Spectrophotometric Color Measurement to Assess Temperature of Exposure in Cortical and Medullar Heated Human Bones: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Bone Sampling
2.2. Sample Preparation
2.3. Incineration
2.4. Color Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ellingham, S.T.; Thompson, T.J.; Islam, M.; Taylor, G. Estimating temperature exposure of burnt bone—A methodological review. Sci. Justice 2015, 55, 181–188. [Google Scholar] [CrossRef]
- Fredericks, J.D.; Ringrose, T.J.; Dicken, A.; Williams, A.; Bennett, P. A potential new diagnostic tool to aid DNA analysis from heat compromised bone using colorimetry: A preliminary study. Sci. Justice 2015, 55, 124–130. [Google Scholar] [CrossRef] [PubMed]
- De Boer, H.H.; Maat, G.J.R.; Kadarmo, D.A.; Widodo, P.T.; Kloosterman, A.D.; Kal, A.J. DNA identification fo human remains in Disaster Victim Identification (DVI): An efficient sampling method for muscle, bone, bone marrow and teeth. Forensic Sci. Int. 2018, 289, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Shipman, P.; Foster, G.; Schoeninger, M. Burnt Bones and Teeth: An Experimental Study of Color, Morphology, Crystal Structure and Shrinkage. J. Archaeol. Sci. 1984, 11, 307–325. [Google Scholar] [CrossRef]
- Shkrum, M.J.; Jonhston, K.A. Fire and suicide: A three-year study of self-immolation deaths. J Forensic Sci. 1992, 37, 208–221. [Google Scholar] [CrossRef] [PubMed]
- Thompson, T.J.U. Recent advances in the study of burned bone and their implications for forensic anthropology. Forensic Sci Int. 2004, 146, S203–S205. [Google Scholar] [CrossRef]
- Thompson, T.J.U. Heat-induced dimensional changes in bone and their consequences for forensic anthropology. J. Forensic Sci. 2005, 50, 1008–1015. [Google Scholar] [CrossRef]
- Fanton, L.; Jdeed, K.; Tilhet-Coartet, S.; Malicier, D. Criminal burning. Forensic Sci Int. 2006, 158, 87–93. [Google Scholar] [CrossRef]
- Ubelaker, D.H. The forensic evaluation of burned skeletal remains: A synthesis. Forensic Sci Int. 2009, 183, 1–5. [Google Scholar] [CrossRef]
- Gonçalves, D. The reliability of osteometric techniques for the sex determination of burned human skeletal remains. Homo 2011, 62, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Carroll, E.L.; Smith, M. Burning questions: Investigations using field experimentation of different patterns of change to bone in accidental vs deliberate burning scenarios. J. Archaeol. Sci. Rep. 2018, 20, 952–963. [Google Scholar] [CrossRef]
- Lambrecht, G.; Mallol, C. Autofluorescence of experimentally heated bone Potential archaeological applications and relevance for estimating degree of burning. J. Archaeol. Sci. Rep. 2020, 31, 102333. [Google Scholar] [CrossRef]
- Reidsma, F.H.; Hoesel, A.; van Os, J.H.; Megens, L.; Braadbaart, F. Charred bone: Physical and chemical changes during laboratory simulated heating under reducing conditions and its relevance for the study of fire use in archaeology. J. Archaeol. Sci. Rep. 2016, 10, 282–292. [Google Scholar] [CrossRef]
- Fernández-Jalvo, Y.; Carlos-Díez, J.; Cáceres, I.; Rosell, J. Human cannibalism in the Early Pleistocene of Europe (Gran Dolina, Sierra de Atapuerca, Burgos, Spain). J. Hum. Evol. 1999, 37, 591–622. [Google Scholar] [CrossRef] [Green Version]
- Santana, J.; Rodríguez-Santos, F.J.; Camalich-Massieu, M.D.; Martín-Socas, D.; Fregel, R. Aggressive or funerary cannibalism? Skull-cup and human bone manipulation in Cueva de El Toro (Early Neolithic, southern Iberia). Am. J. Phys. Anthr. 2019, 169, 31–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gowlett, J.A. The discovery of fire by humans: A long and convoluted process. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150164. [Google Scholar] [CrossRef] [Green Version]
- Thornton, J.I. Visual Color Comparisons in Forensic Science. Forensic Sci. Rev. 1997, 9, 37–57. [Google Scholar]
- Croft, D.J.; Pye, K. Multi-technique comparison of source and primary transfer soil samples: An experimental investigation. Sci. Justice 2004, 44, 21–28. [Google Scholar] [CrossRef]
- Krap, T.; van de Goot, F.R.W.; Oostra, R.J.; Duijst, W.; Waters-Rist, A.L. Temperature estimations of heated bone: A questionnaire-based study of accuracy and precision of interpretation of bone colour by forensic and physical anthropologists. Leg. Med. (Tokyo) 2017, 29, 22–28. [Google Scholar] [CrossRef]
- Krap, T.; Nota, K.; Wilk, L.S.; van de Goot, F.R.W.; Ruijter, J.M.; Duijst, W.; Oostra, R.J. Luminescence of thermally altered human skeletal remains. Int. J. Legal Med. 2017, 131, 1165–1177. [Google Scholar] [CrossRef] [Green Version]
- Wärmländer, S.K.T.S.; Varul, L.; Koskinen, J.; Saage, R.; Schlager, S. Estimating the Temperature of Heat-exposed Bone via Machine Learning Analysis of SCI Color Values: A Pilot Study. J. Forensic Sci. 2019, 64, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Krap, T.; Ruijter, J.M.; Nota, K.; Karel, J.; Burgers, A.L.; Aalders, M.C.G.; Oostra, R.J.; Duijst, W. Colourimetric analysis of thermally altered human bone samples. Sci. Rep. 2019, 9, 8923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubio, L.; Sioli, J.M.; Suarez, J.; Gaitan, M.J.; Martin-de-las-Heras, S. Spectrophotometric analysis of color changes in teeth incinerated at increasing temperatures. Forensic Sci. Int. 2015, 252, 193. [Google Scholar] [CrossRef] [PubMed]
- Rubio, L.; Sioli, J.M.; Santos, I.; Fonseca, G.M.; Martin-de-las-Heras, S. Morphological changes in teeth exposed to high temperatures with forensic purposes. Int. J. Morphol. 2016, 34, 719–728. [Google Scholar] [CrossRef] [Green Version]
- International Commission on Illumination. CIE, Colorimetry, 2nd ed.; Central Bureau of the CIE: Vienna, Austria, 1986. [Google Scholar]
- Materials AASoTa. Standard Test Method for Indexes of Whiteness and Yellowness of Near-White Opaque Materials; Materials AASoTa: West Conshohocken, PA, USA, 1993. [Google Scholar]
- Alonso, A.; Martin, P.; Albarrán, C.; Garcia, P.; Fernandez de Simon, L.; Jesús Iturralde, M.; Fernandez-Rodriguez, A.; Atienza, I.; Capilla, J.; García-Hisrschfeld, J.; et al. Challenges of DNA profiling in mass disaster investigations. Croat. Med. J. 2005, 46, 540–548. [Google Scholar]
- Makhlouf, F.; Alvarez, J.C.; de la Grandmaison, G.L. Suicidal and criminal immolations: An 18-year study and review of the literature. Leg. Med. (Tokyo) 2011, 13, 98–102. [Google Scholar] [CrossRef]
- Walker, P.L.; Miller, K.W.P. Time, temperature and oxygen availability: An experimental study of the effects of environmental conditions on the color and organic content of cremated bone. Am. J. Phys. Anth. 2005, 40, 216–217. [Google Scholar]
- Walker, P.L.; Miller, K.W.P.; Richman, R. Time, Temperature, and Oxygen Availability: An Experimental Study of the Effects of Environmental Conditions on the Color and Organic Content of Cremated Bone. In The Analysis of Burned Human Remains; Schmidt, C.W., Symes, S.A., Eds.; Academic Press: London, UK, 2008; pp. 129–135. [Google Scholar]
- Devlin, J.B.; Hermann, N.P. Bone Color as an Interpretive Tool of the Depositional History of Archaeological Cremains. In The Analysis of Burned Human Remains; Schmidt, C.W., Symes, S.A., Eds.; Academic Press: London, UK, 2008; pp. 109–128. [Google Scholar]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1998, 240, 1285–1293. [Google Scholar] [CrossRef] [Green Version]
Exposure Time: 30 min | Temperature (℃) | ||||
---|---|---|---|---|---|
200 | 400 | 600 | 800 | ||
Lightness (L) | AUC a (95% CI) | 0.8 (0.4–1.0) | 0.8 (0.4–1.0) | 0.7 (0.3–1.0) | 1.0* (1.0–1.0) |
Youden b | <44.24 | <42.53 | >47.79 | >56.39 | |
Se c/Sp d | 75/75 | 100/75 | 100/75 | 100/75 | |
Chromaticity a* | AUC a (95% CI) | 0.9* (0.7–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) |
Youden b | >7.71 | <2.865 | <2.870 | <2.895 | |
Se c/Sp d | 100/75 | 100/100 | 100/100 | 100/100 | |
Chromaticity b* | AUC a (95% CI) | 0.7 (0.3–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) |
Youden b | <24.23 | <8.685 | <8.845 | <13.73 | |
Se c/Sp d | 75/75 | 100/100 | 100/100 | 100/100 | |
Whiteness (WI) | AUC a (95% CI) | 0.5 (0.1–0.9) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) |
Youden b | >−20.1 | >−0.50 | >3.550 | >3.05 | |
Se c/Sp d | 75/50 | 100/100 | 100/100 | 100/100 | |
Yellowness (YI) | AUC a (95% CI) | 0.7 (0.3–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) |
Youden b | >52.43 | <28.72 | < 28.66 | <35.21 | |
Se c/Sp d | 75/75 | 100/100 | 100/100 | 100/100 | |
Exposure Time: 60 min | Temperature (℃) | ||||
200 | 400 | 600 | 800 | ||
Lightness (L) | AUC a (95% CI) | 0.8 (0.6–1.0) | 0.5 (0.1–0.9) | 0.6 (0.2–1.0) | 1.0* (1.0–1.0) |
Youden b | <45.36 | <51.44 | >47.51 | >56.39 | |
Se c/Sp d | 100/75 | 75/50 | 100/50 | 100/75 | |
Chromaticity a* | AUC a (95% CI) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) |
Youden b | >8.235 | <3.715 | <2.970 | <2.605 | |
Se c/Sp d | 100/75 | 100/100 | 100/100 | 100/100 | |
Chromaticity b* | AUC a (95% CI) | 0.6 (0.2–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) |
Youden b | >23.09 | <12.31 | <8.835 | <11.59 | |
Se c/Sp d | 75/75 | 100/100 | 100/100 | 100/100 | |
Whiteness (WI) | AUC a (95% CI) | 0.6 (0.1–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) |
Youden b | <−21.95 | >−2.750 | >4.600 | <28.44 | |
Se c/Sp d | 50/75 | 100/100 | 100/100 | 100/100 | |
Yellowness (YI) | AUC a (95% CI) | 0.9* (0.7–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) |
Youden b | >51.39 | <36.55 | <28.44 | <32.09 | |
Se c/Sp d | 100/75 | 100/100 | 100/100 | 100/100 |
Exposure Time: 30 min | Temperature (℃) | ||||
---|---|---|---|---|---|
200 | 400 | 600 | 800 | ||
Lightness (L) | AUC a (95% CI) | 0.8 (0.4–1.0) | 0.8 (0.4–1.0) | 0.8 (0.6–1.0) | 0.9* (0.7–1.0) |
Youden b | <31.07 | <32.72 | >38.67 | >42.85 | |
Se c/Sp d | 100/75 | 100/75 | 100/75 | 100/75 | |
Chromaticity a* | AUC a (95% CI) | 0.7 (0.3–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) |
Youden b | >6.30 | <3.395 | <2.945 | <3.40 | |
Se c/Sp d | 75/75 | 100/100 | 100/100 | 100/100 | |
Chromaticity b* | AUC a (95% CI) | 0.6 (0.1–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) |
Youden b | <21.46 | <8.120 | <6.875 | <10.09 | |
Se c/Sp d | 100/50 | 100/100 | 100/100 | 100/100 | |
Whiteness (WI) | AUC a (95% CI) | 0.6 (0.1–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) |
Youden b | >−9.25 | >−1.250 | >3.350 | >0.50 | |
Se c/Sp d | 100/50 | 100/100 | 100/100 | 100/100 | |
Yellowness (YI) | AUC a (95% CI) | 0.6 (0.1–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) |
Youden b | >48.87 | <32.20 | <28.14 | <35.00 | |
Se c/Sp d | 100/25 | 100/100 | 100/100 | 100/100 | |
Exposure Time: 60 min | Temperature (℃) | ||||
200 | 400 | 600 | 800 | ||
Lightness (L) | AUC a (95% CI) | 0.6 (0.2–1.0) | 0.5 (0.1–0.9) | 0.9* (0.7–1.0) | 0.9* (0.7–1.0) |
Youden b | <45.36 | <51.44 | >47.51 | >56.39 | |
Se c/Sp d | 100/50 | 75/50 | 100/50 | 100/75 | |
Chromaticity a* | AUC a (95% CI) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) |
Youden b | >8.235 | <3.715 | <2.970 | <2.605 | |
Se c/Sp d | 100/100 | 100/100 | 100/100 | 100/100 | |
Chromaticity b* | AUC a (95% CI) | 0.6 (0.1–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) |
Youden b | >23.09 | <12.31 | <8.835 | <11.59 | |
Se c/Sp d | 100/50 | 100/100 | 100/100 | 100/100 | |
Whiteness (WI) | AUC a (95% CI) | 0.5 (0.09–0.9) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) |
Youden b | <−21.95 | >−2.750 | >4.600 | <28.44 | |
Se c/Sp d | 100/50 | 100/100 | 100/75 | 100/100 | |
Yellowness (YI) | AUC a (95% CI) | 0.6 (0.1–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) | 1.0* (1.0–1.0) |
Youden b | >51.39 | <36.55 | <28.44 | <32.09 | |
Se c/Sp d | 100/50 | 100/100 | 100/100 | 100/100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubio, L.; Díaz-Vico, R.; Smith-Fernández, I.; Smith-Fernández, A.; Suárez, J.; Martin-de-las-Heras, S.; Santos, I. Spectrophotometric Color Measurement to Assess Temperature of Exposure in Cortical and Medullar Heated Human Bones: A Preliminary Study. Diagnostics 2020, 10, 979. https://doi.org/10.3390/diagnostics10110979
Rubio L, Díaz-Vico R, Smith-Fernández I, Smith-Fernández A, Suárez J, Martin-de-las-Heras S, Santos I. Spectrophotometric Color Measurement to Assess Temperature of Exposure in Cortical and Medullar Heated Human Bones: A Preliminary Study. Diagnostics. 2020; 10(11):979. https://doi.org/10.3390/diagnostics10110979
Chicago/Turabian StyleRubio, Leticia, Ramona Díaz-Vico, Inés Smith-Fernández, Aníbal Smith-Fernández, Juan Suárez, Stella Martin-de-las-Heras, and Ignacio Santos. 2020. "Spectrophotometric Color Measurement to Assess Temperature of Exposure in Cortical and Medullar Heated Human Bones: A Preliminary Study" Diagnostics 10, no. 11: 979. https://doi.org/10.3390/diagnostics10110979
APA StyleRubio, L., Díaz-Vico, R., Smith-Fernández, I., Smith-Fernández, A., Suárez, J., Martin-de-las-Heras, S., & Santos, I. (2020). Spectrophotometric Color Measurement to Assess Temperature of Exposure in Cortical and Medullar Heated Human Bones: A Preliminary Study. Diagnostics, 10(11), 979. https://doi.org/10.3390/diagnostics10110979