Circulating Levels of Visceral Adipose Tissue-Derived Serine Protease Inhibitor (Vaspin) Appear as a Marker of Musculoskeletal Pain Disability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. LBP-Phenotypes
2.3. Demographic, Anthropometric, and Body Composition Assessment
2.4. Soluble Biomarker Analysis
2.5. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Associations between LBP-Related Phenotypes and Covariates
3.3. Mixed Model-Multivariable Analysis of LBP-Related Phenotypes
3.4. Contribution of Putative Genetic Factors to Significant Associations
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Variables | Gender | N | X ± SE | 95%CI | p |
---|---|---|---|---|---|
Age (y) | M | 489 | 42.80 ± 0.62 | (41.58, 44.05) | 0.651 |
F | 589 | 43.20 ± 0.56 | (42.09, 44.31) | ||
BMI (kg/m2) | M | 486 | 27.53 ± 0.19 | (27.15, 27.92) | 0.00027 |
F | 589 | 28.72 ± 0.24 | (28.23, 29.21) | ||
WHR | M | 483 | 0.92 ± 0.003 | (0.92, 0.93) | <0.001 |
F | 579 | 0.88 ± 0.004 | (0.87, 0.88) | ||
FM/WT | M | 481 | 0.25 ± 0.002 | (0.25, 0.26) | <0.001 |
F | 575 | 0.36 ± 0.003 | (0.36, 0.37) | ||
SMM/WT | M | 478 | 0.37 ± 0.002 | (0.37, 0.38) | <0.001 |
F | 573 | 0.27 ± 0.001 | (0.27,0.28) | ||
BCM/WT | M | 481 | 0.39 ± 0.002 | (0.39, 0.40) | <0.001 |
F | 575 | 0.31 ± 0.002 | (0.31, 0.32) | ||
ECW (L) | M | 483 | 20.75 ± 0.15 | (20.46, 21.05) | <0.001 |
F | 576 | 16.53 ± 0.10 | (16.32, 16.74) | ||
Vaspin (pg/mL) | M | 458 | 1603.59 ± 233.68 | (1144.35, 2062.82) | 0.0011 * |
F | 547 | 1605.21 ± 210.53 | 1191.68, 2018.79) | ||
Adipsin (µg/mL) | M | 480 | 1.30 ± 0.01 | (1.27, 1.34) | 0.054 * |
F | 586 | 1.28 ± 0.01 | (1.25, 1.32) |
AGE | BMI | WHR | FM/WT | SMM/WT | BCM/WT | ECW | Vaspin | Adipsin | |
---|---|---|---|---|---|---|---|---|---|
AGE | 0.28 ** | 0.56 ** | 0.29 ** | −0.45 ** | −0.53 ** | 0.32 ** | NS | 0.18 ** | |
BMI | 0.61 ** | 0.55 ** | 0.78 ** | −0.78 ** | −0.46 ** | 0.58 ** | 0.11 * | 0.17 * | |
WHR | 0.49 ** | 0.44 ** | 0.52 ** | −0.58 ** | −0.51 ** | 0.44 ** | NS | 0.12 ** | |
FM/WT | 0.53 ** | 0.87 ** | 0.41 ** | −0.96 ** | −0.75 ** | 0.49 ** | NS | 0.15 ** | |
SMM/WT | −0.66 ** | −0.81 ** | −0.45 ** | −0.94 ** | 0.70 ** | −0.42 ** | NS | −0.16 ** | |
BCM/WT | −0.48 ** | −0.63 ** | −0.32 ** | −0.83 ** | 0.75 ** | −0.66 ** | −0.10 * | −0.18 ** | |
ECW | 0.46 ** | 0.67 ** | 0.27 ** | 0.63 ** | −0.46 ** | -0.76 ** | 0.14 ** | 0.19 ** | |
Vaspin | NS | NS | NS | NS | NS | NS | NS | NS | |
Adipsin | 0.31 ** | 0.35 ** | 0.15 ** | 0.31 ** | −0.29 ** | −0.30 ** | 0.33 ** | NS |
LBP-Sciatica | LBP-Duration | LBP-Severity | |||||||
---|---|---|---|---|---|---|---|---|---|
Covariate | Male, N= 180 | Female, N= 268 | p | Male, N= 132 | Female, N = 195 | p | Male, N = 195 | Female, N = 150 | p |
Age (y) | 46.97 ± 0.95 | 47.79 ± 0.79 | 5 | 49.49 ± 1.10 | 49.87 ± 0.88 | NS | 46.94 ± 1.33 | 48.30 ± 1.13 | NS |
BMI (kg/m2) | 27.89 ± 0.32 | 30.40 ± 0.35 | 5 | 28.12 ± 0.39 | 31.02 ± 0.41 | 5 | 28.03 ± 0.46 | 30.86 ± 0.48 | 5 |
WHR | 0.94 ± 0.005 | 0.90 ± 0.005 | 5 | 0.95 ± 0.006 | 0.91 ± 0.007 | 4 | 0.94 ± 0.008 | 0.92 ± 0.009 | NS |
FM/WT | 0.25 ± 0.004 | 0.38 ± 0.004 | 4 | 0.25 ± 0.005 | 0.39 ± 0.004 | 4 | 0.25 ± 0.006 | 0.39 ± 0.006 | 4 |
SMM/WT | 0.37 ± 0.003 | 0.26 ± 0.002 | 4 | 0.37 ± 0.004 | 0.26 ± 0.002 | 4 | 0.37 ± 0.004 | 0.26 ± 0.003 | 4 |
BCM/WT | 0.39 ± 0.004 | 0.29 ± 0.003 | 4 | 0.38 ± 0.005 | 0.29 ± 0.003 | 4 | 0.38 ± 0.005 | 0.29 ± 0.004 | 4 |
ECW (L) | 21.54 ± 0.27 | 17.31 ± 0.16 | 4 | 21.83 ± 0.33 | 17.64 ± 0.19 | 4 | 22.11 ± 0.39 | 17.40 ± 0.25 | 4 |
Vaspin (pg/mL) | 6.00 ± 0.09 | 6.21 ± 0.08 | NS | 6.00 ± 0.10 | 6.20 ± 0.09 | NS | 6.24 ± 0.16 | 6.12 ± 0.10 | NS |
Adipsin (µg/mL) | 0.22 ± 0.01 | 0.26 ± 0.01 | NS | 0.24 ± 0.02 | 0.27 ± 0.02 | NS | 0.23 ± 0.02 | 0.26 ± 0.01 | NS |
References
- Lamont, L.A.; Tranquilli, W.J.; Grimm, K.A. Physiology of Pain. Vet. Clin. North Am. Small Anim. Pr. 2000, 30. [Google Scholar] [CrossRef]
- Hartvigsen, J.; Hancock, M.J.; Kongsted, A.; Louw, Q.; Ferreira, M.L.; Genevay, S.; Hoy, D.; Karppinen, J.; Pransky, G.; Sieper, J.; et al. What low back pain is and why we need to pay attention. Lancet 2018, 391, 2356–2367. [Google Scholar] [CrossRef] [Green Version]
- Ignasiak, D.; Valenzuela, W.; Reyes, M.; Ferguson, S.J. The effect of muscle ageing and sarcopenia on spinal segmental loads. Eur. Spine J. 2018, 27, 2650–2659. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.J.; Kim, K.J.; Song, D.G.; Lee, J.S.; Park, K.Y.; Lee, J.W.; Chang, S.H.; Choy, W.S. Sarcopenia and Back Muscle Degeneration as Risk Factors for Back Pain: A Comparative Study. Asian Spine J. 2020, 14, 364–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakai, Y.; Matsui, H.; Ito, S.; Hida, T.; Ito, K.; Koshimizu, H.; Harada, A. Sarcopenia in elderly patients with chronic low back pain. Osteoporos. Sarcopenia 2017, 3, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Tarabeih, N.; Shalata, A.; Trofimov, S.; Kalinkovich, A.; Livshits, G. Growth and differentiation factor 15 is a biomarker for low back pain-associated disability. Cytokine 2019, 117, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Risbud, M.V.; Shapiro, I.M. Role of cytokines in intervertebral disc degeneration: Pain and disc content. Nat. Rev. Rheumatol. 2014, 10, 44–56. [Google Scholar] [CrossRef]
- Rider, S.M.; Mizuno, S.; Kang, J.D. Molecular mechanisms of intervertebral disc degeneration. Spine Surg. Relat. Res. 2019, 3, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Molinos, M.; Almeida, C.R.; Caldeira, J.; Cunha, C.; Gonçalves, R.M.; Barbosa, M.A. Inflammation in intervertebral disc degeneration and regeneration. J. R. Soc. Interface 2015, 12, 20141191. [Google Scholar] [CrossRef]
- Navone, S.E.; Marfia, G.; Giannoni, A.; Beretta, M.; Guarnaccia, L.; Gualtierotti, R.; Nicoli, D.; Rampini, P.; Campanella, R. Inflammatory mediators and signalling pathways controlling intervertebral disc degeneration. Histol. Histopathol. 2017, 32, 523–542. [Google Scholar]
- Morris, P.; Ali, K.; Merritt, M.; Pelletier, J.; Macedo, L.G. A systematic review of the role of inflammatory biomarkers in acute, subacute and chronic non-specific low back pain. BMC Musculoskelet. Disord. 2020, 21, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hider, S.L.; Konstantinou, K.; Hay, E.M.; Glossop, J.; Mattey, D.L. Inflammatory biomarkers do not distinguish between patients with sciatica and referred leg pain within a primary care population: Results from a nested study within the ATLAS cohort. BMC Musculoskelet. Disord. 2019, 20. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Fernández, C.; Francisco, V.; Pino, J.; Mera, A.; González-Gay, M.A.; Gómez, R.; Lago, F.; Gualillo, O. Molecular Relationships among Obesity, Inflammation and Intervertebral Disc Degeneration: Are Adipokines the Common Link? Int. J. Mol. Sci. 2019, 20, 2030. [Google Scholar] [CrossRef]
- Hashem, L.E.; Roffey, D.M.; Alfasi, A.M.; Papineau, G.D.; Wai, D.C.; Phan, P.; Kingwell, S.P.; Wai, E.K. Exploration of the inter-relationships between obesity, physical inactivity, inflammation, and low back pain. Spine (Phila. Pa. 1976) 2018, 43, 1218–1224. [Google Scholar] [CrossRef]
- Ferreira, P.H.; Beckenkamp, P.; Maher, C.G.; Hopper, J.L.; Ferreira, M.L. Nature or nurture in low back pain? Results of a systematic review of studies based on twin samples. Eur. J. Pain 2013, 17, 957–971. [Google Scholar] [CrossRef]
- Doury-Panchout, F.; Metivier, J.-C.; Nardoux, J.; Fouquet, B. Visceral obesity and chronic pain: Effect of a 4-week rehabilitation program on adipokines and insulin resistance. J. Exerc. Rehabil. 2017, 13, 464–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bas, S.; Finckh, A.; Puskas, G.J.; Suva, D.; Hoffmeyer, P.; Gabay, C.; Lübbeke, A. Adipokines correlate with pain in lower limb osteoarthritis: Different associations in hip and knee. Int. Orthop. 2014, 38, 2577–2583. [Google Scholar] [CrossRef]
- Calvet, J.; Orellana, C.; Albiñana Giménez, N.; Berenguer-Llergo, A.; Caixàs, A.; García-Manrique, M.; Galisteo Lencastre, C.; Navarro, N.; Larrosa, M.; Gratacós, J. Differential involvement of synovial adipokines in pain and physical function in female patients with knee osteoarthritis. A cross-sectional study. Osteoarthr. Cart. 2018, 26, 276–284. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A. The Role of Adipokines in Intervertebral Disc Degeneration. Med. Sci. 2018, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Neumann, E.; Junker, S.; Schett, G.; Frommer, K.; Müller-Ladner, U. Adipokines in bone disease. Nat. Rev. Rheumatol. 2016, 12, 296–302. [Google Scholar] [CrossRef]
- Shiri, R.; Solovieva, S.; Husgafvel-Pursiainen, K.; Taimela, S.; Saarikoski, L.A.; Huupponen, R.; Viikari, J.; Raitakari, O.T.; Viikari-Juntura, E. The association between obesity and the prevalence of low back pain in young adults: The Cardiovascular Risk in Young Finns Study. Am. J. Epidemiol. 2008, 167, 1110–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montagnana, M.; Fava, C.; Targher, G.; Franchini, M.; Danese, E.; Bonafini, S.; De Cata, A.; Salvagno, G.L.; Ruzzenente, O.; Guidi, G.C.; et al. Plasma Leptin in Patients at Intermediate to High Cardiovascular Risk With and Without Type 2 Diabetes Mellitus. J. Clin. Lab. Anal. 2017, 31. [Google Scholar] [CrossRef] [PubMed]
- Valverde-Franco, G.; Tardif, G.; Mineau, F.; Paré, F.; Lussier, B.; Fahmi, H.; Pelletier, J.-P.; Martel-Pelletier, J. High in vivo levels of adipsin lead to increased knee tissue degradation in osteoarthritis: Data from humans and animal models. Rheumatology 2018, 57, 1851–1860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brady, S.R.E.; Mousa, A.; Naderpoor, N.; de Courten, M.P.J.; Cicuttini, F.; de Courten, B. Adipsin Concentrations Are Associated with Back Pain Independently of Adiposity in Overweight or Obese Adults. Front. Physiol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Körner, A.; Neef, M.; Friebe, D.; Erbs, S.; Kratzsch, J.; Dittrich, K.; Blüher, S.; Kapellen, T.M.; Kovacs, P.; Stumvoll, M.; et al. Vaspin is related to gender, puberty and deteriorating insulin sensitivity in children. Int. J. Obes. 2011, 35, 578–586. [Google Scholar] [CrossRef] [Green Version]
- Goktas, Z.; Owens, S.; Boylan, M.; Syn, D.; Shen, C.-L.; Reed, D.B.; San Francisco, S.; Wang, S. Associations between Tissue Visfatin/Nicotinamide, Phosphoribosyltransferase (Nampt), Retinol Binding Protein-4, and Vaspin Concentrations and Insulin Resistance in Morbidly Obese Subjects. Mediat. Inflamm. 2013, 2013, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Feng, R.; Li, Y.; Wang, C.; Luo, C.; Liu, L.; Chuo, F.; Li, Q.; Sun, C. Higher vaspin levels in subjects with obesity and type 2 diabetes mellitus: A meta-analysis. Diabetes Res. Clin. Pr. 2014, 106, 88–94. [Google Scholar] [CrossRef]
- Nicholson, T.; Church, C.; Tsintzas, K.; Jones, R.; Breen, L.; Davis, E.T.; Baker, D.J.; Jones, S.W. Vaspin promotes insulin sensitivity in elderly muscle and is upregulated in obesity. J. Endocrinol. 2019, 241, 31–43. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Chen, F.; Li, J.; Wang, Y.; Jiang, C.; Wang, Y.; Zhang, M.; Xu, J. Vaspin antagonizes high fat-induced bone loss in rats and promotes osteoblastic differentiation in primary rat osteoblasts through Smad-Runx2 signaling pathway. Nutr. Metab. 2020, 17, 9. [Google Scholar] [CrossRef] [Green Version]
- Kalichman, L.; Carmeli, E.; Been, E. The Association between Imaging Parameters of the Paraspinal Muscles, Spinal Degeneration, and Low Back Pain. Biomed Res. Int. 2017, 2017, 2562957. [Google Scholar] [CrossRef]
- Okamoto, C.S.; Dunn, A.S.; Green, B.N.; Formolo, L.R.; Chicoine, D. Correlation of Body Composition and Low Back Pain Severity in a Cross-Section of US Veterans. J. Manip. Physiol. 2017, 40, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.P.; Arnold, J.B.; Evans, A.M.; Yaxley, A.; Damarell, R.A.; Shanahan, E.M. The association between body fat and musculoskeletal pain: A systematic review and meta-analysis. BMC Musculoskelet Disord. 2018, 19, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endo, T.; Abe, T.; Akai, K.; Kijima, T.; Takeda, M.; Yamasaki, M.; Isomura, M.; Nabika, T.; Yano, S. Height loss but not body composition is related to low back pain in community-dwelling elderlies: Shimane CoHRE study. BMC Musculoskelet Disord. 2019, 20, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heuch, I.; Heuch, I.; Hagen, K.; Zwart, J.A. A comparison of anthropometric measures for assessing the association between body size and risk of chronic low back pain: The HUNT study. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.M.; Urquhart, D.M.; Wang, Y.; Shaw, J.E.; Magliano, D.J.; Wluka, A.E.; Cicuttini, F.M. Fat mass and fat distribution are associated with low back pain intensity and disability: Results from a cohort study. Arthritis Res. 2017, 19, 26. [Google Scholar] [CrossRef] [Green Version]
- Brady, S.R.E.; Urquhart, D.M.; Hussain, S.M.; Teichtahl, A.; Wang, Y.; Wluka, A.E.; Cicuttini, F. High baseline fat mass, but not lean tissue mass, is associated with high intensity low back pain and disability in community-based adults. Arthritis Res. 2019, 21, 165. [Google Scholar] [CrossRef] [Green Version]
- Livshits, G.; Cohen, Z.; Higla, O.; Yakovenko, K. Familial history, age and smoking are important risk factors for disc degeneration disease in Arabic pedigrees. Eur. J. Epidemiol. 2001, 17, 643–651. [Google Scholar] [CrossRef]
- Smedley, J.; Inskip, H.; Cooper, C.; Coggon, D. Natural history of low back pain. A longitudinal study in nurses. Spine 1998, 23, 2422–2426. [Google Scholar] [CrossRef]
- Chiarotto, A.; Maxwell, L.J.; Terwee, C.B.; Wells, G.A.; Tugwell, P.; Ostelo, R.W. Roland-Morris Disability Questionnaire and Oswestry Disability Index: Which Has Better Measurement Properties for Measuring Physical Functioning in Nonspecific Low Back Pain? Systematic Review and Meta-Analysis. Phys. Ther. 2016, 96, 1620–1637. [Google Scholar] [CrossRef] [Green Version]
- Roland, M.; Fairbank, J. The Roland-Morris Disability Questionnaire and the Oswestry Disability Questionnaire. Spine 2000, 25, 3115–3124. [Google Scholar] [CrossRef] [Green Version]
- McManus, M.L.; Churchwell, K.B.; Strange, K. Regulation of cell volume in health and disease. N. Engl. J. Med. 1995, 333, 1260–1266. [Google Scholar] [CrossRef] [PubMed]
- Malkin, I.; Williams, F.M.K.; LaChance, G.; Spector, T.; MacGregor, A.J.; Livshits, G. Low back and common widespread pain share common genetic determinants. Ann. Hum. Genet. 2014, 78, 357–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falconer, D.S.; Douglas, S.; Mackay, T.F.C. Introduction to Quantitative Genetics; Longman: Burnt Mill, England, 1996; ISBN 0582243025. [Google Scholar]
- Fourney, D.R.; Andersson, G.; Arnold, P.M.; Dettori, J.; Cahana, A.; Fehlings, M.G.; Norvell, D.; Samartzis, D.; Chapman, J.R. Chronic Low Back Pain. Spine 2011, 36, S1–S9. [Google Scholar] [CrossRef] [PubMed]
- Heiker, J.T. Vaspin (serpinA12) in obesity, insulin resistance, and inflammation. J. Pept. Sci. 2014, 20, 299–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimova, R.; Tankova, T. The Role of Vaspin in the Development of Metabolic and Glucose Tolerance Disorders and Atherosclerosis. Biomed. Res. Int. 2015, 2015, 1–7. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, F.; Pei, H.-X.; Zhu, X.; Lin, X.; Song, C.-Y.; Liang, Q.-H.; Liao, E.-Y.; Yuan, L.-Q. Vaspin regulates the osteogenic differentiation of MC3T3-E1 through the PI3K-Akt/miR-34c loop. Sci. Rep. 2016, 6, 25578. [Google Scholar] [CrossRef] [Green Version]
- Bao, J.-P.; Jiang, L.-F.; Chen, W.-P.; Hu, P.-F.; Wu, L.-D. Expression of vaspin in the joint and the levels in the serum and synovial fluid of patients with osteoarthritis. Int. J. Clin. Exp. Med. 2014, 7, 3447. [Google Scholar]
- Jung, C.H.; Lee, W.J.; Hwang, J.Y.; Seol, S.M.; Kim, Y.M.; La Lee, Y.; Park, J.-Y. Vaspin protects vascular endothelial cells against free fatty acid-induced apoptosis through a phosphatidylinositol 3-kinase/Akt pathway. Biochem. Biophys. Res. Commun. 2011, 413, 264–269. [Google Scholar] [CrossRef]
- Bao, J.; Xu, L.; Ran, J.; Xiong, Y.; Wu, L. Vaspin prevents leptin-induced inflammation and catabolism by inhibiting the activation of nuclear factor-κB in rat chondrocytes. Mol. Med. Rep. 2017, 16. [Google Scholar] [CrossRef]
- Li, X.; Ke, X.; Li, Z.; Li, B. Vaspin prevents myocardial injury in rats model of diabetic cardiomyopathy by enhancing autophagy and inhibiting inflammation. Biochem. Biophys. Res. Commun. 2019, 514, 1–8. [Google Scholar] [CrossRef]
- Youn, B.-S.; Kloting, N.; Kratzsch, J.; Lee, N.; Park, J.W.; Song, E.-S.; Ruschke, K.; Oberbach, A.; Fasshauer, M.; Stumvoll, M.; et al. Serum Vaspin Concentrations in Human Obesity and Type 2 Diabetes. Diabetes 2008, 57, 372–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teshigawara, S.; Wada, J.; Hida, K.; Nakatsuka, A.; Eguchi, J.; Murakami, K.; Kanzaki, M.; Inoue, K.; Terami, T.; Katayama, A.; et al. Serum Vaspin Concentrations Are Closely Related to Insulin Resistance, and rs77060950 at SERPINA12 Genetically Defines Distinct Group with Higher Serum Levels in Japanese Population. J. Clin. Endocrinol. Metab. 2012, 97, E1202–E1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goode, A.P.; Carey, T.S.; Jordan, J.M. Low Back Pain and Lumbar Spine Osteoarthritis: How Are They Related? Curr. Rheumatol. Rep. 2013, 15, 305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, M.; Huh, Y.; Ji, R.-R. Roles of inflammation, neurogenic inflammation, and neuroinflammation in pain. J. Anesth. 2019, 33, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Brocker, C.; Thompson, D.C.; Vasiliou, V. The role of hyperosmotic stress in inflammation and disease. Biomol. Concepts 2012, 3, 345–364. [Google Scholar] [CrossRef]
- Vergroesen, P.-P.A.; Kingma, I.; Emanuel, K.S.; Hoogendoorn, R.J.W.; Welting, T.J.; van Royen, B.J.; van Dieën, J.H.; Smit, T.H. Mechanics and biology in intervertebral disc degeneration: A vicious circle. Osteoarthr. Cart. 2015, 23, 1057–1070. [Google Scholar] [CrossRef] [Green Version]
- Stookey, J.D.; Barclay, D.; Arieff, A.; Popkin, B.M. The altered fluid distribution in obesity may reflect plasma hypertonicity. Eur. J. Clin. Nutr. 2007, 61, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Yoon, H.-J.; You, S.; Yoo, S.-A.; Kim, N.-H.; Kwon, H.M.; Yoon, C.-H.; Cho, C.-S.; Hwang, D.; Kim, W.-U. NF-AT5 is a critical regulator of inflammatory arthritis. Arthritis Rheum. 2011, 63, 1843–1852. [Google Scholar] [CrossRef]
- Serra-Prat, M.; Lorenzo, I.; Palomera, E.; Yébenes, J.; Campins, L.; Cabré, M. Intracellular Water Content in Lean Mass is Associated with Muscle Strength, Functional Capacity, and Frailty in Community-Dwelling Elderly Individuals. A Cross-Sectional Study. Nutrients 2019, 11, 661. [Google Scholar] [CrossRef] [Green Version]
- Yamada, Y.; Yoshida, T.; Yokoyama, K.; Watanabe, Y.; Miyake, M.; Yamagata, E.; Yamada, M.; Kimura, M. The Extracellular to Intracellular Water Ratio in Upper Legs is Negatively Associated With Skeletal Muscle Strength and Gait Speed in Older People. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2016, glw125. [Google Scholar] [CrossRef] [Green Version]
- Serra-Prat, M.; Lorenzo, I.; Palomera, E.; Ramírez, S.; Yébenes, J.C. Total Body Water and Intracellular Water Relationships with Muscle Strength, Frailty and Functional Performance in an Elderly Population. A Cross-Sectional Study. J. Nutr. Heal. Aging 2019, 23, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Abdel Ghany, S.M.; Sayed, A.A.; El-Deek, S.E.M.; ElBadre, H.M.; Dahpy, M.A.; Saleh, M.A.; Sharaf El-Deen, H.; Mustafa, M.H. Obesity risk prediction among women of Upper Egypt: The impact of serum vaspin and vaspin rs2236242 gene polymorphism. Gene 2017, 626, 140–148. [Google Scholar] [CrossRef]
- Suliga, E.; Kozieł, D.; Cieśla, E.; Rębak, D.; Wawszczak, M.; Adamus-Białek, W.; Naszydłowska, E.; Piechowska, A.; Głuszek, S. Associations between vaspin rs2236242 gene polymorphism, walking time and the risk of metabolic syndrome. Balk. J. Med. Genet. 2019, 22, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alnory, A.; Gad, H.; Hegazy, G.; Shaker, O. The association of vaspin rs2236242 and leptin rs7799039 polymorphism with metabolic syndrome in Egyptian women. Turk. J. Med. Sci. 2016, 46, 1335–1340. [Google Scholar] [CrossRef] [PubMed]
- Hanisch, D.; Dittmar, M.; Höhler, T.; Alt, K.W. Contribution of genetic and environmental factors to variation in body compartments—A twin study in adults. Anthropol. Anzeiger 2004, 62, 51–60. [Google Scholar] [CrossRef]
- Lippi, G.; Dagostino, C.; Buonocore, R.; Aloe, R.; Bonaguri, C.; Fanelli, G.; Allegri, M. The serum concentrations of leptin and MCP-1 independently predict low back pain duration. Clin. Chem. Lab. Med. 2017, 55, 1368–1374. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.T.; Satoh, S.; Alipui, D.O.; Virojanapa, J.; Levine, M.; Sison, C.; Quraishi, S.; Bloom, O.; Chahine, N.O. Exploratory study for identifying systemic biomarkers that correlate with pain response in patients with intervertebral disc disorders. Immunol. Res. 2015, 63, 170–180. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liu, J.; Liu, Z.-Z.; Duan, D.-P. Inflammation in low back pain may be detected from the peripheral blood: Suggestions for biomarker. Biosci. Rep. 2016, 36, e00361. [Google Scholar] [CrossRef] [Green Version]
Covariate | Control (N = 472) | LBP-Sciatica (N = 447) | P1 | P2 | LBP-Duration (N = 337) | P1 | P2 | LBP-Severity (N = 243) | P1 | P2 |
---|---|---|---|---|---|---|---|---|---|---|
BMI (kg/m2) | 27.32 ± 0.231 | 29.36 ± 0.25 | 5 | NS | 29.86 ± 0.30 | 5 | NS | 29.77 ± 0.35 | 5 | 1 |
WHR | 0.88 ± 0.001 | 0.91 ± 0.001 | 5 | 1 | 0.92 ± 0.004 | 5 | 1 | 0.93 ± 0.006 | 5 | 4 |
FM/WT | 0.30 ± 0.003 | 0.33 ± 0.004 | 5 | NS | 0.34 ± 0.005 | 5 | NS | 0.34 ± 0.006 | 5 | NS |
SMM/WT | 0.33 ± 0.002 | 0.31 ± 0.003 | 5 | NS | 0.30 ± 0.003 | 5 | NS | 0.30 ± 0.004 | 5 | NS |
BCM/WT | 0.36 ± 0.002 | 0.33 ± 0.003 | 5 | 4 | 0.33 ± 0.004 | 5 | 4 | 0.33 ± 0.004 | 5 | 3 |
ECW (L) | 18.03 ± 0.151 | 19.04 ± 0.171 | 5 | 5 | 19.35 ± 0.212 | 5 | 5 | 19.25 ± 0.262 | 5 | 5 |
Vaspin (pg/mL) | 5.83 ± 0.044 | 6.13 ± 0.063 | 5 | 4 | 6.11 ± 0.074 | 4 | 4 | 6.17 ± 0.090 | 4 | 3 |
Adipsin (µg/mL) | 0.20 ± 0.012 | 0.25 ± 0.012 | 3 | NS | 0.26 ± 0.015 | 4 | NS | 0.25 ± 0.015 | 1 | NS |
Covariate | Male (N = 489) | Female (N = 589) |
---|---|---|
Age (y) | 0.226, <0.001 | 0.294, <0.001 |
BMI (kg/m2) | NS | 0.229, <0.001 |
WHR | 0.211, <0.001 | 0.267, <0.001 |
FM/WT | NS | 0.227, <0.001 |
SMM/WT | NS | −0.227, <0.001 |
BCM/WT | −0.149, <0.001 | −0.256, <0.001 |
ECW (L) | 0.215, <0.001 | 0.307, <0.001 |
Vaspin (pg/mL) | 0.123, <0.001 | 0.125, <0.001 |
Adipsin (µg/mL) | NS | 0.164, <0.001 |
LBP-Sciatica | LBP-Duration | LBP-Severity | |||||||
---|---|---|---|---|---|---|---|---|---|
Independent | OR (95% CI) | Β (SE) | p | OR (95% CI) | Β (SE) | p | OR (95% CI) | Β (SE) | p |
Age | 1.78 (1.45–2.18) | 0.57 (0.10) | 1.92 × 10−8 | 2.17 (1.71–2.76) | 0.77 (0.12) | 1.29 × 10−10 | 1.87 (1.44–2.73) | 0.62 (0.13) | 1.87 × 10−8 |
Sex | 2.45 (1.60–3.76) | 0.89 (0.20) | 3.88 × 10−5 | 2.78 (1.72–4.48) | 1.02 (0.24) | 2.78 × 10−5 | 3.18 (1.81–5.60) | 1.15 (0.28) | 1.87 × 10−6 |
ECW | 1.43 (1.14–1.79) | 0.35 (0.11) | 0.001 | 1.59 (1.23–2.05) | 0.46 (0.12) | 0.0003 | 1.68 (1.26–2.24) | 0.52 (0.14) | 0.0003 |
Vaspin | 1.27 (1.07–1.51) | 0.24 (0.08) | 0.004 | 1.24 (1.03–1.50) | 0.21 (0.09) | 0.02 | 1.33 (1.07–1.64) | 0.28 (0.10) | 0.008 |
Dependent Variable: LBP-Disability | ||||||
---|---|---|---|---|---|---|
Independent | Beta | SE of Beta | B | SE of B | t | p-Value |
Age | 0.245 | 0.032 | 0.258 | 0.034 | 7.58 | 7.75 × 10−8 |
Sex | 0.210 | 0.038 | 0.209 | 0.038 | 5.48 | 5.16 × 10−14 |
ECW | 0.185 | 0.040 | 0.182 | 0.039 | 4.61 | 4.44 × 10−6 |
Vaspin | 0.080 | 0.029 | 0.081 | 0.030 | 2.68 | 7.42 × 10−3 |
Variable | Additive Genetic | p-Value |
---|---|---|
Vaspin | 0.66 ± 0.08 | 2.64 × 10−6 |
ECW | 0.42± 0.06 | 0.0005 |
LBP-sciatica | 0.48 ± 0.18 | NS |
LBP-duration | 0.31 ± 0.36 | NS |
LBP-severity | 0.54 ± 0.13 | NS |
LBP-disability | 0.19 ± 0.02 | 2.42 × 10−5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarabeih, N.; Kalinkovich, A.; Shalata, A.; Livshits, G. Circulating Levels of Visceral Adipose Tissue-Derived Serine Protease Inhibitor (Vaspin) Appear as a Marker of Musculoskeletal Pain Disability. Diagnostics 2020, 10, 797. https://doi.org/10.3390/diagnostics10100797
Tarabeih N, Kalinkovich A, Shalata A, Livshits G. Circulating Levels of Visceral Adipose Tissue-Derived Serine Protease Inhibitor (Vaspin) Appear as a Marker of Musculoskeletal Pain Disability. Diagnostics. 2020; 10(10):797. https://doi.org/10.3390/diagnostics10100797
Chicago/Turabian StyleTarabeih, Nader, Alexander Kalinkovich, Adel Shalata, and Gregory Livshits. 2020. "Circulating Levels of Visceral Adipose Tissue-Derived Serine Protease Inhibitor (Vaspin) Appear as a Marker of Musculoskeletal Pain Disability" Diagnostics 10, no. 10: 797. https://doi.org/10.3390/diagnostics10100797
APA StyleTarabeih, N., Kalinkovich, A., Shalata, A., & Livshits, G. (2020). Circulating Levels of Visceral Adipose Tissue-Derived Serine Protease Inhibitor (Vaspin) Appear as a Marker of Musculoskeletal Pain Disability. Diagnostics, 10(10), 797. https://doi.org/10.3390/diagnostics10100797