Diagnostic Performance of Biomarkers Urinary KIM-1 and YKL-40 for Early Diabetic Nephropathy, in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Search Strategy
2.2. Study Selection and Inclusion—Exclusion Criteria
2.3. Data Extraction
2.4. Assessment of Methodological Quality
2.5. Statistical Analysis
3. Results
3.1. Electronic Search Results and Study Characteristics
3.2. Quality Assessment of the Included Studies
3.3. Data Synthesis: Contingency Table, Diagnostic Performance, Hierarchical Summary Receiver Operating Characteristic Curve, Sensitivity Analysis, Publication Bias and Correlation Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jawa, A.; Kcomt, J.; Fonseca, V.A. Diabetic nephropathy and retinopathy. Med. Clin. N. Am. 2004, 88, 1001–1036. [Google Scholar] [CrossRef] [PubMed]
- Koulouridis, E. Diabetic nephropathy in children and adolescents and its consequences in adults. J. Pediatric Endocrinol. Metab. JPEM 2001, 14 (Suppl. S5), 1367–1377. [Google Scholar]
- Palsson, R.; Patel, U.D. Cardiovascular complications of diabetic kidney disease. Adv. Chronic Kidney Dis. 2014, 21, 273–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaqoob, M.; McClelland, P.; Patrick, A.W.; Stevenson, A.; Mason, H.; White, M.C.; Bell, G.M. Evidence of oxidant injury and tubular damage in early diabetic nephropathy. QJM Mon. J. Assoc. Physicians 1994, 87, 601–607. [Google Scholar]
- Garcia-Garcia, P.M.; Getino-Melian, M.A.; Dominguez-Pimentel, V.; Navarro-Gonzalez, J.F. Inflammation in diabetic kidney disease. World J. Diabetes 2014, 5, 431–443. [Google Scholar] [CrossRef] [PubMed]
- Kapoula, G.V.; Kontou, P.I.; Bagos, P.G. Diagnostic Accuracy of Neutrophil Gelatinase-Associated Lipocalin for Predicting Early Diabetic Nephropathy in Patients with Type 1 and Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis. J. Appl. Lab. Med. 2019, 4, 78–94. [Google Scholar] [CrossRef] [PubMed]
- Han, W.K.; Bailly, V.; Abichandani, R.; Thadhani, R.; Bonventre, J.V. Kidney Injury Molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney Int. 2002, 62, 237–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, X.; Tian, L.; Xu, W.; Zhang, Z.; Wang, C.; Qi, C.; Ni, Z.; Mou, S. Diagnostic value of urinary kidney injury molecule 1 for acute kidney injury: A meta-analysis. PLoS ONE 2014, 9, e84131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, F.A.; Fatima, S.S.; Khan, G.M.; Shahid, S. Evaluation of kidney injury molecule-1 as a disease progression biomarker in diabetic nephropathy. Pak. J. Med. Sci. 2019, 35, 992–996. [Google Scholar]
- Rathcke, C.N.; Johansen, J.S.; Vestergaard, H. YKL-40, a biomarker of inflammation, is elevated in patients with type 2 diabetes and is related to insulin resistance. Inflamm. Res. 2006, 55, 53–59. [Google Scholar] [CrossRef]
- El-Menshawy, N.; Abdeen, H.; Hamoud, M.; Badawy, E.; Metwali, A.E.-H.; El-Etreby, S. Evaluation of YKL-40 in Patients with Type II Diabetes Mellitus with Increasing Levels of Albuminuria. Bull. Egypt. Soc. Physiol. Sci. 2011, 31, 77–92. [Google Scholar] [CrossRef]
- Rathcke, C.N.; Persson, F.; Tarnow, L.; Rossing, P.; Vestergaard, H. YKL-40, a marker of inflammation and endothelial dysfunction, is elevated in patients with type 1 diabetes and increases with levels of albuminuria. Diabetes Care 2009, 32, 323–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothstein, H.R.; Sutton, A.J.; Borenstein, M. Publication Bias in Meta-Analysis: Prevention, Assessment and Adjustments; John Wiley & Sons: New York, NY, USA, 2006. [Google Scholar]
- Pan, Z.; Trikalinos, T.A.; Kavvoura, F.K.; Lau, J.; Ioannidis, J.P. Local literature bias in genetic epidemiology: An empirical evaluation of the Chinese literature. PLoS Med. 2005, 2, e334. [Google Scholar] [CrossRef]
- American Diabetes, A. Standards of medical care in diabetes—2013. Diabetes Care 2013, 36 (Suppl. S1), S11–S66. [Google Scholar] [CrossRef] [Green Version]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.; Group, Q. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- van Houwelingen, H.C.; Arends, L.R.; Stijnen, T. Advanced methods in meta-analysis: Multivariate approach and meta-regression. Stat. Med. 2002, 21, 589–624. [Google Scholar] [CrossRef]
- Reitsma, J.B.; Glas, A.S.; Rutjes, A.W.; Scholten, R.J.; Bossuyt, P.M.; Zwinderman, A.H. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J. Clin. Epidemiol. 2005, 58, 982–990. [Google Scholar] [CrossRef]
- Arends, L.R.; Hamza, T.H.; van Houwelingen, J.C.; Heijenbrok-Kal, M.H.; Hunink, M.G.; Stijnen, T. Bivariate random effects meta-analysis of ROC curves. Med. Decis. Mak. Int. J. Soc. Med. Decis. Mak. 2008, 28, 621–638. [Google Scholar] [CrossRef]
- Harbord, R.M.; Deeks, J.J.; Egger, M.; Whiting, P.; Sterne, J.A. A unification of models for meta-analysis of diagnostic accuracy studies. Biostatistics 2007, 8, 239–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J. Selecting studies and collecting data. In Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series; Version 5.1.0; Wiley: New York, NY, USA, 2011. [Google Scholar]
- Hozo, S.P.; Djulbegovic, B.; Hozo, I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med. Res. Methodol. 2005, 5, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.P.; White, I.R.; Anzures-Cabrera, J. Meta-analysis of skewed data: Combining results reported on log-transforMed. or raw scales. Stat. Med. 2008, 27, 6072–6092. [Google Scholar] [CrossRef] [Green Version]
- Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deeks, J.J.; Macaskill, P.; Irwig, L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J. Clin. Epidemiol. 2005, 58, 882–893. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.S.; Song, S.H.; Kim, I.J.; Yang, J.Y.; Lee, J.G.; Kwak, I.S.; Kim, Y.K. Clinical implication of urinary tubular markers in the early stage of nephropathy with type 2 diabetic patients. Diabetes Res. Clin. Pract. 2012, 97, 251–257. [Google Scholar] [CrossRef]
- El-Attar, H.; Khalil, G.; Gaber, E. Human Kidney Injury Molecule-1 (Kim-1) Level as an Early Marker for Diabetic Nephropathy in Egyptian Type 2 Diabetic Patients. J. Ren. Med. 2017, 1, 3. [Google Scholar]
- Fu, W.J.; Xiong, S.L.; Fang, Y.G.; Wen, S.; Chen, M.L.; Deng, R.T.; Zheng, L.; Wang, S.B.; Pen, L.F.; Wang, Q. Urinary tubular biomarkers in short-term type 2 diabetes mellitus patients: A cross-sectional study. Endocrine 2012, 41, 82–88. [Google Scholar] [CrossRef]
- El-Ashmawy, N.E.; El-Zamarany, E.A.; Khedr, N.F.; El-Fattah, A.I.A.; Eltoukhy, S.A. Kidney injury molecule-1 (Kim-1): An early biomarker for nephropathy in type II diabetic patients. Int. J. Diabetes Dev. Ctries 2015, 35, 431–438. [Google Scholar] [CrossRef]
- Ali, S.I.; Morsy, A.A.; Mohammed, R.A.; Gelany, H.E.-A. KIM-1 and NGAL as biomarkers of nephropathy in Type II diabetes. Int. J. Adv. Res. (IJAR) 2018, 6, 1412–1417. [Google Scholar] [CrossRef] [Green Version]
- Kin Tekce, B.; Tekce, H.; Aktas, G.; Sit, M. Evaluation of the urinary kidney injury molecule-1 levels in patients with diabetic nephropathy. Clin. Investig. Med. Med. Clin. Exp. 2014, 37, E377–E383. [Google Scholar] [CrossRef] [Green Version]
- Aslan, O.; Demir, M.; Koseoglu, M. Kidney Injury Molecule Levels in Type 2 Diabetes Mellitus. J. Clin. Lab. Anal. 2016, 30, 1031–1036. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Xu, B.; Song, P.; Zhu, X.; Yuan, S.; Kanwar, Y.S.; Sun, L. The Kidney Specific Protein myo-Inositol Oxygenase, a Potential Biomarker for Diabetic Nephropathy. Kidney Blood Press. Res. 2018, 43, 1772–1785. [Google Scholar] [CrossRef] [Green Version]
- Umapathy, D.; Dornadula, S.; Krishnamoorthy, E.; Mariappanadar, V.; Viswanathan, V.; Ramkumar, K.M. YKL-40: A biomarker for early nephropathy in type 2 diabetic patients and its association with inflammatory cytokines. Immunobiology 2018, 223, 718–727. [Google Scholar] [CrossRef]
- Rondbjerg, A.K.; Omerovic, E.; Vestergaard, H. YKL-40 levels are independently associated with albuminuria in type 2 diabetes. Cardiovasc. Diabetol. 2011, 10, 54. [Google Scholar] [CrossRef] [Green Version]
- Zurawska-Plaksej, E.; Lugowska, A.; Hetmanczyk, K.; Knapik-Kordecka, M.; Adamiec, R.; Piwowar, A. Proteins from the 18 glycosyl hydrolase family are associated with kidney dysfunction in patients with diabetes type 2. Biomarkers 2015, 20, 52–57. [Google Scholar] [CrossRef]
- Han, J.Y.; Ma, X.Y.; Yu, L.J.; Shao, Y.; Wang, Q.Y. Correlation between serum YKL-40 levels and albuminuria in type 2 diabetes. Genet. Mol. Res. GMR 2015, 14, 18596–18603. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, S.S.; Kim, I.J.; Song, S.H.; Kim, Y.K.; Kim, J.I.; Jeon, Y.K.; Kim, B.H.; Kwak, I.S. Clinical implication of plasma and urine YKL-40, as a proinflammatory biomarker, on early stage of nephropathy in type 2 diabetic patients. J. Diabetes Its Complicat. 2012, 26, 308–312. [Google Scholar] [CrossRef]
- Zachwieja, J.; Soltysiak, J.; Fichna, P.; Lipkowska, K.; Stankiewicz, W.; Skowronska, B.; Kroll, P.; Lewandowska-Stachowiak, M. Normal-range albuminuria does not exclude nephropathy in diabetic children. Pediatric Nephrol. 2010, 25, 1445–1451. [Google Scholar] [CrossRef]
- Araki, S.; Haneda, M.; Sugimoto, T.; Isono, M.; Isshiki, K.; Kashiwagi, A.; Koya, D. Factors associated with frequent remission of microalbuminuria in patients with type 2 diabetes. Diabetes 2005, 54, 2983–2987. [Google Scholar] [CrossRef] [Green Version]
- Schalkwijk, C.G.; Stehouwer, C.D. Vascular complications in diabetes mellitus: The role of endothelial dysfunction. Clin. Sci. 2005, 109, 143–159. [Google Scholar] [CrossRef] [PubMed]
First Author’ s Name, Year (Reference) | Country | Sample Size (n) | Sex (%Male) | Age | Definition of Albuminuria for T2DM Patients | Method of uKIM-1 Measurement | Variables Provided | |||
---|---|---|---|---|---|---|---|---|---|---|
Controls | Patients | Controls | Patients | Controls | Patients | |||||
Kim SS, 2012 [29] | Republic of Korea | 25 | 58 | 56.0 | 39.6 | 50.9 | 57 | Normoalbuminuria: uACR < 30 mg/g | ELISA (R &D systems) | Median + IQR |
El-Attar HA, 2017 [30] | Egypt | 20 | 20 | 45.1 | 50.0 | 39.5 | 39.5 | Normoalbuminuria uACR < 30 mg/g | ELISA | Median+ min, max |
Fu Wen-jin, 2012 [31] | China | 28 | 61 | 46.4 | - | 48.3 | - | Normoalbuminuria uACR < 30 mg/g | ELISA (Quantikine R & D) | Median + IQR |
El-Ashmawy NE., 2015 [32] | Egypt | 20 | 30 | 50.0 | 33.3 | 51.6 | 60.2 | Normoalbuminuria uACR < 30 mg/g | ELISA (Adibo Bioscience) | Mean + SD |
Ali SI., 2017 [33] | Egypt | 19 | 24 | 42.8 | - | 45.0 | - | Normoalbuminuria uACR < 30 mg/g | ELISA (Glory Diagnostics) | Mean + SD |
Kin Tekce B, 2014 [34] | Turkey | 34 | 39 | 47.0 | 46.1 | 59 | 62 | Normoalbuminuria uACR < 30 mg/g | ELISA (Aviscera Bioscience) | Mean + SD |
Aslan O, 2014 [35] | Turkey | 20 | 20 | 0 | 0 | 48.4 | 52.1 | Normoalbuminuria uACR < 30 mg/g | ELISA (USCN) | Mean + SD |
Gao P, 2018 [36] | USA | 30 | 30 | 50.0 | 53.3 | 48.1 | 50.1 | Normoalbuminuria uACR < 30 mg/g | ELISA (USCN) | Median + IQR |
First Author’ s Name, Year (Reference) | Country | Sample Size (n) | Sex (%Male) | Age | Definition of Albuminuria for T2DM Patients | YKL-40 | Method of uKIM-1 Measurement | Variables Provided | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Controls | Patients | Controls | Patients | Controls | Patients | ||||||
Umapathy D, 2018 [37] | India | 83 | 81 | 52.6 | 60.5 | 54.1 | 54.1 | Normoalbuminuria: uACR < 30 mg/g | Plasma | Immunoassay (Bio-PlexPro™) | Median + range |
El-Menshawy N, 2011 [11] | Egypt | 35 | 39 | 54.3 | 48.7 | 49.3 | 52.5 | Normoalbuminuria uACR < 30 mg/g | Serum | EIA (METRA, QUIDEL) | Mean + SD |
Rondbjerg AK, 2011 [38] | Denmark | 20 | 49 | 60.4 | 44.8 | 57.1 | 61.3 | Normoalbuminuria uACR < 22.12 mg/g | Serum | ELISA (Quidel, USA) | Median + IQR |
Zurawska-Plaksej E, 2014 [39] | Poland | 32 | 29 | 37.5 | 37.9 | 61.0 | 62.9 | Normoalbuminuria uACR < 30 mg/g | Plasma | ELISA (MicroVue, Quidel) | Mean + SD |
Han JY, 2015 [40] | China | 210 | 260 | 48.4 | 50.7 | 53.4 | 52.8 | Normoalbuminuria uACR < 30 mg/g | Serum | ELISA (Bio-Technology) | Median + IQR |
Lee JH, 2012 [41] | South Korea | 22 | 25 | 59.1 | 44 | 52.4 | 55.6 | Normoalbuminuria uACR < 30 mg/g | Plasma | ELISA (R&D Systems) | Median + IQR |
Study | True Positive | False Negative | True Negative | False Positive | Sensitivity (95%CI) | Specificity (95%CI) |
---|---|---|---|---|---|---|
uKIM-1: control vs. normoalbuminuric T2DM patients | ||||||
Kim SS, 2012 | 7 | 51 | 22 | 3 | 0.12 (0.05–0.23) | 0.88 (0.69–0.97) |
El-Attar HA, 2017 | 10 | 10 | 14 | 6 | 0.50 (0.27–0.73) | 0.70 (0.46–0.88) |
Fu Wen-jin, 2012 | 38 | 23 | 18 | 10 | 0.62 (0.49–0.74) | 0.64 (0.44–0.81) |
El-Ashmawy NE., 2015 | 30 | 0 | 20 | 0 | 1.00 (0.88–1.00) | 1.00 (0.83–1.00) |
Ali SI., 2017 | 22 | 2 | 16 | 3 | 0.92 (0.73–0.99) | 0.84 (0.60–0.97) |
Kin Tekce B, 2014 | 33 | 6 | 32 | 2 | 0.85 (0.69–0.94) | 0.94 (0.88–0.99) |
Aslan O, 2014 | 7 | 13 | 16 | 4 | 0.35 (0.15–0.59) | 0.80 (0.56–0.94) |
Gao P, 2018 | 13 | 17 | 18 | 12 | 0.43 (0.25–0.63) | 0.60 (0.41–0.77) |
YKL-40: control vs. normoalbuminuric T2DM patients | ||||||
Umapathy D, 2018 | 72 | 9 | 70 | 13 | 0.89 (0.80–0.95) | 0.84 (0.75–0.91) |
El-Menshawy N, 2011 | 36 | 3 | 32 | 3 | 0.92 (0.79–0.98) | 0.91 (0.77–0.98) |
Rondbjerg AK, 2011 | 35 | 14 | 14 | 6 | 0.71 (0.57–0.83) | 0.70 (0.46–0.88) |
Zurawska-Plaksej E, 2014 | 12 | 17 | 22 | 10 | 0.41 (0.24–0.61) | 0.69 (0.77–0.98) |
Han JY, 2015 | 251 | 9 | 204 | 6 | 0.97 (0.94–0.98) | 0.97 (0.94–0.99) |
Lee JH, 2012 | 18 | 7 | 16 | 6 | 0.72 (0.51–0.88) | 0.73 (0.50–0.89) |
No of Studies | Sensitivity (95% CI) | I2(%) | Specificity (95%CI) | I2 (%) | PLR (95%CI) | NLR (95% CI) | DOR (95% CI) | AUC (95%CI) | p Value (Publication Bias) |
---|---|---|---|---|---|---|---|---|---|
uKIM-1: controls vs. T2DM patients with normoalbuminuria | |||||||||
9 | 0.68 (0.35–0.89) | 94.1 | 0.83 (0.69–0.92) | 83.0 | 4.1 (1.5–11.0) | 0.38 (0.14–1.06) | 11 (2, 75) | 0.85 (0.82–0.88) | 0.74 |
YKL-40: controls vs. T2DM patients with normoalbuminuria | |||||||||
6 | 0.83 (0.65–0.93) | 94.0 | 0.85 (0.72–0.93) | 87.0 | 5.5 (2.4–12.8) | 0.20 (0.08–0.55) | 28 (5, 156) | 0.91 (0.88–0.93) | 0.01 |
YKL-40: controls vs. T2DM patients with normoalbuminuria-Sensitivity analysis | |||||||||
5 | 0.85 (0.64–0.95) | 94.8 | 0.87 (0.73–0.94) | 88.1 | 6.5 (2.5–16.5) | 0.18 (0.06–0.52) | 37 (5, 269) | 0.92 (0.90–0.94) | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapoula, G.V.; Kontou, P.I.; Bagos, P.G. Diagnostic Performance of Biomarkers Urinary KIM-1 and YKL-40 for Early Diabetic Nephropathy, in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Diagnostics 2020, 10, 909. https://doi.org/10.3390/diagnostics10110909
Kapoula GV, Kontou PI, Bagos PG. Diagnostic Performance of Biomarkers Urinary KIM-1 and YKL-40 for Early Diabetic Nephropathy, in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Diagnostics. 2020; 10(11):909. https://doi.org/10.3390/diagnostics10110909
Chicago/Turabian StyleKapoula, Georgia V., Panagiota I. Kontou, and Pantelis G. Bagos. 2020. "Diagnostic Performance of Biomarkers Urinary KIM-1 and YKL-40 for Early Diabetic Nephropathy, in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis" Diagnostics 10, no. 11: 909. https://doi.org/10.3390/diagnostics10110909
APA StyleKapoula, G. V., Kontou, P. I., & Bagos, P. G. (2020). Diagnostic Performance of Biomarkers Urinary KIM-1 and YKL-40 for Early Diabetic Nephropathy, in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Diagnostics, 10(11), 909. https://doi.org/10.3390/diagnostics10110909