. [Google Scholar]
- Böttcher, T. An additive definition of molecular complexity. J. Chem. Inf. Model. 2016, 56, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Schmitt-Kopplin, P.; Gabelica, Z.; Gougeon, R.D.; Fekete, A.; Kanawati, B.; Harir, M.; Gebefuegi, I.; Eckel, G.; Hertkorn, N. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc. Natl. Acad. Sci. USA 2010, 107, 2763–2768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitt-Kopplin, P.; Harir, M.; Kanawati, B.; Gougeon, R.; Moritz, F.; Hertkorn, N.; Clary, S.; Gebefügi, I.; Gabelica, Z. Analysis of extraterrestrial organic matter in Murchison meteorite. In Astrobiology: An Evolutionary Approach; CRC Press: Boca Raton, FL, USA, 2014; pp. 63–80. [Google Scholar]
- Cordes, E.H. The Tao of Chemistry and Life: A Scientific Journey; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Markert, B.; Fränzle, S.; Wünschmann, S. Chemical Evolution: The Biological System of the Elements; Springer: New York, NY, USA, 2015. [Google Scholar]
- Calvin, M. Chemical Evolution; Oxford University Press: Oxford, UK, 1969. [Google Scholar]
- Gerner, T.; Beuther, H.; Semenov, D.; Linz, H.; Vasyunina, T.; Bihr, S.; Shirley, Y.; Henning, T. Chemical evolution in the early phases of massive star formation. I. Astron. Astrophys. 2014, 563, A97. [Google Scholar] [CrossRef]
- Pascal, R.; Pross, A.; Sutherland, J.D. Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics. Open Biol. 2013, 3, 130156. [Google Scholar] [CrossRef] [PubMed]
- Cronin, J.; Cooper, G.; Pizzarello, S. Characteristics and formation of amino acids and hydroxy acids of the Murchison meteorite. Adv. Space Res. 1995, 15, 91–97. [Google Scholar] [CrossRef]
- Elsila, J.E.; Aponte, J.C.; Blackmond, D.G.; Burton, A.S.; Dworkin, J.P.; Glavin, D.P. Meteoritic amino acids: Diversity in compositions reflects parent body histories. ACS Cent. Sci. 2016, 2, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Burton, A.S.; Berger, E.L. Insights into Abiotically-Generated Amino Acid Enantiomeric Excesses Found in Meteorites. Life 2018, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Ambrogelly, A.; Palioura, S.; Söll, D. Natural expansion of the genetic code. Nat. Chem. Biol. 2007, 3, 29. [Google Scholar] [CrossRef] [PubMed]
- Freeland, S. “Terrestrial” amino acids and their evolution. In Amino Acids, Peptides and Proteins in Organic Chemistry: Origins and Synthesis of Amino Acid; John Wiley & Sons: Hoboken, NJ, USA, 2010; Volume 1, pp. 43–75. [Google Scholar]
- Ilardo, M.; Meringer, M.; Freeland, S.; Rasulev, B.; Cleaves, H.J., II. Extraordinarily adaptive properties of the genetically encoded amino acids. Sci. Rep. 2015, 5, 9414. [Google Scholar] [CrossRef] [PubMed]
- Hertkorn, N.; Frommberger, M.; Witt, M.; Koch, B.; Schmitt-Kopplin, P.; Perdue, E. Natural organic matter and the event horizon of mass spectrometry. Anal. Chem. 2008, 80, 8908–8919. [Google Scholar] [CrossRef] [PubMed]
- Santos, N.C.; Israelian, G.; Mayor, M.; Rebolo, R.; Udry, S. Statistical properties of exoplanets-II. Metallicity, orbital parameters, and space velocities. Astron. Astrophys. 2003, 398, 363–376. [Google Scholar] [CrossRef]
- Pizzarello, S.; Shock, E. The organic composition of carbonaceous meteorites: The evolutionary story ahead of biochemistry. Cold Spring Harb. Perspect. Biol. 2010, 2, a002105. [Google Scholar] [CrossRef] [PubMed]
- Shaw, A.M. Astrochemistry: From Astronomy to Astrobiology; John Wiley & Sons: New York, NY, USA, 2007. [Google Scholar]
- Rosetta. Available online: http://rosetta.esa.int/ (accessed on 25 November 2017).
- Altwegg, K.; Balsiger, H.; Bar-Nun, A.; Berthelier, J.J.; Bieler, A.; Bochsler, P.; Briois, C.; Calmonte, U.; Combi, M.R.; Cottin, H.; et al. Prebiotic chemicals—Amino acid and phosphorus—In the coma of comet 67P/Churyumov-Gerasimenko. Sci. Adv. 2016, 2, e1600285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fray, N.; Bardyn, A.; Cottin, H.; Altwegg, K.; Baklouti, D.; Briois, C.; Colangeli, L.; Engrand, C.; Fischer, H.; Glasmachers, A.; et al. High-molecular-weight organic matter in the particles of comet 67P/Churyumov–Gerasimenko. Nature 2016, 538, 72–74. [Google Scholar] [CrossRef] [PubMed]
- Gerlich, D.; Smith, M. Laboratory astrochemistry: Studying molecules under inter-and circumstellar conditions. Phys. Scr. 2005, 73, C25. [Google Scholar] [CrossRef]
- Danger, G.; Bossa, J.B.; De Marcellus, P.; Borget, F.; Duvernay, F.; Theulé, P.; Chiavassa, T.; d’Hendecourt, L. Experimental investigation of nitrile formation from VUV photochemistry of interstellar ices analogs: Acetonitrile and amino acetonitrile. Astron. Astrophys. 2011, 525, A30. [Google Scholar] [CrossRef] [Green Version]
- Borget, F.; Duvernay, F.; Danger, G.; Theulé, P.; Vinogradoff, V.; Mispelaer, F.; Müller, S.; Grote, D.; Chiavassa, T.; Bossa, J.B. What are the intermediates that could react in the interstellar ices? J. Phys. Org. Chem. 2015, 28, 163–169. [Google Scholar] [CrossRef]
- Sellgren, K. Aromatic hydrocarbons, diamonds, and fullerenes in interstellar space: Puzzles to be solved by laboratory and theoretical astrochemistry. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2001, 57, 627–642. [Google Scholar] [CrossRef]
- Fresneau, A.; Mrad, N.A.; d’Hendecourt, L.L.; Duvernay, F.; Flandinet, L.; Orthous-Daunay, F.R.; Vuitton, V.; Thissen, R.; Chiavassa, T.; Danger, G. Cometary Materials Originating from Interstellar Ices: Clues from Laboratory Experiments. Astrophys. J. 2017, 837, 168. [Google Scholar] [CrossRef]
- Marov, M.Y. Fundamentals of Modern Astrophysics; Springer: New York, NY, USA, 2016. [Google Scholar]
- Cabrit, S. Shocks in Astrophysics; Millar, T.J., Raga, A.C., Eds.; Springer: Dordrecht, The Netherlands, 1995. [Google Scholar]
- Lauretta, D.S.; McSween, H.Y. Meteorites and the Early Solar System II; University of Arizona Press: Tucson, AZ, USA, 2006. [Google Scholar]
- Pizzarello, S.; Davidowski, S.K.; Holland, G.P.; Williams, L.B. Processing of meteoritic organic materials as a possible analog of early molecular evolution in planetary environments. Proc. Natl. Acad. Sci. USA 2013, 110, 15614–15619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remusat, L. Organic material and gases in the early Solar System: The meteorite record. Eur. Astron. Soc. Publ. Ser. 2012, 58, 175–186. [Google Scholar] [CrossRef]
- Lodders, K. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 2003, 591, 1220. [Google Scholar] [CrossRef]
- Alexander, C.M.; Howard, K.T.; Bowden, R.; Fogel, M.L. The classification of CM and CR chondrites using bulk H, C and N abundances and isotopic compositions. Geochim. Cosmochim. Acta 2013, 123, 244–260. [Google Scholar] [CrossRef]
- Weisberg, M.K.; McCoy, T.J.; Krot, A.N. Systematics and evaluation of meteorite classification. In Meteorites and the Early Solar System II; University of Arizona Press: Tucson, AZ, USA, 2006; pp. 19–52. [Google Scholar]
- Swindle, T.D.; Campins, H. Do comets have chondrules and CAIs? Evidence from the Leonid meteors. Meteorit. Planet. Sci. 2004, 39, 1733–1740. [Google Scholar] [CrossRef] [Green Version]
- Campins, H.; Swindle, T.D. Expected characteristics of cometary meteorites. Meteorit. Planet. Sci. 1998, 33, 1201–1211. [Google Scholar] [CrossRef] [Green Version]
- Anders, E. Do stony meteorites come from comets? Icarus 1975, 24, 363–371. [Google Scholar] [CrossRef]
- Campins, H.; Swindle, T. Are There Cometary Meteorites? In Proceedings of the Lunar and Planetary Science Conference, Houston, TX, USA, 16–20 March 1998; Volume 29.
- Taylor, A.; Baggaley, W.; Steel, D. Discovery of interstellar dust entering the Earth’s atmosphere. Nature 1996, 380, 323–325. [Google Scholar] [CrossRef]
- Greenberg, J.M.; Hage, J. From interstellar dust to comets—A unification of observational constraints. Astrophys. J. 1990, 361, 260–274. [Google Scholar] [CrossRef]
- Gounelle, M.; Morbidelli, A.; Bland, P.A.; Spurny, P.; Young, E.D.; Sephton, M. Meteorites from the outer solar system. In The Solar System Beyond Neptune; University of Arizona Press: Tucson, AZ, USA, 2008; pp. 525–541. [Google Scholar]
- Robert, F. The D/H ratio in chondrites. Space Sci. Rev. 2003, 106, 87–101. [Google Scholar] [CrossRef]
- Bockelée-Morvan, D.; Biver, N.; Swinyard, B.; de Val-Borro, M.; Crovisier, J.; Hartogh, P.; Lis, D.; Moreno, R.; Szutowicz, S.; Lellouch, E.; et al. Herschel measurements of the D/H and 16O/18O ratios in water in the Oort-cloud comet C/2009 P1 (Garradd). Astron. Astrophys. 2012, 544, L15. [Google Scholar] [CrossRef]
- Bouvier, A.; Wadhwa, M. The age of the Solar System redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nat. Geosci. 2010, 3, 637–641. [Google Scholar] [CrossRef]
- Robert, F. Solar system deuterium/hydrogen ratio. In Meteorites and the Early Solar System II; University of Arizona Press: Tucson, AZ, USA, 2006; Volume 943, pp. 341–351. [Google Scholar]
- Ungrouped Mafic Achondrite Northwest Africa 7325: A Reduced, Iron-Poor Cumulate Olivine Gabbro from a Differentiated Planetary Parent Body. Available online: https://www.lpi.usra.edu/meetings/lpsc2013/pdf/2164.pdf (accessed on 26 November 2017).
- Green Meteorite’s Age Casts Doubt on Possible Mercury Origin. Available online: https://www.space.com/20547-mercury-meteorite-mystery-age.html (accessed on 26 November 2017).
- Greenish Rock May Be First Meteorite from Mercury. Available online: http://www.nbcnews.com/id/50712511/ns/technology_and_science-space/t/greenish-rock-may-be-first-meteorite-mercury/#.Whr_MXWGOP8 (accessed on 26 November 2017).
- Alexander, C.O.D.; Bowden, R.; Fogel, M.L.; Howard, K.T.; Herd, C.D.K.; Nittler, L.R. The Provenances of Asteroids, and Their Contributions to the Volatile Inventories of the Terrestrial Planets. Science 2012, 337, 721. [Google Scholar] [CrossRef] [PubMed]
- Murchison, Meteoritical Bulletin Database. Available online: https://www.lpi.usra.edu/meteor/metbull.php?code=16875 (accessed on 26 November 2017).
- Cronin, J.R.; Pizzarello, S.; Frye, J.S. 13C NMR spectroscopy of the insoluble carbon of carbonaceous chondrites. Geochim. Cosmochim. Acta 1987, 51, 299–303. [Google Scholar] [CrossRef]
- Locke, D.R.; Burton, A.S.; Niles, P.B. Conversion and Extraction of Insoluble Organic Materials in Meteorites. In Proceedings of the 47th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 21–25 March 2016. [Google Scholar]
- Gardinier, A.; Derenne, S.; Robert, F.; Behar, F.; Largeau, C.; Maquet, J. Solid state CP/MAS 13C NMR of the insoluble organic matter of the Orgueil and Murchison meteorites: Quantitative study. Earth Planet. Sci. Lett. 2000, 184, 9–21. [Google Scholar] [CrossRef]
- Remusat, L.; Palhol, F.; Robert, F.; Derenne, S.; France-Lanord, C. Enrichment of deuterium in insoluble organic matter from primitive meteorites: A solar system origin? Earth Planet. Sci. Lett. 2006, 243, 15–25. [Google Scholar] [CrossRef]
- Cody, G.D.; Alexander, C.M. NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups. Geochim. Cosmochim. Acta 2005, 69, 1085–1097. [Google Scholar] [CrossRef]
- Busemann, H.; Alexander, M.; Nittler, L.R. Characterization of insoluble organic matter in primitive meteorites by microRaman spectroscopy. Meteorit. Planet. Sci. 2007, 42, 1387–1416. [Google Scholar] [CrossRef] [Green Version]
- Quirico, E.; Orthous-Daunay, F.R.; Beck, P.; Bonal, L.; Brunetto, R.; Dartois, E.; Pino, T.; Montagnac, G.; Rouzaud, J.N.; Engrand, C.; et al. Origin of insoluble organic matter in type 1 and 2 chondrites: New clues, new questions. Geochim. Cosmochim. Acta 2014, 136, 80–99. [Google Scholar] [CrossRef]
- Derenne, S.; Robert, F. Model of molecular structure of the insoluble organic matter isolated from Murchison meteorite. Meteorit. Planet. Sci. 2010, 45, 1461–1475. [Google Scholar] [CrossRef] [Green Version]
- Bonal, L.; Quirico, E.; Bourot-Denise, M.; Montagnac, G. Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter. Geochim. Cosmochim. Acta 2006, 70, 1849–1863. [Google Scholar] [CrossRef]
- Bonal, L.; Quirico, E.; Flandinet, L.; Montagnac, G. Thermal history of type 3 chondrites from the Antarctic meteorite collection determined by Raman spectroscopy of their polyaromatic carbonaceous matter. Geochim. Cosmochim. Acta 2016, 189, 312–337. [Google Scholar] [CrossRef]
- Sephton, M.A. Organic matter in ancient meteorites. Astron. Geophys. 2004, 45, 2–8. [Google Scholar] [CrossRef]
- Sephton, M.A. Organic compounds in carbonaceous meteorites. Nat. Prod. Rep. 2002, 19, 292–311. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.S.; Pearson, V.K.; Gilmour, I.; Sephton, M.A. Contamination by sesquiterpenoid derivatives in the Orgueil carbonaceous chondrite. Org. Geochem. 2003, 34, 37–47. [Google Scholar] [CrossRef]
- Aerts, J.; Elsaesser, A.; Röling, W.; Ehrenfreund, P. A contamination assessment of the CI carbonaceous meteorite Orgueil using a DNA-directed approach. Meteorit. Planet. Sci. 2016, 51, 920–931. [Google Scholar] [CrossRef] [Green Version]
- Kebukawa, Y.; Nakashima, S.; Otsuka, T.; Nakamura-Messenger, K.; Zolensky, M.E. Rapid contamination during storage of carbonaceous chondrites prepared for micro FTIR measurements. Meteorit. Planet. Sci. 2009, 44, 545–557. [Google Scholar] [CrossRef] [Green Version]
- Elsila, J.E.; Callahan, M.P.; Glavin, D.P.; Dworkin, J.P.; Brückner, H. Distribution and stable isotopic composition of amino acids from fungal peptaibiotics: Assessing the potential for meteoritic contamination. Astrobiology 2011, 11, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Martins, Z.; Botta, O.; Fogel, M.L.; Sephton, M.A.; Glavin, D.P.; Watson, J.S.; Dworkin, J.P.; Schwartz, A.W.; Ehrenfreund, P. Extraterrestrial nucleobases in the Murchison meteorite. Earth Planet. Sci. Lett. 2008, 270, 130–136. [Google Scholar] [CrossRef] [Green Version]
- President Clinton Statment Regarding Mars Meteorite Discovery. Available online: https://www2.jpl.nasa.gov/snc/clinton.html (accessed on 26 November 2017).
- McKay, D.S.; Gibson, E.K.; Thomas-Keprta, K.L.; Vali, H.; Romanek, C.S.; Clemett, S.J.; Chillier, X.D.F.; Maechling, C.R.; Zare, R.N. Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001. Science 1996, 273, 924–930. [Google Scholar] [CrossRef] [PubMed]
- Barrat, J.; Gillet, P.; Lesourd, M.; Blichert-Toft, J.; Poupeau, G. The Tatahouine diogenite: Mineralogical and chemical effects of sixty-three years of terrestrial residence. Meteorit. Planet. Sci. 1999, 34, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Jull, A.; Courtney, C.; Jeffrey, D.; Beck, J. Isotopic evidence for a terrestrial source of organic compounds found in Martian meteorites Allan Hills 84001 and Elephant Moraine 79001. Science 1998, 279, 366–369. [Google Scholar] [CrossRef] [PubMed]
- Bada, J.L.; Glavin, D.P.; McDonald, G.D.; Becker, L. A search for endogenous amino acids in Martian meteorite ALH84001. Science 1998, 279, 362–365. [Google Scholar] [CrossRef] [PubMed]
- Kvenvolden, K.; Lawless, J.; Pering, K.; Peterson, E.; Flores, J.; Ponnamperuma, C.; Kaplan, I.R.; Moore, C. Evidence for extraterrestrial amino-acids and hydrocarbons in the Murchison meteorite. Nature 1970, 228, 923–926. [Google Scholar] [CrossRef] [PubMed]
- Glavin, D.P.; Callahan, M.P.; Dworkin, J.P.; Elsila, J.E. The effects of parent body processes on amino acids in carbonaceous chondrites. Meteorit. Planet. Sci. 2010, 45, 1948–1972. [Google Scholar] [CrossRef] [Green Version]
- Martins, Z.; Sephton, M.; Hughes, A. Amino Acids, Peptides and Proteins in Organic Chemistry: Origins and Synthesis of Amino Acids; Wiley-VCH: Weinheim, Germany, 2009; Volume 1. [Google Scholar]
- Callahan, M.P.; Smith, K.E.; Cleaves, H.J.; Ruzicka, J.; Stern, J.C.; Glavin, D.P.; House, C.H.; Dworkin, J.P. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc. Natl. Acad. Sci. USA 2011, 108, 13995–13998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, G.; Kimmich, N.; Belisle, W.; Sarinana, J.; Brabham, K.; Garrel, L. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature 2001, 414, 879–883. [Google Scholar] [CrossRef] [PubMed]
- Pasek, M.A. Rethinking early Earth phosphorus geochemistry. Proc. Natl. Acad. Sci. USA 2008, 105, 853–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasek, M.A.; Lauretta, D.S. Aqueous corrosion of phosphide minerals from iron meteorites: A highly reactive source of prebiotic phosphorus on the surface of the early Earth. Astrobiology 2005, 5, 515–535. [Google Scholar] [CrossRef] [PubMed]
- De Graaf, R.; Visscher, J.; Schwartz, A.W. Reactive phosphonic acids as prebiotic carriers of phosphorus. J. Mol. Evol. 1997, 44, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Pasek, M.A.; Dworkin, J.P.; Lauretta, D.S. A radical pathway for organic phosphorylation during schreibersite corrosion with implications for the origin of life. Geochim. Cosmochim. Acta 2007, 71, 1721–1736. [Google Scholar] [CrossRef]
- Pasek, M.; Herschy, B.; Kee, T.P. Phosphorus: A case for mineral-organic reactions in prebiotic chemistry. Orig. Life Evol. Biosph. 2015, 45, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Naraoka, H.; Shimoyama, A.; Harada, K. Molecular distribution of monocarboxylic acids in Asuka carbonaceous chondrites from Antarctica. Orig. Life Evol. Biosph. 1999, 29, 187–201. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, Y.; Alexandre, M.R.; Lee, T.; Rose-Petruck, C.; Fuller, M.; Pizzarello, S. Molecular and compound-specific isotopic characterization of monocarboxylic acids in carbonaceous meteorites. Geochim. Cosmochim. Acta 2005, 69, 1073–1084. [Google Scholar] [CrossRef]
- Bailey, J. Chirality and the origin of life. Acta Astronaut. 2000, 46, 627–631. [Google Scholar] [CrossRef] [Green Version]
- Pizzarello, S.; Zolensky, M.; Turk, K.A. Nonracemic isovaline in the Murchison meteorite: Chiral distribution and mineral association. Geochim. Cosmochim. Acta 2003, 67, 1589–1595. [Google Scholar] [CrossRef]
- Cooper, G.; Rios, A.C. Enantiomer excesses of rare and common sugar derivatives in carbonaceous meteorites. Proc. Natl. Acad. Sci. USA 2016, 113, E3322–E3331. [Google Scholar] [CrossRef] [PubMed]
- Glavin, D.P.; Dworkin, J.P. Enrichment of the amino acid L-isovaline by aqueous alteration on CI and CM meteorite parent bodies. Proc. Natl. Acad. Sci. USA 2009, 106, 5487–5492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonner, W.A. The origin and amplification of biomolecular chirality. Orig. Life Evol. Biosph. 1991, 21, 59–111. [Google Scholar] [CrossRef] [PubMed]
- Blackmond, D.G. The origin of biological homochirality. Cold Spring Harb. Perspect. Biol. 2010, 2, a002147. [Google Scholar] [CrossRef] [PubMed]
- Bonner, W.A.; Greenberg, J.M.; Rubenstein, E. The extraterrestrial origin of the homochirality of biomolecules–rebuttal to a critique. Orig. Life Evol. Biosph. 1999, 29, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Meierhenrich, U. Amino Acids and the Asymmetry of Life: Caught in the Act of Formation; Springer Science & Business Media: New York, NY, USA, 2008. [Google Scholar]
- Modica, P.; Meinert, C.; de Marcellus, P.; Nahon, L.; Meierhenrich, U.J.; d’Hendecourt, L.L.S. Enantiomeric excesses induced in amino acids by ultraviolet circularly polarized light irradiation of extraterrestrial ice analogs: A possible source of asymmetry for prebiotic chemistry. Astrophys. J. 2014, 788, 79. [Google Scholar] [CrossRef]
- De Marcellus, P.; Meinert, C.; Nuevo, M.; Filippi, J.J.; Danger, G.; Deboffle, D.; Nahon, L.; d’Hendecourt, L.L.S.; Meierhenrich, U.J. Non-racemic amino acid production by ultraviolet irradiation of achiral interstellar ice analogs with circularly polarized light. Astrophys. J. Lett. 2011, 727, L27. [Google Scholar] [CrossRef]
- Kwon, J.; Tamura, M.; Hough, J.H.; Kusakabe, N.; Nagata, T.; Nakajima, Y.; Lucas, P.W.; Nagayama, T.; Kandori, R. Near-infrared circular polarization survey in star-forming regions: Correlations and trends. Astrophys. J. Lett. 2014, 795, L16. [Google Scholar] [CrossRef]
- Meinert, C.; Myrgorodska, I.; De Marcellus, P.; Buhse, T.; Nahon, L.; Hoffmann, S.V.; d’Hendecourt, L.L.S.; Meierhenrich, U.J. Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs. Science 2016, 352, 208–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, A.G.; Hendrickson, C.L.; Jackson, G.S. Fourier transform ion cyclotron resonance mass spectrometry: A primer. Mass Spectrom. Rev. 1998, 17, 1–35. [Google Scholar] [CrossRef]
- Nikolaev, E.N.; Kostyukevich, Y.I.; Vladimirov, G.N. Fourier transform ion cyclotron resonance (FT ICR) mass spectrometry: Theory and simulations. Mass Spectrom. Rev. 2016, 35, 219–258. [Google Scholar] [CrossRef] [PubMed]
- Makarov, A.; Denisov, E.; Kholomeev, A.; Balschun, W.; Lange, O.; Strupat, K.; Horning, S. Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Anal. Chem. 2006, 78, 2113–2120. [Google Scholar] [CrossRef] [PubMed]
- Makarov, A.; Denisov, E.; Lange, O.; Horning, S. Dynamic range of mass accuracy in LTQ Orbitrap hybrid mass spectrometer. J. Am. Soc. Mass Spectrom. 2006, 17, 977–982. [Google Scholar] [CrossRef] [PubMed]
- Danger, G.; Fresneau, A.; Mrad, N.A.; De Marcellus, P.; Orthous-Daunay, F.R.; Duvernay, F.; Vuitton, V.; d’Hendecourt, L.L.S.; Thissen, R.; Chiavassa, T. Insight into the molecular composition of laboratory organic residues produced from interstellar/pre-cometary ice analogues using very high resolution mass spectrometry. Geochim. Cosmochim. Acta 2016, 189, 184–196. [Google Scholar] [CrossRef]
- Vuitton, V.; Bonnet, J.Y.; Frisari, M.; Thissen, R.; Quirico, E.; Dutuit, O.; Schmitt, B.; Le Roy, L.; Fray, N.; Cottin, H.; et al. Very high resolution mass spectrometry of HCN polymers and tholins. Farad. Discuss. 2010, 147, 495–508. [Google Scholar] [CrossRef]
- Yamashita, Y.; Naraoka, H. Two homologous series of alkylpyridines in the Murchison meteorite. Geochem. J. 2014, 48, 519–525. [Google Scholar] [CrossRef] [Green Version]
- Orthous-Daunay, F.; Thissen, R.; Vuitton, V.; Moynier, F.; Zinner, E. Polymeric Series of Large Nonpolar Molecules Found in Murchison by Orbitrap Mass Spectrometry. Meteorit. Planet. Sci. Suppl. 2013, 76, 5247. [Google Scholar]
- Naraoka, H.; Yamashita, Y.; Yamaguchi, M.; Orthous-Daunay, F.R. Molecular Evolution of N-Containing Cyclic Compounds in the Parent Body of the Murchison Meteorite. ACS Earth Space Chem. 2017, 1, 540–550. [Google Scholar] [CrossRef]
- Briois, C.; Thissen, R.; Thirkell, L.; Aradj, K.; Bouabdellah, A.; Boukrara, A.; Carrasco, N.; Chalumeau, G.; Chapelon, O.; Colin, F.; et al. Orbitrap mass analyser for in situ characterisation of planetary environments: Performance evaluation of a laboratory prototype. Planet. Space Sci. 2016, 131, 33–45. [Google Scholar] [CrossRef]
- De Hoffmann, E. Tandem mass spectrometry: A primer. J. Mass Spectrom. 1996, 31, 129–137. [Google Scholar] [CrossRef]
- Lanucara, F.; Holman, S.W.; Gray, C.J.; Eyers, C.E. The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat. Chem. 2014, 6, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Senior, J.K. Partitions and their representative graphs. Am. J. Math. 1951, 73, 663–689. [Google Scholar] [CrossRef]
- Kind, T.; Fiehn, O. Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinform. 2007, 8, 105. [Google Scholar] [CrossRef] [PubMed]
- Pellegrin, V. Molecular formulas of organic compounds: The nitrogen rule and degree of unsaturation. J. Chem. Educ. 1983, 60, 626. [Google Scholar] [CrossRef]
- Koch, B.; Dittmar, T. From mass to structure: An aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun. Mass Spectrom. 2006, 20, 926–932. [Google Scholar] [CrossRef] [Green Version]
- Yassine, M.M.; Harir, M.; Dabek-Zlotorzynska, E.; Schmitt-Kopplin, P. Structural characterization of organic aerosol using Fourier transform ion cyclotron resonance mass spectrometry: Aromaticity equivalent approach. Rapid Commun. Mass Spectrom. 2014, 28, 2445–2454. [Google Scholar] [CrossRef] [PubMed]
- Schmitt-Kopplin, P.; Harir, M.; Kanawati, B.; Tziozis, D.; Hertkorn, N.; Gabelica, Z. Chemical footprint of the solvent soluble extraterrestrial organic matter occluded in Soltmany ordinary chondrite. Meteorites 2012, 2, 79–92. [Google Scholar]
- Popova, O.P.; Jenniskens, P.; Emel’yanenko, V.; Kartashova, A.; Biryukov, E.; Khaibrakhmanov, S.; Shuvalov, V.; Rybnov, Y.; Dudorov, A.; Grokhovsky, V.I.; et al. Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery, and Characterization. Science 2013, 342, 1069–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haack, H.; Grau, T.; Bischoff, A.; Horstmann, M.; Wasson, J.; SøRensen, A.; Laubenstein, M.; Ott, U.; Palme, H.; Gellissen, M.; et al. Maribo-A new CM fall from Denmark. Meteorit. Planet. Sci. 2012, 47, 30–50. [Google Scholar] [CrossRef]
- Keil, K.; Zucolotto, M.E.; Krot, A.N.; Doyle, P.M.; Telus, M.; Krot, T.V.; Greenwood, R.C.; Franchi, I.A.; Wasson, J.T.; Welten, K.C.; et al. The Vicência meteorite fall: A new unshocked (S1) weakly metamorphosed (3.2) LL chondrite. Meteorit. Planet. Sci. 2015, 50, 1089–1111. [Google Scholar] [CrossRef]
- Van Krevelen, D. Graphical-statistical method for the study of structure and reaction processes of coal. Fuel 1950, 29, 269–284. [Google Scholar]
- Tziotis, D.; Hertkorn, N.; Schmitt-Kopplin, P. Letter: Kendrick-analogous network visualisation of ion cyclotron resonance Fourier transform mass spectra: Improved options for the assignment of elemental compositions and the classification of organic molecular complexity. Eur. J. Mass Spectrom. 2011, 17, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Forcisi, S.; Moritz, F.; Lucio, M.; Lehmann, R.; Stefan, N.; Schmitt-Kopplin, P. Solutions for low and high accuracy mass spectrometric data matching: A data-driven annotation strategy in nontargeted metabolomics. Anal. Chem. 2015, 87, 8917–8924. [Google Scholar] [CrossRef] [PubMed]
- Moritz, F.; Kaling, M.; Schnitzler, J.P.; Schmitt-Kopplin, P. Characterization of poplar metabotypes via mass difference enrichment analysis. Plant Cell Environ. 2017, 40, 1057–1073. [Google Scholar] [CrossRef] [PubMed]
- Hemmler, D.; Roullier-Gall, C.; Marshall, J.W.; Rychlik, M.; Taylor, A.J.; Schmitt-Kopplin, P. Evolution of Complex Maillard Chemical Reactions, Resolved in Time. Sci. Rep. 2017, 7, 3227. [Google Scholar] [CrossRef] [PubMed]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. Int. Conf. Weblogs Soc. Med. 2009, 8, 361–362. [Google Scholar]
- Hayashi, C. What is data science? Fundamental concepts and a heuristic example. In Data Science, Classification, and Related Methods; Springer: Berlin, Germany, 1998; pp. 40–51. [Google Scholar]
- Pyne, S.; Rao, B.P.; Rao, S.B. Big Data Analytics: Methods and Applications; Springer: Heidelberg, Germany, 2016. [Google Scholar]
- Somogyi, Á.; Thissen, R.; Orthous-Daunay, F.R.; Vuitton, V. The Role of Ultrahigh Resolution Fourier Transform Mass Spectrometry (FT-MS) in Astrobiology-Related Research: Analysis of Meteorites and Tholins. Int. J. Mol. Sci. 2016, 17, 439. [Google Scholar] [CrossRef] [PubMed]
- Liger-Belair, G.; Cilindre, C.; Gougeon, R.D.; Lucio, M.; Gebefügi, I.; Jeandet, P.; Schmitt-Kopplin, P. Unraveling different chemical fingerprints between a champagne wine and its aerosols. Proc. Natl. Acad. Sci. USA 2009, 106, 16545–16549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossello-Mora, R.; Lucio, M.; Peña, A.; Brito-Echeverría, J.; López-López, A.; Valens-Vadell, M.; Frommberger, M.; Antón, J.; Schmitt-Kopplin, P. Metabolic evidence for biogeographic isolation of the extremophilic bacterium Salinibacter ruber. ISME J. 2008, 2, 242–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvin, M.; Vaughn, S.K. Extraterrestrial Life: Some Organic Constituents of Meteorites and Their Significance for Possible Extraterrestrial Biological Evolution; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 1959.
- Nagy, B.; Meinschein, W.G.; Hennessy, D.J. Aqueous, low temperature environment of the Orgueil meteorite parent body. Ann. N. Y. Acad. Sci. 1963, 108, 534–552. [Google Scholar] [CrossRef] [PubMed]
- Kebukawa, Y.; Alexander, C.M.; Cody, G.D. Compositional diversity in insoluble organic matter in type 1, 2 and 3 chondrites as detected by infrared spectroscopy. Geochim. Cosmochim. Acta 2011, 75, 3530–3541. [Google Scholar] [CrossRef]
- Hertkorn, N.; Harir, M.; Schmitt-Kopplin, P. Nontarget analysis of Murchison soluble organic matter by high-field NMR spectroscopy and FTICR mass spectrometry. Magn. Reson. Chem. 2015, 53, 754–768. [Google Scholar] [CrossRef] [PubMed]
- Hutt, L.D.; Glavin, D.P.; Bada, J.L.; Mathies, R.A. Microfabricated capillary electrophoresis amino acid chirality analyzer for extraterrestrial exploration. Anal. Chem. 1999, 71, 4000–4006. [Google Scholar] [CrossRef] [PubMed]
- Meierhenrich, U.J.; Caro, G.M.M.; Bredehöft, J.H.; Jessberger, E.K.; Thiemann, W.H.P. Identification of diamino acids in the Murchison meteorite. Proc. Natl. Acad. Sci. USA 2004, 101, 9182–9186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cronin, J.R.; Pizzarello, S. Enantiomeric excesses in meteoritic amino acids. Science 1997, 275, 951–955. [Google Scholar] [CrossRef] [PubMed]
- Cody, G.D.; Alexander, C.O.; Tera, F. Solid-state (1H and 13C) nuclear magnetic resonance spectroscopy of insoluble organic residue in the Murchison meteorite: A self-consistent quantitative analysis. Geochim. Cosmochim. Acta 2002, 66, 1851–1865. [Google Scholar] [CrossRef]
- Danzer, K. Analytical Chemistry: Theoretical and Metrological Fundamentals; Springer Science & Business Media: New York, NY, USA, 2007. [Google Scholar]
- Theodor, W. Hänsch—Nobel Lecture. Available online: http://www.nobelprize.org/nobel_prizes/physics/laureates/2005/hansch-lecture.html (accessed on 27 November 2017).
- Moritz, F. Deep Metabotyping of Exhaled Breath Condensate (EBC)—Characterization of Surrogate Markers for Systemic Metabolism and Non-Invasive Diagnostics in Diabetes. Ph.D. Thesis, Technische Universität München, München, Germnay, 2014. [Google Scholar]
- Barone, V.; Biczysko, M.; Puzzarini, C. Quantum chemistry meets spectroscopy for astrochemistry: Increasing complexity toward prebiotic molecules. Acc. Chem. Res. 2015, 48, 1413–1422. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, C.; Ruette, F.; Martorell, G.; Rodriguez, L. Quantum-chemical modeling of interstellar grain prebiotic chemistry: Catalytic synthesis of glycine and alanine on the surface of a polycyclic aromatic hydrocarbon flake. Astrophys. J. Lett. 2004, 601, L59. [Google Scholar] [CrossRef]
- Fortenberry, R.C. Interstellar Anions: The Role of Quantum Chemistry. J. Phys. Chem. A 2015, 119, 9941–9953. [Google Scholar] [CrossRef] [PubMed]
- Ruf, A.; Kanawati, B.; Hertkorn, N.; Yin, Q.Z.; Moritz, F.; Harir, M.; Lucio, M.; Michalke, B.; Wimpenny, J.; Shilobreeva, S.; et al. Previously unknown class of metalorganic compounds revealed in meteorites. Proc. Natl. Acad. Sci. USA 2017, 114, 2819–2824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, W.; Holthausen, M.C. A Chemist’s Guide to Density Functional Theory; John Wiley & Sons: New York, NY, USA, 2015. [Google Scholar]
- Jensen, F. Introduction to Computational Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Jenniskens, P.; Rubin, A.E.; Yin, Q.Z.; Sears, D.W.G.; Sandford, S.A.; Zolensky, M.E.; Krot, A.N.; Blair, L.; Kane, D.; Utas, J.; et al. Fall, recovery, and characterization of the Novato L6 chondrite breccia. Meteorit. Planet. Sci. 2014, 49, 1388–1425. [Google Scholar] [CrossRef] [Green Version]
- Bartoschewitz, R.; Appel, P.; Barrat, J.A.; Bischoff, A.; Caffee, M.W.; Franchi, I.A.; Gabelica, Z.; Greenwood, R.C.; Harir, M.; Harries, D.; et al. The Braunschweig meteorite—A recent L6 chondrite fall in Germany. Chem. Erde Geochem. 2017, 77, 207–224. [Google Scholar] [CrossRef]
- Jenniskens, P.; Fries, M.D.; Yin, Q.Z.; Zolensky, M.; Krot, A.N.; Sandford, S.A.; Sears, D.; Beauford, R.; Ebel, D.S.; Friedrich, J.M.; et al. Radar-Enabled Recovery of the Sutter’s Mill Meteorite, a Carbonaceous Chondrite Regolith Breccia. Science 2012, 338, 1583–1587. [Google Scholar] [CrossRef] [PubMed]
- Serra, G.; Chaudret, B.; Saillard, Y.; Le Beuze, A.; Rabaa, H.; Ristorcelli, I.; Klotz, A. Organometallic chemistry in the interstellar medium. I-Are organometallic reactions efficient processes in astrochemistry? Astron. Astrophys. 1992, 260, 489–493. [Google Scholar]
- Fioroni, M. Astro-organometallics of Fe, Co, Ni: Stability, IR fingerprints and possible locations. Comput. Theor. Chem. 2016, 1084, 196–212. [Google Scholar] [CrossRef]
- Henning, T. Astromineralogy; Springer: New York, NY, USA, 2010; Volume 815. [Google Scholar]
- Marty, P.; de Parseval, P.; Klotz, A.; Chaudret, B.; Serra, G.; Boissel, P. Gas phase formation and reactivity of iron naphthylene cations: A route for polycyclic aromatic hydrocarbon growth. Chem. Phys. Lett. 1996, 256, 669–674. [Google Scholar] [CrossRef]
- Bohme, D.K. PAH [polycyclic aromatic hydrocarbons] and fullerene ions and ion/molecule reactions in interstellar and circumstellar chemistry. Chem. Rev. 1992, 92, 1487–1508. [Google Scholar] [CrossRef]
- Prasad, S.; Huntress, W., Jr. A model for gas phase chemistry in interstellar clouds. I-The basic model, library of chemical reactions, and chemistry among C, N, and O compounds. Astrophys. J. Suppl. Ser. 1980, 43, 1–35. [Google Scholar] [CrossRef]
- Le Guillou, C.; Bernard, S.; Brearley, A.J.; Remusat, L. Evolution of organic matter in Orgueil, Murchison and Renazzo during parent body aqueous alteration: In situ investigations. Geochim. Cosmochim. Acta 2014, 131, 368–392. [Google Scholar] [CrossRef]
- Pearson, V.K.; Sephton, M.A.; Kearsley, A.T.; Bland, P.A.; Franchi, I.A.; Gilmour, I. Clay mineral-organic matter relationships in the early solar system. Meteorit. Planet. Sci. 2002, 37, 1829–1833. [Google Scholar] [CrossRef] [Green Version]
- Yesiltas, M.; Kebukawa, Y. Associations of organic matter with minerals in Tagish Lake meteorite via high spatial resolution synchrotron-based FTIR microspectroscopy. Meteorit. Planet. Sci. 2016, 51, 584–595. [Google Scholar] [CrossRef]
- Elschenbroich, C. Organometallics; John Wiley & Sons: Columbus, OH, USA, 2016. [Google Scholar]
- Schulte, M.; Shock, E. Coupled organic synthesis and mineral alteration on meteorite parent bodies. Meteorit. Planet. Sci. 2004, 39, 1577–1590. [Google Scholar] [CrossRef] [Green Version]
- Ruf, A.; Kanawati, B.; Schmitt-Kopplin, P. Do dihydroxymagnesium carboxylates form Grignard-type reagents? A theoretical investigation on decarboxylative fragmentation. J. Mol. Model. 2018, 24, 106. [Google Scholar] [CrossRef] [PubMed]
- Ehrenfreund, P.; Irvine, W.; Becker, L.; Blank, J.; Brucato, J.; Colangeli, L.; Derenne, S.; Despois, D.; Dutrey, A.; Fraaije, H.; et al. Astrophysical and astrochemical insights into the origin of life. Rep. Prog. Phys. 2002, 65, 1427. [Google Scholar] [CrossRef]
- Sephton, M.A.; Botta, O. Recognizing life in the Solar System: Guidance from meteoritic organic matter. Int. J. Astrobiol. 2005, 4, 269–276. [Google Scholar] [CrossRef]
- Pizzarello, S. The chemistry that preceded life’s origin: A study guide from meteorites. Chem. Biodivers. 2007, 4, 680–693. [Google Scholar] [CrossRef] [PubMed]
- Schulze-Makuch, D.; Irwin, L.N. Life in the Universe: Expectations and Constraints; Springer Science & Business Media: Berlin, Germany, 2008. [Google Scholar]
- Pross, A. What Is Life: How Chemistry Becomes Biology; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Schrödinger, E. Was ist Leben: Die Lebende Zelle Mit den Augen des Physikers Betrachtet; Piper Ebooks: München, Germany, 2017. [Google Scholar]
- Benner, S.A. Defining life. Astrobiology 2010, 10, 1021–1030. [Google Scholar] [CrossRef] [PubMed]
- Cleland, C.E.; Chyba, C.F. Defining ‘life’. Orig. Life Evol. Biosph. 2002, 32, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Benner, S.A.; Ricardo, A.; Carrigan, M.A. Is there a common chemical model for life in the universe? Curr. Opin. Chem. Biol. 2004, 8, 672–689. [Google Scholar] [CrossRef] [PubMed]
- Moldoveanu, S. Pyrolysis of carboxylic acids. Tech. Instrum. Anal. Chem. 2010, 28, 471–526. [Google Scholar]
- Navarro-González, R.; Ponnamperuma, C. Role of trace metal ions in chemical evolution. The case of free-radical reactions. Adv. Space Res. 1995, 15, 357–364. [Google Scholar] [CrossRef]
- Wiiliams, R. Zinc in evolution. J. Inorg. Biochem. 2012, 111, 104–109. [Google Scholar] [CrossRef]
- Feig, A.L.; Uhlenbeck, O.C. The role of metal ions in RNA biochemistry. Cold Spring Harb. Monogr. Ser. 1999, 37, 287–320. [Google Scholar]
- Lawless, J.G.; Levi, N. The role of metal ions in chemical evolution: Polymerization of alanine and glycine in a cation-exchanged clay environment. J. Mol. Evol. 1979, 13, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, J.F.; Williams, R.J.P. The Biological Chemistry of the Elements: The Inorganic Chemistry of Life; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Williams, R.J. Metal ions in biological systems. Biol. Rev. 1953, 28, 381–412. [Google Scholar] [CrossRef]
- Highberger, J.; Savage, C.; Bieging, J.; Ziurys, L. Heavy-metal chemistry in proto-planetary nebulae: Detection of MgNC, NaCN, and AlF toward CRL 2688. Astrophys. J. 2001, 562, 790. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Williams, R.J. The Biodistribution of Metal Ions. In Concepts and Models in Bioinorganic Chemistry; Wiley-VCH: Weinheim, Germany, 2006. [Google Scholar]
Atom Number | Molecules |
---|---|
2 atoms | H; AlF; AlCl; C **; CH; CH; CN; CO; CO; CP; SiC; HCl; KCl; NH; NO; NS; |
NaCl; OH; PN; SO; SO; SiN; SiO; SiS; CS; HF; HD; FeO?; O; CF; SiH?; PO; | |
AlO; OH; CN; SH; SH; HCl; TiO; ArH; N; NO ? | |
3 atoms | C *; CH; CO; CS; CH; HCN; HCO; HCO; HCS; HOC; HO; HS; HNC; |
HNO; MgCN; MgNC; NH; NO; NaCN; OCS; SO; c-SiC; CO *; NH; H (*); | |
SiCN; AlNC; SiNC; HCP; CCP; AlOH; H2O; HCl+; KCN; FeCN; HO; TiO; | |
CN; SiC 2015 | |
4 atoms | c-CH; l-CH; CN; CO; CS; CH *; NH; HCCN; HCNH; HNCO; HNCS; |
HOCO; HCO; HCN; HCS; HO; c-SiC; CH *; CN; PH; HCNO; HOCN; | |
HSCN; HO; CH; HMgNC; HCCO 2015 | |
5 atoms | C *; CH; CSi; l-CH; c-CH; HCCN; CH *; HCN; HCNC; HCOOH; |
HCNH; HCO; HNCN; HNC; SiH *; HCOH; CH; HC(O)CN; HNCNH; | |
CHO; NH; HNCO (?); NCCNH 2015; CHCl 2017 | |
6 atoms | CH; l-HC; CH *; CHCN; CHNC; CHOH; CHSH; HCNH; HCCHO; |
NHCHO; CN; l-HCH *; l-HCN; c-HCO; HCCNH (?); CN; HNCHCN; | |
SiHCN 2017 | |
7 atoms | CH; CHCHCN; CHC2H; HCN; CHCHO; CHNH; c-CHO; HCCHOH; |
CH; CHNCO 2015; HCO 2017 | |
8 atoms | CHCN; HC(O)OCH; CHCOOH; CH; CH; CHOHCHO; l-HCH *; |
CHCHCHO (?); CHCCHCN; HNCHCN; CHCHNH; CHSiH 2017 | |
9 atoms | CHCH; CHCHCN; (CH)O; CHCHOH; HCN; CH; CHC(O)NH; |
CH; CH; CHCHSH (?); CHNHCHO ? 2017 | |
10 atoms | CHCN; (CH)CO; (CHOH); CHCHCHO; CHCHCHO 2016 |
11 atoms | HCN; CHCH; CHOCHO; CHOC(O)CH |
12 atoms | c-CH *; n-CHCN; i-CHCN; CHOCH ? |
>12 atoms | HCN ?; C *; C *; C * |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruf, A.; D’Hendecourt, L.L.S.; Schmitt-Kopplin, P. Data-Driven Astrochemistry: One Step Further within the Origin of Life Puzzle. Life 2018, 8, 18. https://doi.org/10.3390/life8020018
Ruf A, D’Hendecourt LLS, Schmitt-Kopplin P. Data-Driven Astrochemistry: One Step Further within the Origin of Life Puzzle. Life. 2018; 8(2):18. https://doi.org/10.3390/life8020018
Chicago/Turabian StyleRuf, Alexander, Louis L. S. D’Hendecourt, and Philippe Schmitt-Kopplin. 2018. "Data-Driven Astrochemistry: One Step Further within the Origin of Life Puzzle" Life 8, no. 2: 18. https://doi.org/10.3390/life8020018
APA StyleRuf, A., D’Hendecourt, L. L. S., & Schmitt-Kopplin, P. (2018). Data-Driven Astrochemistry: One Step Further within the Origin of Life Puzzle. Life, 8(2), 18. https://doi.org/10.3390/life8020018