TI-RADS Diagnostic Performance: Which Algorithm Is Superior and How Elastography and 4D Vascularity Improve the Malignancy Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conventional Ultrasound Evaluation and Imaging Scoring Systems
2.2. Elastography Measurements
2.3. Volumetric Color Doppler
2.4. Proposed Algorithm
2.5. Pathology Examination
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Moon, J.H.; Hyun, M.K.; Lee, J.Y.; Shim, J.I.; Kim, T.H.; Choi, H.S.; Ahn, H.Y.; Kim, K.W.; Park, D.J.; Park, Y.J.; et al. Prevalence of thyroid nodules and their associated clinical parameters: A large-scale, multicenter-based health checkup study. Korean J. Intern. Med. 2018, 33, 753–762. Available online: https://www.ncbi.nlm.nih.gov/pubmed/28859466 (accessed on 18 April 2019). [CrossRef] [Green Version]
- Paschou, S.A.; Vryonidou, A.; Goulis, D.G. Thyroid nodules: Alpha guide to assessment, treatment and follow-up. Maturitas 2017, 96, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kwong, N.; Medici, M.; Angell, T.E.; Liu, X.; Marqusee, E.; Cibas, E.S.; Krane, J.F.; Barletta, J.A.; Kim, M.I.; Larsen, P.R.; et al. The influence of patient age on thyroid nodule formation, multinodularity, and thyroid cancer risk. J. Clin. Endocrinol. Metab. 2015, 100, 4434–4440. [Google Scholar] [CrossRef] [Green Version]
- Cantisani, V.; David, E.; Grazhdani, H.; Rubini, A.; Radzina, M.; Dietrich, C.F.; Durante, C.; Lamartina, L.; Grani, G.; Valeria, A.; et al. Prospective Evaluation of Semiquantitative Strain Ratio and Quantitative 2D Ultrasound Shear Wave Elastography (SWE) in Association with TIRADS Classification for Thyroid Nodule Characterization. Ultraschall der Medizin 2019, 40, 495–503. [Google Scholar] [CrossRef]
- Bongiovanni, M.; Spitale, A.; Faquin, W.C.; Mazzucchelli, L.; Baloch, Z.W. The Bethesda System for Reporting Thyroid Cytopathology: A Meta-Analysis. Acta Cytol. 2012, 56, 333–339. [Google Scholar] [CrossRef]
- Krishnappa, P.; Ramakrishnappa, S.; Kulkarni, M.H. Comparison of free hand versus ultrasound-guided fine needle aspiration of thyroid with histopathological correlation. J. Environ. Pathol. Toxicol. Oncol. 2013, 32, 149–155. [Google Scholar] [CrossRef]
- Kwak, J.Y. Indications for fine needle aspiration in thyroid nodules. Endocrinol. Metab. 2013, 28, 81–85. Available online: https://www.ncbi.nlm.nih.gov/pubmed/24396658 (accessed on 5 June 2019). [CrossRef] [Green Version]
- Hu, X.; Liu, Y.; Qian, L. Diagnostic potential of real-time elastography (RTE) and shear wave elastography (SWE) to differentiate benign and malignant thyroid nodules: A systematic review and meta-analysis. Medicine 2017, 96, e8282. Available online: https://www.ncbi.nlm.nih.gov/pubmed/29068996 (accessed on 3 June 2019). [CrossRef]
- Tian, W.; Hao, S.; Gao, B.; Jiang, Y.; Zhang, X.; Zhang, S.; Guo, L.; Yan, J.; Luo, D. Comparing the Diagnostic Accuracy of RTE and SWE in Differentiating Malignant Thyroid Nodules from Benign Ones: A Meta-Analysis. Cell. Physiol. Biochem. 2016, 39, 2451–2463. [Google Scholar] [CrossRef] [PubMed]
- Bamber, J.; Cosgrove, D.; Dietrich, C.F.; Fromageau, J.; Bojunga, J.; Calliada, F.; Cantisani, V.; Correas, J.M.; D’Onofrio, M.; Drakonaki, E.E.; et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology. Ultraschall Med. 2013, 34, 169–184. [Google Scholar] [CrossRef] [Green Version]
- Rajabi, S.; Dehghan, M.H.; Dastmalchi, R.; Jalali Mashayekhi, F.; Salami, S.; Hedayati, M. The roles and role-players in thyroid cancer angiogenesis. Endocr. J. 2019, 66, 277–293. [Google Scholar] [CrossRef] [Green Version]
- Tasoulas, J.; Tsourouflis, G.; Theocharis, S. Neovascularization: An attractive but tricky target in thyroid cancer. Expert Opin. Ther. Targets. 2018, 22, 799–810. [Google Scholar] [CrossRef]
- Moon, H.J.; Kwak, J.Y.; Kim, M.J.; Son, E.J.; Kim, E.K. Can vascularity at power Doppler US help predict thyroid malignancy? Radiology 2010, 255, 260–269. [Google Scholar] [CrossRef]
- Russ, G.; Bonnema, S.J.; Erdogan, M.F.; Durante, C.; Ngu, R.; Leenhardt, L. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur. Thyroid J. 2017, 6, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Stoian, D.; Ivan, V.; Sporea, I.; Florian, V.; Mozos, I.; Navolan, D.; Nemescu, D. Advanced Ultrasound Application—Impact on Presurgical Risk Stratification of the Thyroid Nodules. Ther. Clin. Risk Manag. 2020, 16, 21–30. Available online: https://www.dovepress.com/advanced-ultrasound-application-impact-on-presurgical-risk-stratificat-peer-reviewed-article-TCRM (accessed on 8 February 2020). [CrossRef] [Green Version]
- Ulusoy, B. The Management of Thyroid Nodules. Turk. Arch. Otorhinolaryngol. 2015, 53, 173–182. Available online: https://pubmed.ncbi.nlm.nih.gov/29392003 (accessed on 1 February 2020). [CrossRef]
- Bomeli, S.R.; LeBeau, S.O.; Ferris, R.L. Evaluation of a thyroid nodule. Otolaryngol. Clin. N. Am. 2010, 43, 229–238. Available online: https://pubmed.ncbi.nlm.nih.gov/20510711 (accessed on 8 January 2020). [CrossRef] [Green Version]
- Giovanella, L.; Treglia, G.; Trimboli, P. Thyroid imaging. In Encyclopedia of Endocrine Diseases; Elseviers: San Diego, CA, USA, 2018. [Google Scholar]
- Caresio, C.; Caballo, M.; Deandrea, M.; Garberoglio, R.; Mormile, A.; Rossetto, R.; Limone, P.; Molinari, F. Quantitative analysis of thyroid tumors vascularity: A comparison between 3-D contrast-enhanced ultrasound and 3-D Power Doppler on benign and malignant thyroid nodules. Med. Phys. 2018, 45, 3173–3184. [Google Scholar] [CrossRef] [Green Version]
- Lyshchik, A.; Moses, R.; Barnes, S.L.; Higashi, T.; Asato, R.; Miga, M.I.; Gore, J.C.; Fleischer, A.C. Quantitative analysis of tumor vascularity in benign and malignant solid thyroid nodules. J. Ultrasound Med. 2007, 26, 837–846. [Google Scholar] [CrossRef]
- Russ, G. Risk stratification of thyroid nodules on ultrasonography with the French TI-RADS: Description and reflections. Ultrason (Seoul, Korea) 2016, 35, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Stoian, D.; Timar, B.; Derban, M.; Pantea, S.; Varcus, F.; Craina, M.; Craciunescu, M. Thyroid Imaging Reporting and Data System (TI-RADS): The impact of quantitative strain elastography for better stratification of cancer risks. Med. Ultrason. 2015, 17, 327–332. [Google Scholar] [CrossRef]
- Horvath, E.; Majlis, S.; Rossi, R.; Franco, C.; Niedmann, J.P.; Castro, A.; Dominguez, M. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. J. Clin. Endocrinol. Metab. 2009, 94, 1748–1751. [Google Scholar] [CrossRef]
- Tessler, F.N.; Middleton, W.D.; Grant, E.G.; Hoang, J.K.; Berland, L.L.; Teefey, S.A.; Cronan, J.J.; Beland, M.D.; Desser, T.S.; Frates, M.C.; et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J. Am. Coll. Radiol. 2017, 14, 587–595. [Google Scholar] [CrossRef] [Green Version]
- Sigrist, R.M.S.; Liau, J.; Kaffas AEl Chammas, M.C.; Willmann, J.K. Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics 2017, 7, 1303–1329. [Google Scholar] [CrossRef]
- Aydin, R.; Elmali, M.; Polat, A.V.; Danaci, M.; Akpolat, I. Comparison of muscle-to-nodule and parenchyma-to-nodule strain ratios in the differentiation of benign and malignant thyroid nodules: Which one should we use? Eur. J. Radiol. 2014, 83, e131–e136. [Google Scholar] [CrossRef]
- Slapa, R.Z.; Jakubowski, W.S.; Slowinska-Srzednicka, J.; Szopinski, K.T. Advantages and disadvantages of 3D ultrasound of thyroid nodules including thin slice volume rendering. Thyroid Res. 2011, 4, 1. Available online: https://www.ncbi.nlm.nih.gov/pubmed/21211056 (accessed on 20 December 2019). [CrossRef] [Green Version]
- Stoian, D.; Borcan, F.; Petre, I.; Mozos, I.; Varcus, F.; Ivan, V.; Cioca, A.; Apostol, A.; Dehelean, C.A. Strain elastography as a valuable diagnosis tool in intermediate cytology (Bethesda III) thyroid nodules. Diagnostics 2019, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Kakudo, K. How to handle borderline/precursor thyroid tumors in management of patients with thyroid nodules. Gland Surg. 2018, 7 (Suppl. 1), S8–S18. Available online: https://www.ncbi.nlm.nih.gov/pubmed/30175059 (accessed on 6 January 2020). [CrossRef]
- Alexander, E.K.; Pearce, E.N.; Brent, G.A.; Brown, R.S.; Chen, H.; Dosiou, C.; Grobman, W.A.; Laurberg, P.; Lazarus, J.H.; Mandel, S.J.; et al. 2017 Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease During Pregnancy and the Postpartum. Thyroid 2017, 27, 315–389. [Google Scholar] [CrossRef] [Green Version]
- Hoang, J.K.; Middleton, W.D.; Farjat, A.E.; Langer, J.E.; Reading, C.C.; Teefey, S.A.; Abinanti, N.; Boschini, F.J.; Bronner, A.J.; Dahiya, N.; et al. Reduction in Thyroid Nodule Biopsies and Improved Accuracy with American College of Radiology Thyroid Imaging Reporting and Data System. Radiology 2018, 287, 185–193. [Google Scholar] [CrossRef]
- Machens, A.; Holzhausen, H.J.; Dralle, H. The prognostic value of primary tumor size in papillary and follicular thyroid carcinoma: A comparative analysis. Cancer 2005, 103, 2269–2273. [Google Scholar] [CrossRef]
- Jabar, A.S.S.; Koteshwara, P.; Andrade, J. Diagnostic reliability of the Thyroid Imaging Reporting and Data System (TI-RADS) in routine practice. Pol. J. Radiol. 2019, 84, e274–e280. Available online: https://pubmed.ncbi.nlm.nih.gov/31482001 (accessed on 14 January 2020). [CrossRef] [PubMed]
- Gaengler, S.; Andrianou, X.D.; Piciu, A.; Charisiadis, P.; Zira, C.; Aristidou, K.; Piciu, D.; Makris, K.C. Iodine status and thyroid nodules in females: A comparison of Cyprus and Romania. Public Health 2017, 143, 37–43. [Google Scholar] [CrossRef]
- Park, J.-Y.; Lee, H.J.; Jang, H.W.; Kim, H.K.; Yi, J.H.; Lee, W.; Kim, S.H. A proposal for a thyroid imaging reporting and data system for ultrasound features of thyroid carcinoma. Thyroid 2009, 19, 1257–1264. [Google Scholar] [CrossRef] [PubMed]
- Castellana, M.; Castellana, C.; Treglia, G.; Giorgino, F.; Giovanella, L.; Russ, G.; Trimboli, P. Performance of five ultrasound risk stratification systems in selecting thyroid nodules for FNA. A meta-analysis. J. Clin. Endocrinol. Metab. 2019. [Google Scholar] [CrossRef]
- Cosgrove, D.; Barr, R.; Bojunga, J.; Cantisani, V.; Chammas, M.C.; Dighe, M.; Vinayak, S.; Xu, J.M.; Dietrich, C.F. WFUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography: Part 4. Thyroid. Ultrasound Med. Biol. 2017, 43, 4–26. [Google Scholar] [CrossRef]
- Park, A.Y.; Son, E.J.; Han, K.; Youk, J.H.; Kim, J.-A.; Park, C.S. Shear wave elastography of thyroid nodules for the prediction of malignancy in a large scale study. Eur. J. Radiol. 2015, 84, 407–412. [Google Scholar] [CrossRef]
- Bojunga, J.; Herrmann, E.; Meyer, G.; Weber, S.; Zeuzem, S.; Friedrich-Rust, M. Real-time elastography for the differentiation of benign and malignant thyroid nodules: A meta-analysis. Thyroid 2010, 20, 1145–1150. [Google Scholar] [CrossRef]
- Xing, P.; Wu, L.; Zhang, C.; Li, S.; Liu, C.; Wu, C. Differentiation of Benign From Malignant Thyroid Lesions. J. Ultrasound Med. 2011, 30, 663–669. [Google Scholar] [CrossRef] [Green Version]
- Dudea, S.M.; Botar-Jid, C. Ultrasound elastography in thyroid disease. Med. Ultrason. 2015, 17, 74–96. [Google Scholar] [CrossRef] [Green Version]
- Russ, G.; Royer, B.; Bigorgne, C.; Rouxel, A.; Bienvenu-Perrard, M.; Leenhardt, L. Prospective evaluation of thyroid imaging reporting and data system on 4550 nodules with and without elastography. Eur. J. Endocrinol. 2013, 168, 649–655. [Google Scholar] [CrossRef]
- Sahli, Z.T.; Smith, P.W.; Umbricht, C.B.; Zeiger, M.A. Preoperative Molecular Markers in Thyroid Nodules. Front. Endocrinol. (Lausanne) 2018, 9, 179. [Google Scholar] [CrossRef] [Green Version]
- Ward, L.S.; Kloos, R.T. Molecular markers in the diagnosis of thyroid nodules. Arq. Bras. Endocrinol. Metabol. 2013, 57, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Chaigneau, E.; Russ, G.; Royer, B.; Bigorgne, C.; Bienvenu-Perrard, M.; Rouxel, A.; Leenhardt, L.; Belin, L.; Buffet, C. TIRADS score is of limited clinical value for risk stratification of indeterminate cytological results. Eur. J. Endocrinol. 2018, 179, 13–20. [Google Scholar] [CrossRef]
- Hong, Y.; Wu, Y.; Luo, Z.; Wu, N.; Liu, X. Impact of nodular size on the predictive values of gray-scale, color-Doppler ultrasound, and sonoelastography for assessment of thyroid nodules. J. Zhejiang Univ. Sci. B 2012, 13, 707–716. Available online: https://www.ncbi.nlm.nih.gov/pubmed/22949361 (accessed on 16 December 2019). [CrossRef] [PubMed] [Green Version]
- Oliver, C.; Vaillant-Lombard, J.; Albarel, F.; Berbis, J.; Veyrieres, J.B.; Sebag, F.; Petit, P. What is the contribution of elastography to thyroid nodules evaluation? Ann. Endocrinol. (Paris) 2011, 72, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; Ding, H. Application of contrast-enhanced ultrasound for evaluation of thyroid nodules. Ultrasonography (Seoul, Korea) 2018, 37, 288–297. Available online: https://www.ncbi.nlm.nih.gov/pubmed/30213158 (accessed on 3 January 2019). [CrossRef] [Green Version]
- Nolsøe, C.P.; Lorentzen, T. International guidelines for contrast-enhanced ultrasonography: Ultrasound imaging in the new millennium. Ultrasonography (Seoul, Korea) 2016, 35, 89–103. Available online: https://www.ncbi.nlm.nih.gov/pubmed/26867761 (accessed on 7 September 2019). [CrossRef]
- Sun, B.; Lang, L.; Zhu, X.; Jiang, F.; Hong, Y.; He, L. Accuracy of contrast-enhanced ultrasound in the identification of thyroid nodules: A meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 12882–12889. [Google Scholar] [PubMed]
Category | EU-TIRADS | ACR TIRADS * | Horvath TIRADS | French TIRADS (Includes Elastography) |
---|---|---|---|---|
1 | No nodules. | Score = 0 | No nodules. | No nodules. |
2 | Cyst/Spongiform. | Score = 2 | Colloid/spongiform/Mixed isoechoic. | Cyst/Isolated macrocalcification/Spongiform |
3 | Oval, smooth margins, iso-/hyperechoic, no suspicious feature. | Score = 3 | Hashimoto pseudo-nodule. | Oval, regular margins, iso/hyperechoic |
4 | Oval, smooth margins, mild hypoechoic, no suspicious feature. | Score = 4–6 | 4A:
| 4A: Oval, regular margins, mild hypoechoic |
4B: Hypoechoic, irregular shape and margins, penetrating vessels ±calcifications | 4B: High suspicion features (1–2)
| |||
5 | Suspicious features (min 1): -irregular shape -irregular margins -microcalcifications -marked hypoechoic | Score ≥ 7 |
| High suspicion features (3–5) and/or Lymph node metastasis |
EU-TIRADS | ACR-TIRADS | Horvath TIRADS | French TIRADS (Includes Elastography) | |||||
---|---|---|---|---|---|---|---|---|
Normal gland | 1 | - | 1 | - | 1 | - | ||
Benign | 2 | ~0% | 1 | 0.3% | 2 | 0% | 2 | 0% |
Not suspicious | 2 | 1.5% | 3 | <5% | 3 | 0.25% | ||
Mildly suspicious | 3 | 2% to 4% | 3 | 4.8% | 4A | 5–10% | 4A | 6% |
Moderately suspicious | 4 | 6–17% | 4 | 9.1% | 4B | 10–80% | 4B | 69% |
Highly suspicious | 5 | 26–87% | 5 | 35% | 5 | >80% | 5 | ~100% |
Biopsy-proven malignancy | 6 | 100% |
Category | French TIRADS + 4D Color Doppler |
---|---|
1 | No nodules |
2 | Cyst/Isolated macrocalcification/Spongiform |
3 | Oval, regular margins, iso/hyperechoic |
4A | Oval, regular margins, mild hypoechoic |
4B | High suspicion features (1 or 2):
|
5 | High suspicion features (3–6) and/or Lymph node metastasis |
US Characteristic | Benign | Malignant |
---|---|---|
Blurred margins | 28 (28.57%) | 13 (37%) |
Microcalcification | 9 (9.1%) | 11 (31.4%) |
Marked Hypoechoic | 3 (3.06%) | 9 (25.7%) |
Taller-than-wide | 15 (15.3%) | 15 (42.8%) |
SR (>4) | 12 (12.24%) | 28 (80%) |
4D: increased intranodular Vascularity/interrupted capsule | 14 (14.28%) | 23 (65%) |
Total | Benign | Malignant | Calculated Risk | |
---|---|---|---|---|
EU TI-RADS | ||||
2 | 6 | 6 | 0 | 0% |
3 | 18 | 17 | 1 | 5.55% |
4 | 68 | 56 | 12 | 17.6% |
5 | 41 | 19 | 22 | 53% |
ACR TI-RADS | ||||
1 | 5 | 5 | 0 | 0% |
2 | 25 | 23 | 2 | 8% |
3 | 0 | 0 | 0 | - |
4 | 64 | 48 | 16 | 25% |
5 | 39 | 22 | 17 | 43.58% |
Horvath TI-RADS | ||||
2 | 19 | 18 | 1 | 5.26% |
3 | 5 | 5 | 0 | 0% |
4A | 44 | 38 | 6 | 13.63% |
4B | 36 | 24 | 12 | 33.33% |
5 | 29 | 13 | 16 | 55.17% |
French TI-RADS | ||||
2 | 6 | 6 | 0 | 0% |
3 | 19 | 19 | 0 | 0% |
4A | 59 | 56 | 3 | 5.08% |
4B | 27 | 13 | 14 | 51.85% |
5 | 22 | 4 | 18 | 81.8% |
French TI-RADS + 4D CD | ||||
2 | 6 | 6 | 0 | 0% |
3 | 19 | 19 | 0 | 0% |
4A | 51 | 49 | 2 | 3.92% |
4B | 32 | 20 | 12 | 37.5% |
5 | 25 | 4 | 21 | 84% |
Se (%) | Sp (%) | PPV (%) | NPV (%) | Accuracy (%) | |
---|---|---|---|---|---|
EU TI-RADS | 97.14 | 23.46 | 31.19 | 95.83 | 42.85 |
ACR TI-RADS | 94.28 | 31.81 | 35.48 | 93.33 | 45.86 |
Horvath TI-RADS | 80 | 62.24 | 43.07 | 89.70 | 66.91 |
French TI-RADS | 91.42 | 82.65 | 65.30 | 96.42 | 84.96 |
French TI-RADS + 4D | 94.28 | 75.51 | 57.89 | 97.36 | 80.45 |
Taller-than-Wide | 1 | ||||||
Marked Hypo- Echogenicity | 0.3323610 | 1 | |||||
Micro- Calcification | 0.1252548 | 0.4548725 | 1 | ||||
3D Doppler Pattern | 0.2269876 | 0.1558775 | 0.1612967 | 1 | |||
Elastography (SR) | 0.2737142 | 0.4801859 | 0.4121376 | 0.3612075 | 1 | ||
French TI-RADS | 0.3885093 | 0.3871947 | 0.3494646 | 0.4956183 | 0.6428621 | 1 | |
Histopatho- Logical Exam | 0.2902722 | 0.3481694 | 0.2740459 | 0.5053765 | 0.6506053 | 0.5531696 | 1 |
Taller-than-Wide | Marked Hypo- Echogenicity | Micro-Calcification | 3D Doppler Pattern | Elastography (SR) | French TI-RADS | Histopatho-Logical Exam |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borlea, A.; Borcan, F.; Sporea, I.; Dehelean, C.A.; Negrea, R.; Cotoi, L.; Stoian, D. TI-RADS Diagnostic Performance: Which Algorithm Is Superior and How Elastography and 4D Vascularity Improve the Malignancy Risk Assessment. Diagnostics 2020, 10, 180. https://doi.org/10.3390/diagnostics10040180
Borlea A, Borcan F, Sporea I, Dehelean CA, Negrea R, Cotoi L, Stoian D. TI-RADS Diagnostic Performance: Which Algorithm Is Superior and How Elastography and 4D Vascularity Improve the Malignancy Risk Assessment. Diagnostics. 2020; 10(4):180. https://doi.org/10.3390/diagnostics10040180
Chicago/Turabian StyleBorlea, Andreea, Florin Borcan, Ioan Sporea, Cristina Adriana Dehelean, Romeo Negrea, Laura Cotoi, and Dana Stoian. 2020. "TI-RADS Diagnostic Performance: Which Algorithm Is Superior and How Elastography and 4D Vascularity Improve the Malignancy Risk Assessment" Diagnostics 10, no. 4: 180. https://doi.org/10.3390/diagnostics10040180
APA StyleBorlea, A., Borcan, F., Sporea, I., Dehelean, C. A., Negrea, R., Cotoi, L., & Stoian, D. (2020). TI-RADS Diagnostic Performance: Which Algorithm Is Superior and How Elastography and 4D Vascularity Improve the Malignancy Risk Assessment. Diagnostics, 10(4), 180. https://doi.org/10.3390/diagnostics10040180