Semi-Automatic Tracking of Laser Speckle Contrast Images of Microcirculation in Diabetic Foot Ulcers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Algorithm Development
2.3. Algorithm Validation
3. Results
3.1. Algorithm Performance
3.2. Algorithm Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lipsky, B.A.; Berendt, A.R.; Cornia, P.B.; Pile, J.C.; Peters, E.J.G.; Armstrong, D.G.; Deery, H.G.; Embil, J.M.; Joseph, W.S.; Karchmer, A.W.; et al. 2012 Infectious Diseases Society of America Clinical Practice Guideline for the Diagnosis and Treatment of Diabetic Foot Infections. Clin. Infect. Dis. 2012, 54, e132–e173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazzarini, P.A.; Pacella, R.E.; Armstrong, D.G.; van Netten, J.J. Diabetes-related lower-extremity complications are a leading cause of the global burden of disability. Diabet. Med. 2018, 35, 1297–1299. [Google Scholar] [CrossRef] [PubMed]
- Fowler, M.J. Microvascular and macrovascular complications of diabetes. Clin. Diabetes 2011, 29, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Cicco, G.; Giorgino, F.; Cicco, S. Wound Healing in Diabetes: Hemorheological and Microcirculatory Aspects. In Oxygen Transport to Tissue XXXII. Advances in Experimental Medicine and Biology; LaManna, J., Puchowicz, M., Xu, K., Harrison, D., Bruley, D., Eds.; Springer: Boston, MA, USA, 2011; Volume 701, Available online: https://doi.org/10.1007/978-1-4419-7756-4_35 (accessed on 4 December 2020).
- Hasan, R.; Firwana, B.; Elraiyah, T.; Domecq, J.P.; Prutsky, G.; Nabhan, M.; Prokop, L.J.; Henke, P.; Tsapas, A.; Montori, V.M.; et al. A systematic review and meta-analysis of glycemic control for the prevention of diabetic foot syndrome. J. Vasc. Surg. 2016, 63, 22S–28S. [Google Scholar] [CrossRef] [Green Version]
- Bakker, K.; Apelqvist, J.; Lipsky, B.; Van Netten, J. International Working Group on the Diabetic foot The 2015 IWGDF Guidance documents on prevention and management of foot problems in diabetes: Development of an evidence-based global consensus. Diabetes Metab. Res. Rev. 2016, 32, 2–6. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Hasan, R.; Firwana, B.; Elraiyah, T.; Tsapas, A.; Prokop, L.; Mills, J.L.; Murad, M.H. A systematic review and meta-analysis of tests to predict wound healing in diabetic foot. J. Vasc. Surg. 2016, 63, 29S–36S. [Google Scholar] [CrossRef] [Green Version]
- Aerden, D.; Massaad, D.; Von Kemp, K.; Van Tussenbroek, F.; Debing, E.; Keymeulen, B.; Brande, P.V.D. The Ankle–Brachial Index and the Diabetic Foot: A Troublesome Marriage. Ann. Vasc. Surg. 2011, 25, 770–777. [Google Scholar] [CrossRef]
- Kazmi, S.M.S.; Richards, L.M.; Schrandt, C.J.; Davis, M.A.; Dunn, A.K. Expanding Applications, Accuracy, and Interpretation of Laser Speckle Contrast Imaging of Cerebral Blood Flow. Br. J. Pharmacol. 2015, 35, 1076–1084. [Google Scholar] [CrossRef] [Green Version]
- Mennes, O.A.; Van Netten, J.J.; Slart, R.H.; Steenbergen, W. Novel Optical Techniques for Imaging Microcirculation in the Diabetic Foot. Curr. Pharm. Des. 2018, 24, 1304–1316. [Google Scholar] [CrossRef] [Green Version]
- Roustit, M.; Millet, C.; Blaise, S.; Dufournet, B.; Cracowski, J. Excellent reproducibility of laser speckle contrast imaging to assess skin microvascular reactivity. Microvasc. Res. 2010, 80, 505–511. [Google Scholar] [CrossRef]
- Boas, D.A.; Dunn, A.K. Laser speckle contrast imaging in biomedical optics. J. Biomed. Opt. 2010, 15, 011109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briers, D.; Duncan, D.D.; Hirst, E.; Kirkpatrick, S.J.; Larsson, M.; Steenbergen, W.; Stromberg, T.; Thompson, O.B. Laser speckle contrast imaging: Theoretical and practical limitations. J. Biomed. Opt. 2013, 18, 066018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heeman, W.; Steenbergen, W.; Van Dam, G.M.; Boerma, E.C. Clinical applications of laser speckle contrast imaging: A review. J. Biomed. Opt. 2019, 24, 1. [Google Scholar] [CrossRef] [Green Version]
- Humeau-Heurtier, A.; Guerreschi, E.; Abraham, P.; Mahe, G. Relevance of Laser Doppler and Laser Speckle Techniques for Assessing Vascular Function: State of the Art and Future Trends. IEEE Trans. Biomed. Eng. 2013, 60, 659–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iredahl, F.; Löfberg, A.; Sjöberg, F.; Farnebo, S.; Tesselaar, E. Non-Invasive Measurement of Skin Microvascular Response during Pharmacological and Physiological Provocations. PLoS ONE 2015, 10, e0133760. [Google Scholar] [CrossRef]
- Mennes, O.A.; Van Netten, J.J.; Van Baal, J.G.; Steenbergen, W. Assessment of microcirculation in the diabetic foot with laser speckle contrast imaging. Physiol. Meas. 2019, 40, 065002. [Google Scholar] [CrossRef]
- Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 679–698. [Google Scholar] [CrossRef]
- MATLAB Image Processing Toolbox Release 2018b; The Mathworks, Inc.: Natick, MA, USA, 2018.
- Besl, P.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- MATLAB Computer Vision System Toolbox Release 2018b; The Mathworks, Inc.: Natick, MA, USA, 2018.
- Vaz, P.G.; Humeau-Heurtier, A.; Figueiras, E.; Correia, C.; Cardoso, J. Laser Speckle Imaging to Monitor Microvascular Blood Flow: A Review. IEEE Rev. Biomed. Eng. 2016, 9, 106–120. [Google Scholar] [CrossRef] [Green Version]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Van Netten, J.J.; Van Baal, J.G.; Bus, S.A.; Van Der Heijden, F. Automatic detection of diabetic foot complications with infrared thermography by asymmetric analysis. J. Biomed. Opt. 2015, 20, 026003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohura, N.; Mitsuno, R.; Sakisaka, M.; Terabe, Y.; Morishige, Y.; Uchiyama, A.; Okoshi, T.; Shinji, I.; Takushima, A. Convolutional neural networks for wound detection: The role of artificial intelligence in wound care. J. Wound Care 2019, 28, S13–S24. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.; Reeves, N.D.; Rajbhandari, S.; Spragg, J.; Yap, M.H. Fully convolutional networks for diabetic foot ulcer segmentation. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2017, Banff, AB, Canada, 5–8 October 2017. [Google Scholar]
- Richards, L.M.; Towle, E.L.; Fox, D.J.; Dunn, A.K. Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow. Neurophotonics 2014, 1, 015006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Dataset A | Dataset B | ||||
---|---|---|---|---|---|---|
Assessor 1 vs. 2 | Assessor 1 vs. Alg. | Assessor 2 vs. Alg. | Assessor 1 vs. 2 | Assessor 1 vs. Alg. | Assessor 2 vs. Alg. | |
Baseline | ||||||
Ulcer | 0.936 | 0.968 | 0.953 | 0.950 | 0.984 | 0.954 |
Ulcer edge | 0.936 | 0.975 | 0.896 | 0.966 | 0.969 | 0.963 |
Toe | 0.983 | 0.953 | 0.942 | 0.992 | 0.963 | 0.970 |
Foot | 0.988 | 0.916 | 0.897 | 0.959 | 0.912 | 0.935 |
PORH | ||||||
Ulcer | 0.628 | 0.790 | 0.861 | 0.914 | 0.949 | 0.865 |
Ulcer edge | 0.706 | 0.846 | 0.894 | 0.932 | 0.955 | 0.952 |
Toe | 0.828 | 0.910 | 0.883 | 0.917 | 0.874 | 0.949 |
Foot | 0.883 | 0.952 | 0.901 | 0.903 | 0.905 | 0.960 |
Buerger’s test | ||||||
Ulcer | 0.932 | 0.954 | 0.918 | 0.865 | 0.913 | 0.851 |
Ulcer edge | 0.912 | 0.945 | 0.894 | 0.953 | 0.869 | 0.923 |
Toe | 0.970 | 0.978 | 0.962 | 0.931 | 0.951 | 0.937 |
Foot | 0.980 | 0.958 | 0.973 | 0.980 | 0.953 | 0.952 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mennes, O.A.; Selles, M.; van Netten, J.J.; van Baal, J.G.; Steenbergen, W.; Slart, R.H.J.A. Semi-Automatic Tracking of Laser Speckle Contrast Images of Microcirculation in Diabetic Foot Ulcers. Diagnostics 2020, 10, 1054. https://doi.org/10.3390/diagnostics10121054
Mennes OA, Selles M, van Netten JJ, van Baal JG, Steenbergen W, Slart RHJA. Semi-Automatic Tracking of Laser Speckle Contrast Images of Microcirculation in Diabetic Foot Ulcers. Diagnostics. 2020; 10(12):1054. https://doi.org/10.3390/diagnostics10121054
Chicago/Turabian StyleMennes, Onno A., Mark Selles, Jaap J. van Netten, Jeff G. van Baal, Wiendelt Steenbergen, and Riemer H. J. A. Slart. 2020. "Semi-Automatic Tracking of Laser Speckle Contrast Images of Microcirculation in Diabetic Foot Ulcers" Diagnostics 10, no. 12: 1054. https://doi.org/10.3390/diagnostics10121054
APA StyleMennes, O. A., Selles, M., van Netten, J. J., van Baal, J. G., Steenbergen, W., & Slart, R. H. J. A. (2020). Semi-Automatic Tracking of Laser Speckle Contrast Images of Microcirculation in Diabetic Foot Ulcers. Diagnostics, 10(12), 1054. https://doi.org/10.3390/diagnostics10121054