Coagulation Profiles of Pulmonary Arterial Hypertension Patients, Assessed by Non-Conventional Hemostatic Tests and Markers of Platelet Activation and Endothelial Dysfunction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Global Evaluation of Hemostasis
2.3. Markers of Platelet and Endothelial Dysfunction
2.4. Conventional Coagulation Tests
2.5. Statistical Analysis
3. Results
3.1. Global Evaluation of Hemostasis
3.2. Markers of Platelet Activation and Endothelial Dysfunction
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Galiè, N.; Humbert, M.; Vachiery, J.L.; Gibbs, S.; Lang, I.; Torbicki, A.; Simonneau, G.; Peacock, A.; VonkNoordegraaf, A.; Beghetti, M.; et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur. Heart J. 2016, 37, 67–119. [Google Scholar] [PubMed]
- Bertoletti, L.; Mismetti, V.; Giannakoulas, G. Use of Anticoagulants in Patients with Pulmonary Hypertension. Hamostaseologie 2020, 40, 348–355. [Google Scholar] [PubMed]
- McLaughlin, V.V.; Shah, S.J.; Souza, R.; Humbert, M. Management of pulmonary arterial hypertension. J. Am. Coll. Cardiol. 2015, 65, 1976–1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazimierczyk, R.; Kamiński, K. The role of platelets in the development and progression of pulmonary arterial hypertension. Adv. Med. Sci. 2018, 63, 312–316. [Google Scholar] [CrossRef]
- Bazan, I.S.; Fares, W.H. Hypercoagulability in Pulmonary Hypertension. Clin. Chest Med. 2018, 39, 595–603. [Google Scholar] [CrossRef]
- Ezedunukwe, I.R.; Enuh, H.; Nfonoyim, J.; Enuh, C.U. Anticoagulation therapy versus placebo for pulmonary hypertension. Cochrane Database Syst. Rev. 2014, CD010695. [Google Scholar] [CrossRef] [Green Version]
- Kopeć, G.; Moertl, D.; Steiner, S.; Stępień, E.; Mikołajczyk, T.; Podolec, J.; Waligóra, M.; Stępniewski, J.; Tomkiewicz-Pająk, L.; Guzik, T.; et al. Markers of thrombogenesis and fibrinolysis and their relation to inflammation and endothelial activation in patients with idiopathic pulmonary arterial hypertension. PLoS ONE 2013, 8, e82628. [Google Scholar] [CrossRef] [Green Version]
- Mojadidi, M.K.; Goodman-Meza, D.; Eshtehardi, P.; Pamerla, M.; Msaouel, P.; Roberts, S.C.; Winoker, J.S.; Jadeja, N.M.; Zolty, R. Thrombocytopenia is an independent predictor of mortality in pulmonary hypertension. Heart Lung J. Crit. Care 2014, 43, 569–573. [Google Scholar] [CrossRef]
- Vrigkou, E.; Tsangaris, I.; Bonovas, S.; Kopterides, P.; Kyriakou, E.; Konstantonis, D.; Pappas, A.; Anthi, A.; Gialeraki, A.; Orfanos, S.E.; et al. Platelet and coagulation disorders in newly diagnosed patients with pulmonary arterial hypertension. Platelets 2019, 30, 646–651. [Google Scholar] [CrossRef]
- Guignabert, C.; Tu, L.; Girerd, B.; Ricard, N.; Huertas, A.; Montani, D.; Humbert, M. New molecular targets of pulmonary vascular remodeling in pulmonary arterial hypertension: Importance of endothelial communication. Chest 2015, 147, 529–537. [Google Scholar] [CrossRef]
- Pettersen, A.Å.; Arnesen, H.; Opstad, T.B.; Bratseth, V.; Seljeflot, I. Markers of endothelial and platelet activation are associated with high on-aspirin platelet reactivity in patients with stable coronary artery disease. Thromb. Res. 2012, 130, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Dovlatova, N.; Heptinstall, S. Platelet aggregation measured by single-platelet counting and using PFA-100 devices. Platelets 2018, 29, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Althaus, K.; Zieger, B.; Bakchoul, T.; Jurk, K. THROMKID-Plus Studiengruppe der Gesellschaft für Thrombose- und Hämostaseforschung (GTH) und der Gesellschaft fürPädiatrischeOnkologie und Hämatologie (GPOH). Standardization of Light Transmission Aggregometry for Diagnosis of Platelet Disorders: An Inter-Laboratory External Quality Assessment. Thromb. Haemost. 2019, 119, 1154–1161. [Google Scholar] [PubMed]
- Field, A.; Poole, T.; Bamber, J.H. ROTEM® sigma reference range validity. Anaesthesia 2019, 74, 1063. [Google Scholar] [CrossRef] [Green Version]
- Cohen, H.; Hunt, B.J.; Efthymiou, M.; Arachchillage, D.R.; Mackie, I.J.; Clawson, S.; Sylvestre, Y.; Machin, S.J.; Bertolaccini, M.L.; Ruiz-Castellano, M.; et al. Rivaroxaban versus warfarin to treat patients with thrombotic antiphospholipid syndrome, with or without systemic lupus erythematosus (RAPS): A randomised, controlled, open-label, phase 2/3, non-inferiority trial. Lancet Haematol. 2016, 3, e426–e436. [Google Scholar] [CrossRef] [Green Version]
- Sucker, C.; Senft, B.; Scharf, R.; Zotz, R. Determination of von Willebrand factor activity: Evaluation of the Haemosil™ assay in comparison with established procedures. Clin. Appl. Thromb. Hemost. 2006, 12, 305–310. [Google Scholar] [CrossRef] [Green Version]
- Kirchmaier, C.M.; Pillitter, D. Diagnosis and management of inherited platelet disorders. Transfus. Med. Hemother. 2010, 37, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Whiting, D.; DiNardo, J.A. TEG and ROTEM: Technology and clinical applications. Am. J. Hematol. 2014, 89, 228–232. [Google Scholar] [CrossRef]
- Görlinger, K.; Pérez-Ferrer, A.; Dirkmann, D.; Saner, F.; Maegele, M.; Calatayud, Á.; Kim, T.Y. The role of evidence-based algorithms for rotational thromboelastometry-guided bleeding management. Korean J. Anesthesiol. 2019, 72, 297–322. [Google Scholar] [CrossRef] [Green Version]
- MacLean, M.M.R. The serotonin hypothesis in pulmonary hypertension revisited: Targets for novel therapies (2017 Grover Conference Series). Pulm. Circ. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Rendu, F.; Brohard-Bohn, B. The platelet release reaction: Granules’ constituents, secretion and functions. Platelets 2011, 2, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, C.N.; Afolayan, A.J.; Eis, A.; Teng, R.J.; Konduri, G.G. Altered prostanoid metabolism contributes to impaired angiogenesis in persistent pulmonary hypertension in a fetal lamb model. Pediatr. Res. 2015, 77, 455–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinsella, T.; Mulvaney, E.; Reid, H.M. Efficacy of the novel thromboxane receptor antagonist NTP42 alone, or in combination with Sildenafil, in the sugen/hypoxia-induced model of pulmonary arterial hypertension. Eur. Heart J. 2019, 40 (Suppl. 1). [Google Scholar] [CrossRef]
- Lan, N.S.H.; Massam, B.D.; Kulkarni, S.S.; Lang, C.C. Pulmonary Arterial Hypertension: Pathophysiology and Treatment. Diseases 2018, 6, 38. [Google Scholar] [CrossRef] [Green Version]
- Al-Naamani, N.; Palevsky, H.I.; Lederer, D.J.; Horn, E.M.; Mathai, S.C.; Roberts, K.E.; Tracy, R.P.; Hassoun, P.M.; Girgis, R.E.; Shimbo, D.; et al. ASA-STAT Study Group. Prognostic Significance of Biomarkers in Pulmonary Arterial Hypertension. Ann. Am. Thorac. Soc. 2016, 13, 25–30. [Google Scholar] [CrossRef]
- Li, X.F.; Song, C.H.; Sheng, H.Z.; Zhen, D.D.; Pan, M.; Zhu, J.H. P-selectin gene polymorphism associates with pulmonary hypertension in congenital heart disease. Int. J. Clin. Exp. Pathol. 2015, 8, 7189–7195. [Google Scholar]
- Pelland-Marcotte, M.C.; Humpl, T.; James, P.D.; Rand, M.L.; Bouskill, V.; Reyes, J.T.; Bowman, M.L.; Carcao, M.D. Idiopathic pulmonary arterial hypertension—A unrecognized cause of high-shear high-flow haemostatic defects (otherwise referred to as acquired von Willebrand syndrome) in children. Br. J. Haematol. 2018, 183, 267–275. [Google Scholar] [CrossRef]
- Horiuchi, H.; Doman, T.; Kokame, K.; Saiki, Y.; Matsumoto, M. Acquired von Willebrand Syndrome Associated with Cardiovascular Diseases. J. Atheroscler. Thromb. 2019, 26, 303–314. [Google Scholar] [CrossRef] [Green Version]
- Rauch, A.; Susen, S.; Zieger, B. Acuired von Willebrand Syndrome in Patients with Ventricular Assist Device. Front. Med. (Lausanne) 2019, 5, 7. [Google Scholar] [CrossRef]
- Kheyfets, V.; Thirugnanasambandam, M.; Rios, L.; Evans, D.; Smith, T.; Schroeder, T.; Mueller, J.; Murali, S.; Lasorda, D.; Spotti, J.; et al. The role of wall shear stress in the assessment of right ventricle hydraulic workload. Pulm. Circ. 2015, 5, 90–100. [Google Scholar] [CrossRef] [Green Version]
- Michiels, J.J.; Berneman, Z.; Schroyens, W.; Finazzi, G.; Budde, U.; Van Vliet, H. The paradox of platelet activation and impaired function: Platelet-von Willebrand factor interactions, and the etiology of thrombotic and hemorrhagic manifestations in essential thrombocythemia and polycythemia vera. Semin. Thromb. Hemost. 2006, 32, 589–603. [Google Scholar] [CrossRef] [PubMed]
- Pareti, F.I.; Capitanio, A.; Mannucci, L.; Ponticelli, C.; Mannucci, P.M. Acquired dysfunction due to the circulation of “exhausted” platelets. Am. J. Med. 1980, 69, 235–240. [Google Scholar] [CrossRef]
- Lopes, A.A.; Caramurú, L.H.; Maeda, N.Y. Endothelial dysfunction associated with chronic intravascular coagulation in secondary pulmonary hypertension. Clin. Appl. Thromb. Hemost. 2002, 8, 353–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tournier, A.; Wahl, D.; Chaouat, A.; Max, J.P.; Regnault, V.; Lecompte, T.; Chabot, F. Calibrated automated thrombography demonstrates hypercoagulability in patients with idiopathic pulmonary arterial hypertension. Thromb. Res. 2010, 126, e418–e422. [Google Scholar] [CrossRef]
- Lopes, A.A.; Barreto, A.C.; Maeda, N.Y.; Cícero, C.; Soares, R.P.; Bydlowski, S.P.; Rich, S. Plasma von Willebrand factor as a predictor of survival in pulmonary arterial hypertension associated with congenital heart disease. Braz. J. Med. Biol. Res. 2011, 44, 1269–1275. [Google Scholar] [CrossRef]
- Hickey, P.M.; Lawrie, A.; Condliffe, R. Circulating Protein Biomarkers in Systemic Sclerosis Related Pulmonary Arterial Hypertension: A Review of Published Data. Front. Med. 2018, 5, 175. [Google Scholar] [CrossRef]
- Robinson, J.C.; Pugliese, S.C.; Fox, D.L.; Badesch, D.B. Anticoagulation in Pulmonary Arterial Hypertension. Curr. Hypertens. Rep. 2016, 18, 47. [Google Scholar] [CrossRef]
- Mohammed, M.; Fayed, N.; Hassanen, A.; Shoham, D.; Hou, S.H.; Grams, M. Rotational thromboelastometry and standard coagulation tests for live liver donors. Clin. Transplant. 2013, 27, E101–E108. [Google Scholar] [CrossRef]
- Fuster, V.; Steele, P.M.; Edward, W.D.; Gersh, B.J.; McGoon, M.D.; Frye, R.L. Primary pulmonary hypertension: Natural history and the importance of thrombosis. Circulation 1984, 70, 580–587. [Google Scholar] [CrossRef] [Green Version]
- Henkens, I.R.; Hazenoot, T.; Boonstra, A.; Huisman, M.V.; Vonk-Noordegraaf, A. Major bleeding with vitamin K antagonist anticoagulants in pulmonary hypertension. Eur. Respir. J. 2013, 41, 872–878. [Google Scholar] [CrossRef] [Green Version]
- Caldeira, D.; Loureiro, M.J.; Costa, J.; Pinto, F.J.; Ferreira, J.J. Oral anticoagulation for pulmonary arterial hypertension: Systematic review and meta-analysis. Can. J. Cardiol. 2014, 30, 879–887. [Google Scholar] [CrossRef] [PubMed]
Clotting Time (CT) | Time from the Start of Measurements Until the Formation of a Clot 2 mm in Amplitude |
---|---|
Clot formation time (CFT) | Time from the end of the CT until clot firmness of 20 mm is achieved |
α angle (α°) | The angle between the central line (x axis) and the tangent of the TEM tracing at the amplitude point of 2 mm, describing the kinetics of clot formation |
Maximum clot firmness (MCF) | It assesses the final clot firmness |
Lysis index at 60 min (LI 60) | The percentage of the remaining clot stability in relation to the MCF following the 60 min observation period after CT, which describes the speed of fibrinolysis |
Area Under the Curve (AUC) | Total amount of thrombin generated |
Lag Time (tlag) | Time needed until the onset of thrombin generation |
Maximum Thrombin Concentration (Cmax) | Peak thrombin generation |
Tmax | Time needed to reach peak thrombin generation |
Add Title | Healthy Controls (n = 25) | PAH Patients (n = 44) | Significance |
---|---|---|---|
Age (years) | 60.1 ± 10.2; 63 (52–67) | 63.3 ± 9.8; 62 (56–71) | p = 0.22 |
Female (%) | 16/25 (64%) | 31/44 (70.5%) | p = 0.63 |
Caucasian Race (%) | 25/25 (100%) | 44/44 (100%) | p = 0.99 |
Patients (%) with a smoking history | 7/25 (28%) | 9/44 (20.5%) | p = 0.74 |
PLTs (103/μL) | 254 ± 47; 240 (228–292) | 239 ± 65; 240 (195–266) | p= 0.30 |
WBC (/μL) | 6938 ± 1186; 6880 (5900–7525) | 7226 ± 1606; 7070 (6250–8355) | p = 0.45 |
Hb (g/dL) | 13.3 ± 1.9; 13.2 (12–15) | 13.9 ± 1.9; 14 (13–15) | p = 0.39 |
INR | 0.97 ± 0.09; 0.96 (0.9–1.02) | 1.03 ± 0.14; 1 (0.9–1) | p = 0.09 |
aPTT (sec) | 29.8 ± 2.9; 29.1 (28–31) | 32.3 ± 5.9; 32.3 (31–36) | p = 0.07 |
Creatinine (mg/dL) | 0.85 ± 0.2; 0.8 (0.7–1.0) | 0.92 ± 0.22; 1 (0.8–1) | p = 0.29 |
AST (U/L) | 19.5 ± 12.7; 15 (11–22) | 17.4 ± 6.5; 17 (12.5–20) | p = 0.39 |
ALT (U/L) | 15.4 ± 6.9; 14 (9–21) | 16.3 ± 8.6; 14 (12–18) | p = 0.68 |
Fibrinogen (mg/dL) | 310.9± 88.8; 275 (217–343) | 332.4 ± 102.7; 320 (247–408) | p = 0.14 |
D–dimers (ng/mL) | 323.4 ± 125.5; 297 (267–359) | 683.4 ± 439.3; 654 (353–828) | p < 0.01 |
mPAP (mm Hg) | 41.2 ± 12.2; 40 (32–48) | ||
PVR (Wood units) | 8.5 ± 3.3; 8 (6–10) | ||
CI (L/min/m2) | 2.3 ± 0.5; 2.3 (1.9–2.5) | ||
NT–proBNP (pg/mL) | 2676 ± 3526; 1615 (580–2787) | ||
6MWT (m) | 329.9 ± 106.1; 315 (277–405) |
Healthy Controls (n = 25) | PAH Patients (n = 44) | Significance | |
---|---|---|---|
CEPI CT (sec) | 134 ± 14.8; 137 (123–145) | 144.5 ± 75.7; 122 (97.5–169.3) | p = 0.50 |
LTA Epi (%) | 70.8 ± 16.1; 68 (59–84) | 51 ± 22; 57.5 (32.8–68.75) | P < 0.001 |
LTA ADP (%) | 73.1 ± 11.1; 71 (64––78) | 58.9 ± 16.7; 61.5 (46.5–70) | p = 0.004 |
Patients (%) with disaggregation | 0/25 (0%) | 26/44 (59.1%) | p = 0.045 |
CT (sec) | 481.4 ± 116.5; 475 (409–562) | 732.3 ± 407.4; 704 (448–914) | p = 0.02 |
CFT (sec) | 133.1 ± 29; 125 (113–158) | 390.1 ± 331.8; 309 (217–496) | p = 0.001 |
α angle (α°) | 63.9 ± 5.4; 65 (56–61) | 48.6 ± 15.6; 51 (38–59) | p < 0.001 |
MCF (mm) | 59 ± 4.1; 58 (56–61) | 59.5 ± 14.9; 60 (52–68.5) | p = 0.84 |
Li60 (%) | 94.2 ± 2.8; 95 (91–97) | 92 ± 6.1; 93 (90–97) | p = 0.02 |
Lag time (sec) | 30.2 ± 5.1; 28.9 (26.8–32) | 28.1 ± 6.9; 27.1 (25.6–30.7) | p = 0.24 |
Tmax (sec) | 82.8 ± 16.7; 79.3 (69.2–89.3) | 60.9 ± 12.7; 60 (53–65) | p < 0.001 |
Cmax (%) | 111.3 ± 14.1; 110 (101–119) | 97.1 ± 21.1; 100 (91–110) | p = 0.004 |
AUC (%) | 101.1 ± 11.9; 98 (93–110) | 84.7 ± 28.5; 87 (76–99) | p = 0.008 |
Healthy Controls (n = 25) | PAH Patients (n = 44) | Significance | |
---|---|---|---|
Serotonin (ng/mL) | 213 ± 127.9; 203.3 (114.6–297.5) | 1064.9 ± 1125.9; 836.7 (268.5–1265.9) | p = 0.002 |
Thromboxane A2 (pg/mL) | 104 ± 37.2; 102.4 (83.5–125.2) | 265.7 ± 341.2; 121.6 (96.6–136.4) | p = 0.03 |
Soluble p–selectin (pg/mL) | 2018.1 ± 558.8; 1964.4 (1696.7–2371.8) | 2341.9 ± 346; 2291.5 (2165.6–2517.4) | p = 0.03 |
vW:Ac (%) | 137.5± 27.9; 149.8 (126.7–158) | 92.2 ± 29.4; 89.9 (71.7–109.7) | p < 0.001 |
vW Ag (%) | 180.5 ± 46.4; 184.2 (149.3–217.7) | 105.8 ± 26.5; 100.6 (90.3–119.8) | p < 0.001 |
vW Ac/Ag | 0.86 ± 0.15; 0.89 (0.8–0.94) | 0.77 ± 0.12; 0.77 (0.68–0.86) | p = 0.02 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrigkou, E.; Tsantes, A.E.; Kopterides, P.; Orfanos, S.E.; Armaganidis, A.; Maratou, E.; Rapti, E.; Pappas, A.; Tsantes, A.G.; Tsangaris, I. Coagulation Profiles of Pulmonary Arterial Hypertension Patients, Assessed by Non-Conventional Hemostatic Tests and Markers of Platelet Activation and Endothelial Dysfunction. Diagnostics 2020, 10, 758. https://doi.org/10.3390/diagnostics10100758
Vrigkou E, Tsantes AE, Kopterides P, Orfanos SE, Armaganidis A, Maratou E, Rapti E, Pappas A, Tsantes AG, Tsangaris I. Coagulation Profiles of Pulmonary Arterial Hypertension Patients, Assessed by Non-Conventional Hemostatic Tests and Markers of Platelet Activation and Endothelial Dysfunction. Diagnostics. 2020; 10(10):758. https://doi.org/10.3390/diagnostics10100758
Chicago/Turabian StyleVrigkou, Eleni, Argyrios E. Tsantes, Petros Kopterides, Stylianos E. Orfanos, Apostolos Armaganidis, Eirini Maratou, Evdoxia Rapti, Athanasios Pappas, Andreas G. Tsantes, and Iraklis Tsangaris. 2020. "Coagulation Profiles of Pulmonary Arterial Hypertension Patients, Assessed by Non-Conventional Hemostatic Tests and Markers of Platelet Activation and Endothelial Dysfunction" Diagnostics 10, no. 10: 758. https://doi.org/10.3390/diagnostics10100758
APA StyleVrigkou, E., Tsantes, A. E., Kopterides, P., Orfanos, S. E., Armaganidis, A., Maratou, E., Rapti, E., Pappas, A., Tsantes, A. G., & Tsangaris, I. (2020). Coagulation Profiles of Pulmonary Arterial Hypertension Patients, Assessed by Non-Conventional Hemostatic Tests and Markers of Platelet Activation and Endothelial Dysfunction. Diagnostics, 10(10), 758. https://doi.org/10.3390/diagnostics10100758