Fast Phase-Contrast Cine MRI for Assessing Intracranial Hemodynamics and Cerebrospinal Fluid Dynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of Proposed Fast Phase-Contrast Cine Magnetic Resonance Imaging (PC-cine MRI)
2.2. Imaging Conditions
2.3. Subjects
2.4. Determination of Intracranial Hemo- and Hydrodynamic Parameters
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CBF | cerebral blood flow |
CVO | cerebral venous outflow |
CSF | cerebrospinal fluid |
ICP | intracranial pressure |
PC-cine MRI | phase-contrast cine magnetic resonance imaging |
ICCI | intracranial compliance index |
ICVC | intracranial volume change |
PG | CSF pressure gradient |
ΔICVC | peak-to-peak amplitude of ICVC during the cardiac cycle |
ΔPG | peak-to-peak amplitude of PG during cardiac cycle |
HR | heart rate |
∆CBF | peak-to-peak amplitude of CBF during the cardiac cycle |
ΔCVO | peak-to-peak amplitude of CVO during the cardiac cycle |
FOV | field of view |
ASSET | array spatial sensitivity encoding technique |
ICAs | internal carotid arteries |
VAs | vertebral arteries |
IJVs | internal jugular veins |
SNR | signal-to-noise ratio |
LOA | limit of agreement |
Ins | inspiration |
Exp | expiration |
FB | free breathing |
References
- Alperin, N. MR-intracranial compliance and pressure: A method for noninvasive measurement of important neurophysiologic parameters. Methods Enzymol. 2004, 386, 323–349. [Google Scholar] [CrossRef] [PubMed]
- Marmarou, A.; Shulman, K.; LaMorgese, J. Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J. Neurosurg. 1975, 43, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Sklar, F.H.; Elashvili, I. The pressure-volume function of brain elasticity. Physiological considerations and clinical applications. J. Neurosurg. 1977, 47, 670–679. [Google Scholar] [CrossRef] [Green Version]
- Alperin, N.; Sivaramakrishnan, A.; Lichtor, T. Magnetic resonance imaging-based measurements of cerebrospinal fluid and blood flow as indicators of intracranial compliance in patients with Chiari malformation. J. Neurosurg. 2005, 103, 46–52. [Google Scholar] [CrossRef]
- Miyati, T.; Mase, M.; Kasai, H.; Hara, M.; Yamada, K.; Shibamoto, Y.; Soellinger, M.; Baltes, C.; Luechinger, R. Noninvasive MRI assessment of intracranial compliance in idiopathic normal pressure hydrocephalus. J. Magn. Reson. Imaging 2007, 26, 274–278. [Google Scholar] [CrossRef] [Green Version]
- Wagshul, M.E.; Eide, P.K.; Madsen, J.R. The pulsating brain: A review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS 2011, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Ohno, N.; Miyati, T.; Mase, M.; Osawa, T.; Kan, H.; Kasai, H.; Hara, M.; Shibamoto, Y.; Hayashi, N.; Gabata, T.; et al. Idiopathic normal-pressure hydrocephalus: Temporal changes in ADC during cardiac cycle. Radiology 2011, 261, 560–565. [Google Scholar] [CrossRef] [Green Version]
- Takatsuji-Nagaso, M.; Miyati, T.; Ohno, N.; Mase, M.; Kasai, H.; Shibamoto, Y.; Kobayashi, S.; Gabata, T.; Kitagawa, K. Hemodynamically self-corrected DeltaADC analysis in idiopathic normal pressure hydrocephalus. Br. J. Radiol. 2019, 92, 20180553. [Google Scholar] [CrossRef]
- Bradley, W.G., Jr. Magnetic Resonance Imaging of Normal Pressure Hydrocephalus. Semin. Ultrasound CT MR 2016, 37, 120–128. [Google Scholar] [CrossRef]
- Daouk, J.; Bouzerar, R.; Baledent, O. Heart rate and respiration influence on macroscopic blood and CSF flows. Acta Radiol. 2017, 58, 977–982. [Google Scholar] [CrossRef]
- Yildiz, S.; Thyagaraj, S.; Jin, N.; Zhong, X.; Heidari Pahlavian, S.; Martin, B.A.; Loth, F.; Oshinski, J.; Sabra, K.G. Quantifying the influence of respiration and cardiac pulsations on cerebrospinal fluid dynamics using real-time phase-contrast MRI. J. Magn. Reson. Imaging 2017, 46, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Spijkerman, J.M.; Geurts, L.J.; Siero, J.C.W.; Hendrikse, J.; Luijten, P.R.; Zwanenburg, J.J.M. Phase contrast MRI measurements of net cerebrospinal fluid flow through the cerebral aqueduct are confounded by respiration. J. Magn. Reson. Imaging 2019, 49, 433–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pruessmann, K.P.; Weiger, M.; Scheidegger, M.B.; Boesiger, P. SENSE: Sensitivity encoding for fast MRI. Magn. Reson. Med. 1999, 42, 952–962. [Google Scholar] [CrossRef]
- Glockner, J.F.; Hu, H.H.; Stanley, D.W.; Angelos, L.; King, K. Parallel MR imaging: A user’s guide. Radiographics 2005, 25, 1279–1297. [Google Scholar] [CrossRef] [PubMed]
- Alperin, N.; Lee, S.H. PUBS: Pulsatility-based segmentation of lumens conducting non-steady flow. Magn. Reson. Med. 2003, 49, 934–944. [Google Scholar] [CrossRef] [PubMed]
- Alperin, N.J.; Lee, S.H.; Loth, F.; Raksin, P.B.; Lichtor, T. MR-Intracranial pressure (ICP): A method to measure intracranial elastance and pressure noninvasively by means of MR imaging: Baboon and human study. Radiology 2000, 217, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Tain, R.W.; Ertl-Wagner, B.; Alperin, N. Influence of the compliance of the neck arteries and veins on the measurement of intracranial volume change by phase-contrast MRI. J. Magn. Reson. Imaging 2009, 30, 878–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koerte, I.; Haberl, C.; Schmidt, M.; Pomschar, A.; Lee, S.; Rapp, P.; Steffinger, D.; Tain, R.W.; Alperin, N.; Ertl-Wagner, B. Inter- and intra-rater reliability of blood and cerebrospinal fluid flow quantification by phase-contrast MRI. J. Magn. Reson. Imaging 2013, 38, 655–662. [Google Scholar] [CrossRef] [Green Version]
- Thunberg, P.; Karlsson, M.; Wigstrom, L. Accuracy and reproducibility in phase contrast imaging using SENSE. Magn. Reson. Med. 2003, 50, 1061–1068. [Google Scholar] [CrossRef]
- Poutanen, V.P.; Kivisaari, R.; Hakkinen, A.M.; Savolainen, S.; Hekali, P.; Standertskjold-Nordenstam, C.G. Multiphase segmented k-space velocity mapping in pulsatile flow waveforms. Magn. Reson. Imaging 1998, 16, 261–270. [Google Scholar] [CrossRef]
- Sakuma, H.; Kawada, N.; Kubo, H.; Nishide, Y.; Takano, K.; Kato, N.; Takeda, K. Effect of breath holding on blood flow measurement using fast velocity encoded cine MRI. Magn. Reson. Med. 2001, 45, 346–348. [Google Scholar] [CrossRef]
- Johansson, B.; Babu-Narayan, S.V.; Kilner, P.J. The effects of breath-holding on pulmonary regurgitation measured by cardiovascular magnetic resonance velocity mapping. J. Cardiovasc. Magn. Reson. 2009, 11, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaturvedi, A.; Hamilton-Craig, C.; Cawley, P.J.; Mitsumori, L.M.; Otto, C.M.; Maki, J.H. Quantitating aortic regurgitation by cardiovascular magnetic resonance: Significant variations due to slice location and breath holding. Eur. Radiol. 2016, 26, 3180–3189. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.; Miyazaki, M.; Yamashita, Y.; Ouyang, C.; Yui, M.; Nakahashi, M.; Shimizu, S.; Aoki, I.; Morohoshi, Y.; McComb, J.G. Influence of respiration on cerebrospinal fluid movement using magnetic resonance spin labeling. Fluids Barriers CNS 2013, 10, 36. [Google Scholar] [CrossRef] [Green Version]
- McCarren, B.; Alison, J.A.; Herbert, R.D. Manual vibration increases expiratory flow rate via increased intrapleural pressure in healthy adults: An experimental study. Aust. J. Physiother. 2006, 52, 267–271. [Google Scholar] [CrossRef] [Green Version]
- Nakada, K.; Yoshida, D.; Fukumoto, M.; Yoshida, S. Chronological analysis of physiological T2* signal change in the cerebrum during breath holding. J. Magn. Reson. Imaging 2001, 13, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Convertino, V.A.; Ryan, K.L.; Rickards, C.A.; Glorsky, S.L.; Idris, A.H.; Yannopoulos, D.; Metzger, A.; Lurie, K.G. Optimizing the respiratory pump: Harnessing inspiratory resistance to treat systemic hypotension. Respir. Care 2011, 56, 846–857. [Google Scholar] [CrossRef] [Green Version]
- Baledent, O.; Henry-Feugeas, M.C.; Idy-Peretti, I. Cerebrospinal fluid dynamics and relation with blood flow: A magnetic resonance study with semiautomated cerebrospinal fluid segmentation. Investig. Radiol. 2001, 36, 368–377. [Google Scholar] [CrossRef]
- Tain, R.W.; Alperin, N. Intracranial pressure dynamics are not linked to aqueductal cerebrospinal fluid stroke volume. J. Appl. Physiol. 2013, 114, 1645. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Beckett, A.; Verma, A.; Feinberg, D.A. Dynamics of respiratory and cardiac CSF motion revealed with real-time simultaneous multi-slice EPI velocity phase contrast imaging. Neuroimage 2015, 122, 281–287. [Google Scholar] [CrossRef] [Green Version]
- Basha, T.A.; Akcakaya, M.; Goddu, B.; Berg, S.; Nezafat, R. Accelerated three-dimensional cine phase contrast imaging using randomly undersampled echo planar imaging with compressed sensing reconstruction. NMR Biomed. 2015, 28, 30–39. [Google Scholar] [CrossRef] [PubMed]
Parameter | Fast | Conventional | R | p value |
---|---|---|---|---|
ΔICVC (mL) | 0.40 ± 0.14 | 0.43 ± 0.13 | 0.748 | 0.005 |
ΔPG (cm H2O·cm) | 0.104 ± 0.036 | 0.105 ± 0.032 | 0.937 | <0.001 |
ICCI (mL/cm H2O·cm) | 0.29 ± 0.15 | 0.26 ± 0.09 | 0.825 | 0.001 |
ΔCBF (mL/min) | 775.7 ± 184.6 | 816.3 ± 176.5 | 0.867 | <0.001 |
ΔCVO (mL/min) | 254.4 ± 98.4 | 283.5 ± 90.6 | 0.846 | 0.001 |
Parameter | Ins | Exp | FB | p Value | ||
---|---|---|---|---|---|---|
Ins vs. Exp | Ins vs. FB | Exp vs. FB | ||||
ΔICVC (mL) | 0.45 ± 0.15 | 0.46 ± 0.19 | 0.44 ± 0.14 | 0.790 | 0.790 | 0.790 |
ΔPG (cm H2O·cm) | 0.108 ± 0.035 | 0.086 ± 0.027 | 0.090 ± 0.019 | 0.015 | 0.018 | 0.530 |
ICCI (mL/cm H2O·cm) | 0.31 ± 0.29 | 0.26 ± 0.26 | 0.25 ± 0.15 | 0.308 | 0.308 | 0.308 |
ΔCBF (mL/min) | 778.2 ± 132.6 | 714.4 ± 90.0 | 749.5 ± 99.8 | 0.051 | 0.308 | 0.051 |
ΔCVO (mL/min) | 297.5 ± 84.2 | 220.7 ± 71.4 | 255.5 ± 103.9 | 0.180 | 0.408 | 0.754 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohno, N.; Miyati, T.; Noda, T.; Alperin, N.; Hamaguchi, T.; Ohno, M.; Matsushita, T.; Mase, M.; Gabata, T.; Kobayashi, S. Fast Phase-Contrast Cine MRI for Assessing Intracranial Hemodynamics and Cerebrospinal Fluid Dynamics. Diagnostics 2020, 10, 241. https://doi.org/10.3390/diagnostics10040241
Ohno N, Miyati T, Noda T, Alperin N, Hamaguchi T, Ohno M, Matsushita T, Mase M, Gabata T, Kobayashi S. Fast Phase-Contrast Cine MRI for Assessing Intracranial Hemodynamics and Cerebrospinal Fluid Dynamics. Diagnostics. 2020; 10(4):241. https://doi.org/10.3390/diagnostics10040241
Chicago/Turabian StyleOhno, Naoki, Tosiaki Miyati, Tomohiro Noda, Noam Alperin, Takashi Hamaguchi, Masako Ohno, Tatsuhiko Matsushita, Mitsuhito Mase, Toshifumi Gabata, and Satoshi Kobayashi. 2020. "Fast Phase-Contrast Cine MRI for Assessing Intracranial Hemodynamics and Cerebrospinal Fluid Dynamics" Diagnostics 10, no. 4: 241. https://doi.org/10.3390/diagnostics10040241
APA StyleOhno, N., Miyati, T., Noda, T., Alperin, N., Hamaguchi, T., Ohno, M., Matsushita, T., Mase, M., Gabata, T., & Kobayashi, S. (2020). Fast Phase-Contrast Cine MRI for Assessing Intracranial Hemodynamics and Cerebrospinal Fluid Dynamics. Diagnostics, 10(4), 241. https://doi.org/10.3390/diagnostics10040241