Comparison of Venous and Capillary Sampling in Oral Glucose Testing for the Diagnosis of Gestational Diabetes Mellitus: A Diagnostic Accuracy Cross-Sectional Study Using Accu-Chek Inform II
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- HAPO Study Cooperative Research Group; Metzger, B.E.; Lowe, L.P.; Dyer, A.R.; Trimble, E.R.; Chaovarindr, U.; Coustan, D.R.; Hadden, D.R.; McCance, D.R.; Hod, M.; et al. Hyperglycemia and adverse pregnancy outcomes. N. Engl. J. Med. 2008, 358, 1991–2002. [Google Scholar]
- International Association of Diabetes and Pregnancy Study Groups Consensus Panel; Metzger, B.E.; Gabbe, S.G.; Persson, B.; Buchanan, T.A.; Catalano, P.A.; Damm, P.; Dyer, A.R.; Leiva, A. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 2010, 33, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. Standards of medical care in diabetes-2020 abridged for primary care providers. Clin. Diabetes 2020, 38, 10–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sacks, D.B. Diagnosis of gestational diabetes mellitus: It is time for international consensus. Clin. Chem. 2014, 60, 141–143. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Diagnostic Criteria and Classification of Hyperglycaemia First Detected in Pregnancy; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- American Diabetes, A. Standards of medical care in diabetes—2013. Diabetes Care 2013, 36, S11–S66. [Google Scholar] [CrossRef] [Green Version]
- Ignell, C.; Berntorp, K. Evaluation of the relationship between capillary and venous plasma glucose concentrations obtained by the hemocue glucose 201+ system during an oral glucose tolerance test. Scand. J. Clin. Lab. Investig. 2011, 71, 670–675. [Google Scholar] [CrossRef] [Green Version]
- Stahl, M.; Brandslund, I.; Jorgensen, L.G.; Hyltoft Petersen, P.; Borch-Johnsen, K.; de Fine Olivarius, N. Can capillary whole blood glucose and venous plasma glucose measurements be used interchangeably in diagnosis of diabetes mellitus? Scand. J. Clin. Lab. Investig. 2002, 62, 159–166. [Google Scholar] [CrossRef]
- Daly, N.; Turner, M.J. Laboratory diagnosis of gestational diabetes mellitus. Int. J. Obstet. Gynaecol. 2016, 123, 1430–1433. [Google Scholar] [CrossRef] [Green Version]
- Coetzee, A.; van de Vyver, M.; Hoffmann, M.; Hall, D.R.; Mason, D.; Conradie, M. A comparison between point-of-care testing and venous glucose determination for the diagnosis of diabetes mellitus 6–12 weeks after gestational diabetes. Diabet Med. 2019, 36, 591–599. [Google Scholar] [CrossRef]
- Jeong, T.D.; Cho, E.J.; Ko, D.H.; Lee, W.; Chun, S.; Hong, K.S.; Min, W.K. Large-scale performance evaluation of accu-chek inform ii point-of-care glucose meters. Scand. J. Clin. Lab. Investig. 2016, 76, 657–663. [Google Scholar] [CrossRef]
- Mitsios, J.V.; Ashby, L.A.; Haverstick, D.M.; Bruns, D.E.; Scott, M.G. Analytic evaluation of a new glucose meter system in 15 different critical care settings. J. Diabetes Sci. Technol. 2013, 7, 1282–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannestad, U.; Lundblad, A. Accurate and precise isotope dilution mass spectrometry method for determining glucose in whole blood. Clin. Chem. 1997, 43, 794–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dogan, N.O. Bland-altman analysis: A paradigm to understand correlation and agreement. Turk J. Emerg. Med. 2018, 18, 139–141. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Lunt, H.; Chan, H.; Heenan, H.; Berkeley, J.; Frampton, C.M. Postprandial capillary-venous glucose gradient in type 1 diabetes: Magnitude and clinical associations in a real world setting. Diabet Med. 2016, 33, 998–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hod, M.; Kapur, A.; Sacks, D.A.; Hadar, E.; Agarwal, M.; Di Renzo, G.C.; Cabero Roura, L.; McIntyre, H.D.; Morris, J.L.; Divakar, H. The international federation of gynecology and obstetrics (figo) initiative on gestational diabetes mellitus: A pragmatic guide for diagnosis, management, and care. Int. J. Gynaecol. Obstet. 2015, 131, S173–S211. [Google Scholar] [CrossRef] [Green Version]
- Soma-Pillay, P.; Nelson-Piercy, C.; Tolppanen, H.; Mebazaa, A. Physiological changes in pregnancy. Cardiovasc. J. Afr. 2016, 27, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Negrato, C.A.; Zajdenverg, L. Self-monitoring of blood glucose during pregnancy: Indications and limitations. Diabetol. Metab. Syndr. 2012, 4, 54. [Google Scholar] [CrossRef] [Green Version]
- Kruijshoop, M.; Feskens, E.J.; Blaak, E.E.; de Bruin, T.W. Validation of capillary glucose measurements to detect glucose intolerance or type 2 diabetes mellitus in the general population. Clin. Chim. Acta 2004, 341, 33–40. [Google Scholar] [CrossRef]
- Wahlberg, J.; Ekman, B.; Nystrom, L.; Hanson, U.; Persson, B.; Arnqvist, H.J. Gestational diabetes: Glycaemic predictors for fetal macrosomia and maternal risk of future diabetes. Diabetes Res. Clin. Pract. 2016, 114, 99–105. [Google Scholar] [CrossRef]
- Carlsen, S.; Petersen, P.H.; Skeie, S.; Skadberg, O.; Sandberg, S. Within-subject biological variation of glucose and hba(1c) in healthy persons and in type 1 diabetes patients. Clin. Chem. Lab. Med. 2011, 49, 1501–1507. [Google Scholar] [CrossRef]
- Ricos, C.; Juvany, R.; Simon, M.; Hernandez, A.; Alvarez, V.; Jimenez, C.V.; Minchinela, J.; Perich, C. Commutability and traceability: Their repercussions on analytical bias and inaccuracy. Clin. Chim. Acta 1999, 280, 135–145. [Google Scholar] [CrossRef]
- Colagiuri, S.; Sandbaek, A.; Carstensen, B.; Christensen, J.; Glumer, C.; Lauritzen, T.; Borch-Johnsen, K. Comparability of venous and capillary glucose measurements in blood. Diabet. Med. 2003, 20, 953–956. [Google Scholar] [CrossRef] [PubMed]
- Daly, N.; Carroll, C.; Flynn, I.; Harley, R.; Maguire, P.J.; Turner, M.J. Evaluation of point-of-care maternal glucose measurements for the diagnosis of gestational diabetes mellitus. Int. J. Obstet. Gynaecol. 2017, 124, 1746–1752. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, E.G.; Reynolds, C.M.E.; O’Kelly, R.; Killalea, A.; Sheehan, S.R.; Turner, M.J. A prospective evaluation of point-of-care measurements of maternal glucose for the diagnosis of gestational diabetes mellitus. Clin. Chem. 2020, 66, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, K.; Wangel, A.M.; Katsarou, A.; Shaat, N.; Simmons, D.; Fadl, H.; Berntorp, K. Diagnosis of gestational diabetes mellitus with point-of-care methods for glucose versus hospital laboratory method using isotope dilution gas chromatography-mass spectrometry as reference. J. Diabetes Res. 2020, 2020, 7937403. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Claver, A.; Ramos-Corral, R.; Lavina-Fananas, C.; Solans-Blecua, I.; Puzo-Foncillas, J. Capillary glucose concentration during oral glucose tolerance test for the diagnosis of gestational diabetes. Int. J. Gynaecol. Obs. Obstet. 2020. [Google Scholar] [CrossRef]
- Lindqvist, M.; Persson, M.; Lindkvist, M.; Mogren, I. No consensus on gestational diabetes mellitus screening regimes in sweden: Pregnancy outcomes in relation to different screening regimes 2011 to 2012, a cross-sectional study. BMC Pregnancy Childbirth 2014, 14, 185. [Google Scholar] [CrossRef] [Green Version]
- Persson, M.; Winkvist, A.; Mogren, I. No unified guidelines concerning gestational diabetes in sweden. Noticeable differences between screening, diagnostics and management in maternal health services. Lakartidningen 2007, 104, 3365–3369. [Google Scholar]
Characteristic | ||
---|---|---|
Age (year) mean (SD) | - | 31.5 (5.0) |
OGTT in Gestational week | - | - |
Min-max (median) | - | 11–34 (28) |
n (%) | <24 weeks | 26 (14.9) |
≥24 weeks | 149 (85.1) | |
BMI (kg/m2) n (%) | <20.0 | 5 (2.9) |
20.0–24.9 | 40 (22.9) | |
25.0–29.9 | 40 (22.9) | |
30.0–34.9 | 49 (28.0) | |
35.0–39.9 | 33 (18.9) | |
≥40.0 | 8 (4.6) | |
Parity n (%) | nulliparous | 63 (36.0) |
Indication for OGTT * n (%) | BMI | 90 (51.4) |
Family history of type 2 diabetes | 56 (32.0) | |
Previous LGA | 13 (7.4) | |
Previous GDM | 7 (4.0) | |
Non-European origin | 3 (1.7) | |
≥8.9 mmol/L, random glucose | 5 (2.9) | |
Previous IUFD | 1 (5.7) | |
Other | 5 (2.9) |
Sampling Point | Coefficient of Variation (%) Venous | Coefficient of Variation (%) Capillary |
---|---|---|
Fasting, single value (n = 175) | 2.48 | 3.37 |
OGTT 1 h, single value (n = 171) | 2.79 | 3.66 |
OGTT 2 h, single value (n = 170) | 2.51 | 3.43 |
Fasting, mean from duplicate (n = 175) | 1.75 | 2.38 |
OGTT 1 h, mean from duplicate (n = 171) | 1.98 | 2.59 |
OGTT 2 h, mean from duplicate (n = 170) | 1.77 | 2.43 |
Test Corrected Cut-Offs for Capillary Samples | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | Accuracy (%) | LHR (Positive) | LHR (Negative) |
---|---|---|---|---|---|---|---|
Fasting a | 81.0 | 95.4 | 85.0 | 94.0 | 92.0 | 17.8 | 0.2 |
1 h b | 71.4 | 97.4 | 71.4 | 97.4 | 95.2 | 27.5 | 0.3 |
2 h c | 100 | 98.7 | 85.7 | 100 | 98.8 | 77 | 0.0 |
Fasting a, 1 h b and 2 h c | 88.1 | 92.5 | 78.7 | 96.1 | 91.4 | 16.4 | 0.2 |
Fasting a and 2 h c | 85.0 | 95.0 | 83.0 | 96.0 | 90.3 | 16.4 | 0.2 |
Sampling Method | Fasting Sample n (%) | One-Hour Sample n (%) | Two-Hour Sample n (%) |
---|---|---|---|
Venous samples | 36 | 11 | 11 |
Capillary samples * | 35 | 15 | 14 |
Cumulative number venous samples | 36 (20.6) | 40 (22.9) | 44 (25.1) |
Cumulative number capillary samples * | 35 (20.0) | 44 (25.1) | 47 (26.9) |
Cumulative number venous samples # | 36 (20.6) | X | 40 (22.9) |
Cumulative number capillary samples *,# | 35 (20.0) | X | 41 (23.4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nevander, S.; Landberg, E.; Blomberg, M.; Ekman, B.; Lilliecreutz, C. Comparison of Venous and Capillary Sampling in Oral Glucose Testing for the Diagnosis of Gestational Diabetes Mellitus: A Diagnostic Accuracy Cross-Sectional Study Using Accu-Chek Inform II. Diagnostics 2020, 10, 1011. https://doi.org/10.3390/diagnostics10121011
Nevander S, Landberg E, Blomberg M, Ekman B, Lilliecreutz C. Comparison of Venous and Capillary Sampling in Oral Glucose Testing for the Diagnosis of Gestational Diabetes Mellitus: A Diagnostic Accuracy Cross-Sectional Study Using Accu-Chek Inform II. Diagnostics. 2020; 10(12):1011. https://doi.org/10.3390/diagnostics10121011
Chicago/Turabian StyleNevander, Sofia, Eva Landberg, Marie Blomberg, Bertil Ekman, and Caroline Lilliecreutz. 2020. "Comparison of Venous and Capillary Sampling in Oral Glucose Testing for the Diagnosis of Gestational Diabetes Mellitus: A Diagnostic Accuracy Cross-Sectional Study Using Accu-Chek Inform II" Diagnostics 10, no. 12: 1011. https://doi.org/10.3390/diagnostics10121011
APA StyleNevander, S., Landberg, E., Blomberg, M., Ekman, B., & Lilliecreutz, C. (2020). Comparison of Venous and Capillary Sampling in Oral Glucose Testing for the Diagnosis of Gestational Diabetes Mellitus: A Diagnostic Accuracy Cross-Sectional Study Using Accu-Chek Inform II. Diagnostics, 10(12), 1011. https://doi.org/10.3390/diagnostics10121011