Acute Renal Failure/Acute Kidney Injury (AKI) Associated with Endovascular Procedures
Abstract
:1. Acute Kidney Injury
2. Contrast-Induced Nephropathy
3. Risk Factors of Post-Contrast AKI
4. Coronary Angiography or Angioplasty
5. Endovascular and Surgical Procedures Related to Aorta
6. Peripheral Vascular Intervention
7. Summary
Conflicts of Interest
References
- Kellum, J.A.; Lameire, N.; Group, K.A.G.W. Diagnosis, evaluation, and management of acute kidney injury: A KDIGO summary (Part 1). Crit Care 2013, 17, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorres, A.; John, S.; Lewington, A.; ter Wee, P.M.; Vanholder, R.; Van Biesen, W.; Tattersall, J.; ad-hoc working group of ERBP; Abramovic, D.; Cannata, J.; et al. A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) Clinical Practice Guidelines on Acute Kidney Injury: Part 2: Renal replacement therapy. Nephrol. Dial. Transpl. 2013, 28, 2940–2945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ad-hoc working group of ERBP; Fliser, D.; Laville, M.; Covic, A.; Fouque, D.; Vanholder, R.; Juillard, L.; Van Biesen, W. A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury: Part 1: Definitions, conservative management and contrast-induced nephropathy. Nephrol. Dial. Transpl. 2012, 27, 4263–4272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azzalini, L.; Spagnoli, V.; Ly, H.Q. Contrast-Induced Nephropathy: From Pathophysiology to Preventive Strategies. Can. J. Cardiol. 2016, 32, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Mehran, R.; Aymong, E.D.; Nikolsky, E.; Lasic, Z.; Iakovou, I.; Fahy, M.; Mintz, G.S.; Lansky, A.J.; Moses, J.W.; Stone, G.W.; et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: Development and initial validation. J. Am. Coll. Cardiol. 2004, 44, 1393–1399. [Google Scholar] [PubMed] [Green Version]
- Tsai, T.T.; Patel, U.D.; Chang, T.I.; Kennedy, K.F.; Masoudi, F.A.; Matheny, M.E.; Kosiborod, M.; Amin, A.P.; Messenger, J.C.; Rumsfeld, J.S.; et al. Contemporary incidence, predictors, and outcomes of acute kidney injury in patients undergoing percutaneous coronary interventions: Insights from the NCDR Cath-PCI registry. JACC Cardiovasc. Interv. 2014, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Vlachopanos, G.; Schizas, D.; Hasemaki, N.; Georgalis, A. Pathophysiology of Contrast-Induced Acute Kidney Injury (CIAKI). Curr. Pharm. Des. 2019, 25, 4642–4647. [Google Scholar] [CrossRef]
- Widmark, J.M. Imaging-related medications: A class overview. Proc. (Bayl. Univ. Med. Cent.) 2007, 20, 408–417. [Google Scholar] [CrossRef] [Green Version]
- Do, C. Intravenous Contrast: Friend or Foe? A Review on Contrast-Induced Nephropathy. Adv. Chronic. Kidney Dis. 2017, 24, 147–149. [Google Scholar] [CrossRef]
- Goodney, P.P.; Tarulli, M.; Faerber, A.E.; Schanzer, A.; Zwolak, R.M. Fifteen-year trends in lower limb amputation, revascularization, and preventive measures among medicare patients. JAMA Surg. 2015, 150, 84–86. [Google Scholar] [CrossRef]
- McCullough, P.A. Contrast-induced acute kidney injury. J. Am. Coll. Cardiol. 2008, 51, 1419–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, L.S.; Sirota, R.A.; Ebert, T.H.; Lichtenstein, N.S. Low fractional excretion of sodium with contrast media-induced acute renal failure. Arch. Intern. Med. 1980, 140, 531–533. [Google Scholar] [CrossRef] [PubMed]
- Nash, K.; Hafeez, A.; Hou, S. Hospital-acquired renal insufficiency. Am. J. Kidney Dis 2002, 39, 930–936. [Google Scholar] [CrossRef]
- Briguori, C.; Tavano, D.; Colombo, A. Contrast agent--associated nephrotoxicity. Prog. Cardiovasc. Dis. 2003, 45, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Lakhal, K.; Ehrmann, S.; Chaari, A.; Laissy, J.P.; Regnier, B.; Wolff, M.; Pajot, O. Acute Kidney Injury Network definition of contrast-induced nephropathy in the critically ill: Incidence and outcome. J. Crit. Care 2011, 26, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, T.G.; Bulugahapitiya, S. Contrast-induced nephropathy. AJR Am. J. Roentgenol. 2004, 183, 1673–1689. [Google Scholar] [CrossRef] [PubMed]
- Tublin, M.E.; Murphy, M.E.; Tessler, F.N. Current concepts in contrast media-induced nephropathy. AJR Am. J. Roentgenol. 1998, 171, 933–939. [Google Scholar] [CrossRef] [Green Version]
- Maccariello, E. Contrast induced nephropathy. J. Bras. Nefrol. 2016, 38, 388–389. [Google Scholar] [CrossRef] [Green Version]
- Rao, Q.A.; Newhouse, J.H. Risk of nephropathy after intravenous administration of contrast material: A critical literature analysis. Radiology 2006, 239, 392–397. [Google Scholar] [CrossRef]
- Davenport, M.S.; Khalatbari, S.; Dillman, J.R.; Cohan, R.H.; Caoili, E.M.; Ellis, J.H. Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material. Radiology 2013, 267, 94–105. [Google Scholar] [CrossRef] [Green Version]
- Newhouse, J.H.; Kho, D.; Rao, Q.A.; Starren, J. Frequency of serum creatinine changes in the absence of iodinated contrast material: Implications for studies of contrast nephrotoxicity. AJR Am. J. Roentgenol. 2008, 191, 376–382. [Google Scholar] [CrossRef]
- Wilhelm-Leen, E.; Montez-Rath, M.E.; Chertow, G. Estimating the Risk of Radiocontrast-Associated Nephropathy. J. Am. Soc. Nephrol. 2017, 28, 653–659. [Google Scholar] [CrossRef] [Green Version]
- Oleinik, A.; Romero, J.M.; Schwab, K.; Lev, M.H.; Jhawar, N.; Delgado Almandoz, J.E.; Smith, E.E.; Greenberg, S.M.; Rosand, J.; Goldstein, J.N. CT angiography for intracerebral hemorrhage does not increase risk of acute nephropathy. Stroke 2009, 40, 2393–2397. [Google Scholar] [CrossRef] [Green Version]
- Bansal, G.J.; Darby, M. Measurement of change in estimated glomerular filtration rate in patients with renal insufficiency after contrast-enhanced computed tomography: A case-control study. J. Comput. Assist. Tomogr. 2009, 33, 455–459. [Google Scholar] [CrossRef]
- Lima, F.O.; Lev, M.H.; Levy, R.A.; Silva, G.S.; Ebril, M.; de Camargo, E.C.; Pomerantz, S.; Singhal, A.B.; Greer, D.M.; Ay, H.; et al. Functional contrast-enhanced CT for evaluation of acute ischemic stroke does not increase the risk of contrast-induced nephropathy. AJNR Am. J. Neuroradiol. 2010, 31, 817–821. [Google Scholar] [CrossRef] [Green Version]
- Adalbert, S.; Adelina, M.; Romulus, T.; Flaviu Raul, B.; Bogdan, T.; Raluca, B.; Mihai, I. Acute kidney injury in peripheral arterial surgery patients: A cohort study. Ren Fail. 2013, 35, 1236–1239. [Google Scholar] [CrossRef]
- Arnaoutakis, G.J.; Bihorac, A.; Martin, T.D.; Hess, P.J., Jr.; Klodell, C.T.; Ejaz, A.A.; Garvan, C.; Tribble, C.G.; Beaver, T.M. RIFLE criteria for acute kidney injury in aortic arch surgery. J. Thorac. Cardiovasc. Surg. 2007, 134, 1554–1560, discussion 1560-1. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, E.A.; Kallmes, D.F.; Fleming, C.J.; McDonald, R.J.; McKusick, M.A.; Bjarnason, H.; Harmsen, W.S.; Misra, S. Predictors and Outcomes of Postcontrast Acute Kidney Injury after Endovascular Renal Artery Intervention. J. Vasc. Interv. Radiol. 2017, 28, 1687–1692. [Google Scholar] [CrossRef] [Green Version]
- Huber, M.; Ozrazgat-Baslanti, T.; Thottakkara, P.; Efron, P.A.; Feezor, R.; Hobson, C.; Bihorac, A. Mortality and Cost of Acute and Chronic Kidney Disease after Vascular Surgery. Ann. Vasc. Surg. 2016, 30, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Flores, E.; Lewinger, J.P.; Rowe, V.L.; Woo, K.; Weaver, F.A.; Shavelle, D.; Clavijo, L.; Garg, P.K. Increased risk of mortality after lower extremity bypass in individuals with acute kidney injury in the Vascular Quality Initiative. J. Vasc. Surg. 2017, 65, 1055–1061. [Google Scholar] [CrossRef] [Green Version]
- Arora, P.; Davari-Farid, S.; Pourafkari, L.; Gupta, A.; Dosluoglu, H.H.; Nader, N.D. The effect of acute kidney injury after revascularization on the development of chronic kidney disease and mortality in patients with chronic limb ischemia. J. Vasc. Surg. 2015, 61, 720–727. [Google Scholar] [CrossRef] [Green Version]
- Sigterman, T.A.; Bolt, L.J.; Krasznai, A.G.; Snoeijs, M.G.; Heijboer, R.; Schurink, G.H.; Bouwman, L.H. Loss of kidney function in patients with critical limb ischemia treated endovascularly or surgically. J. Vasc. Surg. 2016, 64, 362–368. [Google Scholar] [CrossRef]
- Arnaoutakis, D.J.; Arnaoutakis, G.J.; Abularrage, C.J.; Beaulieu, R.J.; Shah, A.S.; Cameron, D.E.; Black, J.H., 3rd. Cohort comparison of thoracic endovascular aortic repair with open thoracic aortic repair using modern end-organ preservation strategies. Ann. Vasc. Surg. 2015, 29, 882–890. [Google Scholar] [CrossRef]
- Zhu, J.C.; Chen, S.L.; Jin, G.Z.; Shao, M.X.; Kan, J.; Lu, C.Y.; Xu, H. Acute renal injury after thoracic endovascular aortic repair of Stanford type B aortic dissection: Incidence, risk factors, and prognosis. J. Formos Med. Assoc. 2014, 113, 612–619. [Google Scholar] [CrossRef] [Green Version]
- Kabbani, L.S.; West, C.A.; Viau, D.; Nypaver, T.J.; Weaver, M.R.; Barth, C.; Lin, J.C.; Shepard, A.D. Survival after repair of pararenal and paravisceral abdominal aortic aneurysms. J. Vasc. Surg. 2014, 59, 1488–1494. [Google Scholar] [CrossRef] [Green Version]
- Schermerhorn, M.L.; O’Malley, A.J.; Landon, B.E. Long-Term Outcomes of Abdominal Aortic Aneurysm Repair. N. Engl. J. Med. 2015, 373, 2088–2089. [Google Scholar] [CrossRef]
- Castagno, C.; Varetto, G.; Quaglino, S.; Frola, E.; Scozzari, G.; Bert, F.; Rispoli, P. Acute kidney injury after open and endovascular elective repair for infrarenal abdominal aortic aneurysms. J. Vasc. Surg. 2016, 64, 928–933. [Google Scholar] [CrossRef] [Green Version]
- Saratzis, A.; Melas, N.; Mahmood, A.; Sarafidis, P. Incidence of Acute Kidney Injury (AKI) after Endovascular Abdominal Aortic Aneurysm Repair (EVAR) and Impact on Outcome. Eur. J. Vasc. Endovasc. Surg. 2015, 49, 534–540. [Google Scholar] [CrossRef] [Green Version]
- Sacha, J.; Gierlotka, M.; Feusette, P.; Dudek, D. Ultra-low contrast coronary angiography and zero-contrast percutaneous coronary intervention for prevention of contrast-induced nephropathy: Step-by-step approach and review. Postepy Kardiol Interwencyjnej 2019, 15, 127–136. [Google Scholar] [CrossRef]
- Katzberg, R.W.; Barrett, B.J. Risk of iodinated contrast material--induced nephropathy with intravenous administration. Radiology 2007, 243, 622–628. [Google Scholar] [CrossRef]
- Owen, R.J.; Hiremath, S.; Myers, A.; Fraser-Hill, M.; Barrett, B.J. Canadian Association of Radiologists consensus guidelines for the prevention of contrast-induced nephropathy: Update 2012. Can. Assoc. Radiol J. 2014, 65, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Caspi, O.; Habib, M.; Cohen, Y.; Kerner, A.; Roguin, A.; Abergel, E.; Boulos, M.; Kapeliovich, M.R.; Beyar, R.; Nikolsky, E.; et al. Acute Kidney Injury After Primary Angioplasty: Is Contrast-Induced Nephropathy the Culprit? J. Am. Heart Assoc. 2017, 6, e005715. [Google Scholar] [CrossRef] [PubMed]
- Hoole, S.P.; Heck, P.M.; Sharples, L.; Khan, S.N.; Duehmke, R.; Densem, C.G.; Clarke, S.C.; Shapiro, L.M.; Schofield, P.M.; O’Sullivan, M.; et al. Cardiac Remote Ischemic Preconditioning in Coronary Stenting (CRISP Stent) Study: A prospective, randomized control trial. Circulation 2009, 119, 820–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Er, F.; Nia, A.M.; Dopp, H.; Hellmich, M.; Dahlem, K.M.; Caglayan, E.; Kubacki, T.; Benzing, T.; Erdmann, E.; Burst, V.; et al. Ischemic preconditioning for prevention of contrast medium-induced nephropathy: Randomized pilot RenPro Trial (Renal Protection Trial). Circulation 2012, 126, 296–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, S.J.; Zhou, Y.J.; Shi, D.M.; Ge, H.L.; Wang, J.L.; Liu, R.F. Remote ischemic preconditioning reduces myocardial injury in patients undergoing coronary stent implantation. Can. J. Cardiol. 2013, 29, 1084–1089. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, G.; Iino, K.; Watanabe, H.; Ito, H. Remote ischemic pre-conditioning alleviates contrast-induced acute kidney injury in patients with moderate chronic kidney disease. Circ. J. 2013, 77, 3037–3044. [Google Scholar] [CrossRef] [Green Version]
- Lavi, S.; D’Alfonso, S.; Diamantouros, P.; Camuglia, A.; Garg, P.; Teefy, P.; Jablonsky, G.; Sridhar, K.; Lavi, R. Remote ischemic postconditioning during percutaneous coronary interventions: Remote ischemic postconditioning-percutaneous coronary intervention randomized trial. Circ. Cardiovasc. Interv. 2014, 7, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Crimi, G.; Ferlini, M.; Gallo, F.; Sormani, M.P.; Raineri, C.; Bramucci, E.; De Ferrari, G.M.; Pica, S.; Marinoni, B.; Repetto, A.; et al. Remote ischemic postconditioning as a strategy to reduce acute kidney injury during primary PCI: A post-hoc analysis of a randomized trial. Int. J. Cardiol. 2014, 177, 500–502. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, Y.; Luo, S.; Zhang, W.; Zhao, Y.; Yu, M.; Ma, Q.; Gao, F.; Shen, H.; Zhang, J. Effect of remote ischemic preconditioning in the elderly patients with coronary artery disease with diabetes mellitus undergoing elective drug-eluting stent implantation. Angiology 2014, 65, 660–666. [Google Scholar] [CrossRef]
- Yamanaka, T.; Kawai, Y.; Miyoshi, T.; Mima, T.; Takagaki, K.; Tsukuda, S.; Kazatani, Y.; Nakamura, K.; Ito, H. Remote ischemic preconditioning reduces contrast-induced acute kidney injury in patients with ST-elevation myocardial infarction: A randomized controlled trial. Int. J. Cardiol. 2015, 178, 136–141. [Google Scholar] [CrossRef]
- Writing Group, M.; Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; Das, S.R.; de Ferranti, S.; Despres, J.P.; et al. Executive Summary: Heart Disease and Stroke Statistics--2016 Update: A Report From the American Heart Association. Circulation 2016, 133, 447–454. [Google Scholar]
- Amin, A.P.; Bach, R.G.; Caruso, M.L.; Kennedy, K.F.; Spertus, J.A. Association of Variation in Contrast Volume With Acute Kidney Injury in Patients Undergoing Percutaneous Coronary Intervention. JAMA Cardiol. 2017, 2, 1007–1012. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.T.; Patel, U.D.; Chang, T.I.; Kennedy, K.F.; Masoudi, F.A.; Matheny, M.E.; Kosiborod, M.; Amin, A.P.; Weintraub, W.S.; Curtis, J.P.; et al. Validated contemporary risk model of acute kidney injury in patients undergoing percutaneous coronary interventions: Insights from the National Cardiovascular Data Registry Cath-PCI Registry. J. Am. Heart Assoc. 2014, 3, e001380. [Google Scholar] [CrossRef] [Green Version]
- Amin, A.P.; Spertus, J.A.; Reid, K.J.; Lan, X.; Buchanan, D.M.; Decker, C.; Masoudi, F.A. The prognostic importance of worsening renal function during an acute myocardial infarction on long-term mortality. Am. Heart J. 2010, 160, 1065–1071. [Google Scholar] [CrossRef]
- Chertow, G.M.; Levy, E.M.; Hammermeister, K.E.; Grover, F.; Daley, J. Independent association between acute renal failure and mortality following cardiac surgery. Am. J. Med. 1998, 104, 343–348. [Google Scholar] [CrossRef]
- Hou, S.H.; Bushinsky, D.A.; Wish, J.B.; Cohen, J.J.; Harrington, J.T. Hospital-acquired renal insufficiency: A prospective study. Am. J. Med. 1983, 74, 243–248. [Google Scholar] [CrossRef]
- Levy, E.M.; Viscoli, C.M.; Horwitz, R.I. The effect of acute renal failure on mortality. A cohort analysis. JAMA 1996, 275, 1489–1494. [Google Scholar] [CrossRef]
- Shusterman, N.; Strom, B.L.; Murray, T.G.; Morrison, G.; West, S.L.; Maislin, G. Risk factors and outcome of hospital-acquired acute renal failure. Clinical epidemiologic study. Am. J. Med. 1987, 83, 65–71. [Google Scholar] [CrossRef]
- Cosentino, F.; Chaff, C.; Piedmonte, M. Risk factors influencing survival in ICU acute renal failure. Nephrol. Dial. Transplant. 1994, 9 (Suppl. 4), 179–182. [Google Scholar]
- Helgason, D.; Long, T.E.; Helgadottir, S.; Palsson, R.; Sigurdsson, G.H.; Gudbjartsson, T.; Indridason, O.S.; Gudmundsdottir, I.J.; Sigurdsson, M.I. Acute kidney injury following coronary angiography: A nationwide study of incidence, risk factors and long-term outcomes. J. Nephrol. 2018, 31, 721–730. [Google Scholar] [CrossRef]
- James, M.T.; Ghali, W.A.; Tonelli, M.; Faris, P.; Knudtson, M.L.; Pannu, N.; Klarenbach, S.W.; Manns, B.J.; Hemmelgarn, B.R. Acute kidney injury following coronary angiography is associated with a long-term decline in kidney function. Kidney Int. 2010, 78, 803–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartholomew, B.A.; Harjai, K.J.; Dukkipati, S.; Boura, J.A.; Yerkey, M.W.; Glazier, S.; Grines, C.L.; O’Neill, W.W. Impact of nephropathy after percutaneous coronary intervention and a method for risk stratification. Am. J. Cardiol. 2004, 93, 1515–1519. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Gurm, H.S.; Bhatt, D.L.; Chew, D.P.; Ellis, S.G. Renal failure after percutaneous coronary intervention is associated with high mortality. Catheter. Cardiovasc. Interv. 2005, 64, 442–448. [Google Scholar] [CrossRef]
- Yamamoto, M.; Hayashida, K.; Mouillet, G.; Chevalier, B.; Meguro, K.; Watanabe, Y.; Dubois-Rande, J.L.; Morice, M.C.; Lefevre, T.; Teiger, E. Renal function-based contrast dosing predicts acute kidney injury following transcatheter aortic valve implantation. JACC Cardiovasc. Interv. 2013, 6, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Nuis, R.J.; Rodes-Cabau, J.; Sinning, J.M.; van Garsse, L.; Kefer, J.; Bosmans, J.; Dager, A.E.; van Mieghem, N.; Urena, M.; Nickenig, G.; et al. Blood transfusion and the risk of acute kidney injury after transcatheter aortic valve implantation. Circ. Cardiovasc. Interv. 2012, 5, 680–688. [Google Scholar] [CrossRef] [Green Version]
- Seiffert, M.; Sinning, J.M.; Meyer, A.; Wilde, S.; Conradi, L.; Vasa-Nicotera, M.; Ghanem, A.; Kempfert, J.; Hammerstingl, C.; Ojeda, F.M.; et al. Development of a risk score for outcome after transcatheter aortic valve implantation. Clin. Res. Cardiol. 2014, 103, 631–640. [Google Scholar] [CrossRef]
- Arsalan, M.; Squiers, J.J.; Farkas, R.; Worley, C.; Herbert, M.; Stewart, W.; Brinkman, W.T.; Ungchusri, E.; Brown, D.L.; Mack, M.J.; et al. Prognostic Usefulness of Acute Kidney Injury After Transcatheter Aortic Valve Replacement. Am. J. Cardiol. 2016, 117, 1327–1331. [Google Scholar] [CrossRef]
- Barbash, I.M.; Ben-Dor, I.; Dvir, D.; Maluenda, G.; Xue, Z.; Torguson, R.; Satler, L.F.; Pichard, A.D.; Waksman, R. Incidence and predictors of acute kidney injury after transcatheter aortic valve replacement. Am. Heart J. 2012, 163, 1031–1036. [Google Scholar] [CrossRef]
- Ohno, Y.; Maekawa, Y.; Miyata, H.; Inoue, S.; Ishikawa, S.; Sueyoshi, K.; Noma, S.; Kawamura, A.; Kohsaka, S.; Fukuda, K. Impact of periprocedural bleeding on incidence of contrast-induced acute kidney injury in patients treated with percutaneous coronary intervention. J. Am. Coll. Cardiol. 2013, 62, 1260–1266. [Google Scholar] [CrossRef] [Green Version]
- Kappetein, A.P.; Head, S.J.; Genereux, P.; Piazza, N.; van Mieghem, N.M.; Blackstone, E.H.; Brott, T.G.; Cohen, D.J.; Cutlip, D.E.; van Es, G.A.; et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: The Valve Academic Research Consortium-2 consensus document. J. Am. Coll. Cardiol. 2012, 60, 1438–1454. [Google Scholar] [CrossRef] [Green Version]
- Kappetein, A.P.; Head, S.J.; Genereux, P.; Piazza, N.; van Mieghem, N.M.; Blackstone, E.H.; Brott, T.G.; Cohen, D.J.; Cutlip, D.E.; van Es, G.A.; et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: The Valve Academic Research Consortium-2 consensus document (VARC-2). Eur. J. Cardiothorac. Surg. 2012, 42, S45–S60. [Google Scholar] [CrossRef]
- Ali, Z.A.; Karimi Galougahi, K.; Nazif, T.; Maehara, A.; Hardy, M.A.; Cohen, D.J.; Ratner, L.E.; Collins, M.B.; Moses, J.W.; Kirtane, A.J.; et al. Imaging- and physiology-guided percutaneous coronary intervention without contrast administration in advanced renal failure: A feasibility, safety, and outcome study. Eur. Heart J. 2016, 37, 3090–3095. [Google Scholar] [CrossRef]
- Karimi Galougahi, K.; Zalewski, A.; Leon, M.B.; Karmpaliotis, D.; Ali, Z.A. Optical coherence tomography-guided percutaneous coronary intervention in pre-terminal chronic kidney disease with no radio-contrast administration. Eur. Heart J. 2016, 37, 1059. [Google Scholar] [CrossRef] [Green Version]
- Karimi Galougahi, K.; Mintz, G.S.; Karmpaliotis, D.; Ali, Z.A. Zero-contrast percutaneous coronary intervention on calcified lesions facilitated by rotational atherectomy. Catheter. Cardiovasc. Interv. 2017, 90, E85–E89. [Google Scholar] [CrossRef]
- Sacha, J. Marking wire technique for zero-contrast percutaneous coronary interventions. Postepy Kardiol Interwencyjnej 2018, 14, 204–205. [Google Scholar] [CrossRef]
- Azzalini, L.; Ojeda, S.; Demir, O.M.; Dens, J.; Tanabe, M.; La Manna, A.; Benincasa, S.; Bellini, B.; Poletti, E.; Maccagni, D.; et al. Recanalization of Chronic Total Occlusions in Patients With vs. Without Chronic Kidney Disease: The Impact of Contrast-Induced Acute Kidney Injury. Can. J. Cardiol. 2018, 34, 1275–1282. [Google Scholar] [CrossRef]
- Azzalini, L.; Laricchia, A.; Regazzoli, D.; Mitomo, S.; Hachinohe, D.; Bellini, B.; Demir, O.M.; Poletti, E.; Maccagni, D.; Colombo, A. Ultra-Low Contrast Percutaneous Coronary Intervention to Minimize the Risk for Contrast-Induced Acute Kidney Injury in Patients With Severe Chronic Kidney Disease. J. Invasive. Cardiol. 2019, 31, 176–182. [Google Scholar] [CrossRef]
- Sacha, J.; Feusette, P. Zero-contrast percutaneous coronary intervention of saphenous vein graft in a patient with chronic renal failure. Postepy Kardiol Interwencyjnej 2018, 14, 309–311. [Google Scholar] [CrossRef]
- Sacha, J.; Gierlotka, M.; Lipski, P.; Feusette, P.; Dudek, D. Zero-contrast percutaneous coronary interventions to preserve kidney function in patients with severe renal impairment and hemodialysis subjects. Postepy Kardiol Interwencyjnej 2019, 15, 137–142. [Google Scholar] [CrossRef]
- van der Wal, W.M.; Noordzij, M.; Dekker, F.W.; Boeschoten, E.W.; Krediet, R.T.; Korevaar, J.C.; Geskus, R.B.; Netherlands Cooperative Study on the Adequacy of Dialysis Study, G. Full loss of residual renal function causes higher mortality in dialysis patients; findings from a marginal structural model. Nephrol. Dial. Transplant. 2011, 26, 2978–2983. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.J.; Okuda, Y.; Sy, J.; Lee, Y.K.; Obi, Y.; Cho, S.; Chen, J.L.T.; Jin, A.; Rhee, C.M.; Kalantar-Zadeh, K.; et al. Ultrafiltration Rate, Residual Kidney Function, and Survival Among Patients Treated With Reduced-Frequency Hemodialysis. Am. J. Kidney Dis. 2020, 75, 342–350. [Google Scholar] [CrossRef]
- Li, T.; Wilcox, C.S.; Lipkowitz, M.S.; Gordon-Cappitelli, J.; Dragoi, S. Rationale and Strategies for Preserving Residual Kidney Function in Dialysis Patients. Am. J. Nephrol. 2019, 50, 411–421. [Google Scholar] [CrossRef]
- Zarkowsky, D.S.; Hicks, C.W.; Bostock, I.C.; Stone, D.H.; Eslami, M.; Goodney, P.P. Renal dysfunction and the associated decrease in survival after elective endovascular aneurysm repair. J. Vasc. Surg. 2016, 64, 1278–1285. [Google Scholar] [CrossRef] [Green Version]
- Sailer, A.M.; Nelemans, P.J.; van Berlo, C.; Yazar, O.; de Haan, M.W.; Fleischmann, D.; Schurink, G.W. Endovascular treatment of complex aortic aneurysms: Prevalence of acute kidney injury and effect on long-term renal function. Eur. Radiol. 2016, 26, 1613–1619. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.T.; Varu, V.N.; Tran, K.; Dalman, R.L. Renal function changes after snorkel/chimney repair of juxtarenal aneurysms. J. Vasc. Surg. 2014, 60, 563–570. [Google Scholar] [CrossRef] [Green Version]
- van Beek, S.C.; Legemate, D.A.; Vahl, A.; Bouman, C.S.C.; Vogt, L.; Wisselink, W.; Balm, R. Acute kidney injury defined according to the ‘Risk,’ ‘Injury,’ ‘Failure,’ ‘Loss,’ and ‘End-stage’ (RIFLE) criteria after repair for a ruptured abdominal aortic aneurysm. J. Vasc. Surg. 2014, 60, 1159–1167. [Google Scholar] [CrossRef] [Green Version]
- Reimerink, J.J.; Hoornweg, L.L.; Vahl, A.C.; Wisselink, W.; van den Broek, T.A.; Legemate, D.A.; Reekers, J.A.; Balm, R.; Amsterdam Acute Aneurysm Trial, C. Endovascular repair versus open repair of ruptured abdominal aortic aneurysms: A multicenter randomized controlled trial. Ann. Surg. 2013, 258, 248–256. [Google Scholar] [CrossRef]
- Sasabuchi, Y.; Kimura, N.; Shiotsuka, J.; Komuro, T.; Mouri, H.; Ohnuma, T.; Asaka, K.; Lefor, A.K.; Yasunaga, H.; Yamaguchi, A.; et al. Long-Term Survival in Patients With Acute Kidney Injury After Acute Type A Aortic Dissection Repair. Ann. Thorac. Surg. 2016, 102, 2003–2009. [Google Scholar] [CrossRef] [Green Version]
- Walsh, S.R.; Tang, T.Y.; Boyle, J.R. Renal consequences of endovascular abdominal aortic aneurysm repair. J. Endovasc. Ther. 2008, 15, 73–82. [Google Scholar] [CrossRef]
- Subedi, S.K.; Lee, A.M.; Landis, G.S. Suprarenal fixation barbs can induce renal artery occlusion in endovascular aortic aneurysm repair. Ann. Vasc. Surg. 2010, 24, 113.e7–113.e10. [Google Scholar] [CrossRef]
- Lee, W.H.; Jung, G.S. Renal artery dissection during repositioning of a mal-deployed aortic endograft with suprarenal fixation. Eur. J. Vasc. Endovasc. Surg. 2010, 40, 736–738. [Google Scholar] [CrossRef] [Green Version]
- Walker, S.R.; Yusuf, S.W.; Wenham, P.W.; Hopkinson, B.R. Renal complications following endovascular repair of abdominal aortic aneurysms. J. Endovasc. Surg. 1998, 5, 318–322. [Google Scholar] [CrossRef]
- Karthikesalingam, A.; Bahia, S.S.; Patel, S.R.; Azhar, B.; Jackson, D.; Cresswell, L.; Hinchliffe, R.J.; Holt, P.J.; Thompson, M.M. A systematic review and meta-analysis indicates underreporting of renal dysfunction following endovascular aneurysm repair. Kidney Int. 2015, 87, 442–451. [Google Scholar] [CrossRef] [Green Version]
- Saratzis, A.; Shakespeare, J.; Jones, O.; Bown, M.J.; Mahmood, A.; Imray, C.H.E. Pre-operative Functional Cardiovascular Reserve Is Associated with Acute Kidney Injury after Intervention. Eur. J. Vasc. Endovasc. Surg. 2017, 53, 717–724. [Google Scholar] [CrossRef] [Green Version]
- Boyle, J.R. Poor Cardiac Function is Associated With Renal Injury Following EVAR. Eur. J. Vasc. Endovasc. Surg. 2017, 53, 725. [Google Scholar] [CrossRef] [Green Version]
- Ambler, G.K.; Coughlin, P.A.; Hayes, P.D.; Varty, K.; Gohel, M.S.; Boyle, J.R. Incidence and Outcomes of Severe Renal Impairment Following Ruptured Abdominal Aortic Aneurysm Repair. Eur. J. Vasc. Endovasc. Surg. 2015, 50, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Park, B.D.; Azefor, N.; Huang, C.C.; Ricotta, J.J. Trends in treatment of ruptured abdominal aortic aneurysm: Impact of endovascular repair and implications for future care. J. Am. Coll. Surg. 2013, 216, 745–754, discussion 754-5. [Google Scholar] [CrossRef]
- Saratzis, A.N.; Goodyear, S.; Sur, H.; Saedon, M.; Imray, C.; Mahmood, A. Acute kidney injury after endovascular repair of abdominal aortic aneurysm. J. Endovasc. Ther. 2013, 20, 315–330. [Google Scholar] [CrossRef]
- Saratzis, A.; Nduwayo, S.; Sarafidis, P.; Sayers, R.D.; Bown, M.J. Renal Function is the Main Predictor of Acute Kidney Injury after Endovascular Abdominal Aortic Aneurysm Repair. Ann. Vasc. Surg. 2016, 31, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Cherr, G.S.; Hansen, K.J. Renal complications with aortic surgery. Semin Vasc. Surg. 2001, 14, 245–254. [Google Scholar] [CrossRef]
- Sear, J.W. Kidney dysfunction in the postoperative period. Br. J. Anaesth. 2005, 95, 20–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giles, K.A.; Hamdan, A.D.; Pomposelli, F.B.; Wyers, M.C.; Dahlberg, S.E.; Schermerhorn, M.L. Population-based outcomes following endovascular and open repair of ruptured abdominal aortic aneurysms. J. Endovasc. Ther. 2009, 16, 554–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarac, T.P.; Bannazadeh, M.; Rowan, A.F.; Bena, J.; Srivastava, S.; Eagleton, M.; Lyden, S.; Clair, D.G.; Kashyap, V. Comparative predictors of mortality for endovascular and open repair of ruptured infrarenal abdominal aortic aneurysms. Ann. Vasc. Surg. 2011, 25, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Kopolovic, I.; Simmonds, K.; Duggan, S.; Ewanchuk, M.; Stollery, D.E.; Bagshaw, S.M. Risk factors and outcomes associated with acute kidney injury following ruptured abdominal aortic aneurysm. BMC Nephrol. 2013, 14, 99. [Google Scholar] [CrossRef] [Green Version]
- Greco, G.; Egorova, N.; Anderson, P.L.; Gelijns, A.; Moskowitz, A.; Nowygrod, R.; Arons, R.; McKinsey, J.; Morrissey, N.J.; Kent, K.C. Outcomes of endovascular treatment of ruptured abdominal aortic aneurysms. J. Vasc. Surg. 2006, 43, 453–459. [Google Scholar] [CrossRef] [Green Version]
- Mehta, M.; Taggert, J.; Darling, R.C., 3rd; Chang, B.B.; Kreienberg, P.B.; Paty, P.S.; Roddy, S.P.; Sternbach, Y.; Ozsvath, K.J.; Shah, D.M. Establishing a protocol for endovascular treatment of ruptured abdominal aortic aneurysms: Outcomes of a prospective analysis. J. Vasc. Surg. 2006, 44, 1–8, discussion 8. [Google Scholar] [CrossRef] [Green Version]
- Bown, M.J.; Cooper, N.J.; Sutton, A.J.; Prytherch, D.; Nicholson, M.L.; Bell, P.R.; Sayers, R.D. The post-operative mortality of ruptured abdominal aortic aneurysm repair. Eur. J. Vasc. Endovasc. Surg. 2004, 27, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Gordon, A.C.; Pryn, S.; Collin, J.; Gray, D.W.; Hands, L.; Garrard, C. Outcome in patients who require renal support after surgery for ruptured abdominal aortic aneurysm. Br. J. Surg. 1994, 81, 836–838. [Google Scholar] [CrossRef]
- Knipp, B.S.; Escobar, G.A.; English, S.; Upchurch, G.R., Jr.; Criado, E. Endovascular repair of ruptured aortic aneurysms using carbon dioxide contrast angiography. Ann. Vasc. Surg. 2010, 24, 845–850. [Google Scholar] [CrossRef]
- Liu, Y.H.; Liu, Y.; Tan, N.; Chen, J.Y.; Zhou, Y.L.; Luo, J.F.; Yu, D.Q.; Li, L.W.; Li, H.L.; Ye, P.; et al. Contrast-induced nephropathy following chronic total occlusion percutaneous coronary intervention in patients with chronic kidney disease. Eur. Radiol. 2015, 25, 2274–2281. [Google Scholar] [CrossRef]
- Greenberg, J.I.; Dorsey, C.; Dalman, R.L.; Lee, J.T.; Harris, E.J.; Hernandez-Boussard, T.; Mell, M.W. Long-term results after accessory renal artery coverage during endovascular aortic aneurysm repair. J. Vasc. Surg. 2012, 56, 291–296, discussion 296-7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Statius van Eps, R.G.; Nemeth, B.; Mairuhu, R.T.A.; Wever, J.J.; Veger, H.T.C.; van Overhagen, H.; van Dijk, L.C.; Knippenberg, B. Determinants of Acute Kidney Injury and Renal Function Decline After Endovascular Abdominal Aortic Aneurysm Repair. Eur. J. Vasc. Endovasc. Surg. 2017, 54, 712–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nijssen, E.C.; Nelemans, P.J.; Rennenberg, R.J.; Essers, B.A.; Janssen, M.M.; Vermeeren, M.A.; van Ommen, V.; Wildberger, J.E. Intravenous hydration according to current guidelines in the prevention of contrast induced nephropathy-the AMACING trial. J. Thorac. Dis. 2017, 9, E656–E657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nijssen, E.C.; Rennenberg, R.J.; Nelemans, P.J.; Essers, B.A.; Janssen, M.M.; Vermeeren, M.A.; Ommen, V.V.; Wildberger, J.E. Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): A prospective, randomised, phase 3, controlled, open-label, non-inferiority trial. Lancet 2017, 389, 1312–1322. [Google Scholar] [CrossRef]
- Prasad, A.; Ortiz-Lopez, C.; Khan, A.; Levin, D.; Kaye, D.M. Acute kidney injury following peripheral angiography and endovascular therapy: A systematic review of the literature. Catheter Cardiovasc. Interv. 2016, 88, 264–273. [Google Scholar] [CrossRef]
- Rashid, S.T.; Salman, M.; Myint, F.; Baker, D.M.; Agarwal, S.; Sweny, P.; Hamilton, G. Prevention of contrast-induced nephropathy in vascular patients undergoing angiography: A randomized controlled trial of intravenous N-acetylcysteine. J. Vasc. Surg. 2004, 40, 1136–1141. [Google Scholar] [CrossRef]
- Sandhu, C.; Belli, A.M.; Oliveira, D.B. The role of N-acetylcysteine in the prevention of contrast-induced nephrotoxicity. Cardiovasc. Intervent. Radiol. 2006, 29, 344–347. [Google Scholar] [CrossRef]
- Lawlor, D.K.; Moist, L.; DeRose, G.; Harris, K.A.; Lovell, M.B.; Kribs, S.W.; Elliot, J.; Forbes, T.L. Prevention of contrast-induced nephropathy in vascular surgery patients. Ann. Vasc Surg. 2007, 21, 593–597. [Google Scholar] [CrossRef]
- Karlsberg, R.P.; Dohad, S.Y.; Sheng, R.; Iodixanol Peripheral, C.T.A.S.I.P. Contrast-induced acute kidney injury (CI-AKI) following intra-arterial administration of iodinated contrast media. J. Nephrol. 2010, 23, 658–666. [Google Scholar]
- Karlsberg, R.P.; Dohad, S.Y.; Sheng, R.; Iodixanol Peripheral Computed Tomographic Angiography Study Investigator Panel. Contrast medium-induced acute kidney injury: Comparison of intravenous and intraarterial administration of iodinated contrast medium. J. Vasc. Interv. Radiol. 2011, 22, 1159–1165. [Google Scholar] [CrossRef]
- Hafiz, A.M.; Jan, M.F.; Mori, N.; Shaikh, F.; Wallach, J.; Bajwa, T.; Allaqaband, S. Prevention of contrast-induced acute kidney injury in patients with stable chronic renal disease undergoing elective percutaneous coronary and peripheral interventions: Randomized comparison of two preventive strategies. Catheter. Cardiovasc. Interv. 2012, 79, 929–937. [Google Scholar] [CrossRef]
- Al Adas, Z.; Lodewyk, K.; Robinson, D.; Qureshi, S.; Kabbani, L.S.; Sullivan, B.; Shepard, A.D.; Weaver, M.R.; Nypaver, T.J. Contrast-induced nephropathy after peripheral vascular intervention: Long-term renal outcome and risk factors for progressive renal dysfunction. J. Vasc. Surg. 2019, 69, 913–920. [Google Scholar] [CrossRef]
- Sigterman, T.A.; Bolt, L.J.J.; Krasznai, A.G.; Snoeijs, M.G.; Heijboer, R.; Schurink, G.W.H.; Bouwman, L.H. Loss of Kidney Function after Endovascular Treatment of Peripheral Arterial Disease. Ann. Vasc. Surg. 2017, 40, 231–238. [Google Scholar] [CrossRef]
- Ghumman, S.S.; Weinerman, J.; Khan, A.; Cheema, M.S.; Garcia, M.; Levin, D.; Suri, R.; Prasad, A. Contrast induced-acute kidney injury following peripheral angiography with carbon dioxide versus iodinated contrast media: A meta-analysis and systematic review of current literature. Catheter. Cardiovasc. Interv. 2017, 90, 437–448. [Google Scholar] [CrossRef]
- Nehler, M.R.; Duval, S.; Diao, L.; Annex, B.H.; Hiatt, W.R.; Rogers, K.; Zakharyan, A.; Hirsch, A.T. Epidemiology of peripheral arterial disease and critical limb ischemia in an insured national population. J. Vasc. Surg. 2014, 60, 686–695. [Google Scholar] [CrossRef] [Green Version]
- Olin, J.W.; Melia, M.; Young, J.R.; Graor, R.A.; Risius, B. Prevalence of atherosclerotic renal artery stenosis in patients with atherosclerosis elsewhere. Am. J. Med. 1990, 88, 46N–51N. [Google Scholar]
- Arora, P.; Davari-Farid, S.; Gannon, M.P.; Lohr, J.W.; Dosluoglu, H.H.; Nader, N.D. Low levels of high-density lipoproteins are associated with acute kidney injury following revascularization for chronic limb ischemia. Ren Fail. 2013, 35, 838–844. [Google Scholar] [CrossRef]
- Bellomo, R.; Ronco, C.; Kellum, J.A.; Mehta, R.L.; Palevsky, P.; Acute Dialysis Quality Initiative, W. Acute renal failure—Definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 2004, 8, R204–R212. [Google Scholar] [CrossRef] [Green Version]
Serum Creatinine | Urine Output | ||
---|---|---|---|
RIFLE | KDIGO | ||
Definition | SCr increase ≥ 50% within 7 days | SCr increase ≥ 0.3 mg/dL within 48 h or ≥ 50% within 7 days | UO < 0.5 mL/kg/h for 6 h |
RIFLE-Risk KDIGO stage 1 | SCr increase ≥ 50% or GFR decrease > 25% | SCr increase ≥ 0.3 mg/dL within 48 h or ≥ 50% within 7 days | UO < 0.5 mL/kg/h for 6 h |
RIFLE-Injury KDIGO stage 2 | SCr increase ≥100% or GFR decrease > 50% | SCr increase ≥ 100% | UO < 0.5 mL/kg/h for 12 h |
RIFLE-Failure KDIGO stage 3 | SCr increase ≥ 200% or GFR decrease >75% or SCr ≥ 4 mg/dL (with an acute rise ≥ 0.5 mg/dL) | SCr increase ≥ 200% or SCr ≥ 4 mg/dL or need RRT | UO < 0.3 mL/kg/h for 24 h or anuria for 12 h |
RIFLE-Loss | Need RRT for > 4 weeks | ||
RIFLE-End stage | Need RRT for > 3 months |
The Type of Procedure Performed | Incidence of AKI |
---|---|
Open Aortic Surgery | |
Open aortic arch repair | 48% |
Open type A dissection repair | 45% |
Open thoracic aortic aneurysm repair | 34% |
Open suprarenal abdominal aortic aneurysm repair | 68% |
Open infrarenal abdominal aortic aneurysm repair | 26% |
Open ruptured abdominal aortic aneurysm repair | 74%–78% |
Endovascular Aortic Procedure | |
Thoracic endovascular aortic repair | 9,7% |
Endovascular type B dissection repair | 30% |
Snorkel Endovascular aortic aneurysm repair | 32% |
Fenestrated or branched endovascular aortic aneurysm repair | 28% |
Uncomplicated endovascular aortic aneurysm repair | 5.5%–18% |
First Author/Year | No. of Total Patients | Definition of AKI | Numbers of Pts with AKI (%) |
---|---|---|---|
Hoole et al. (2009) [43] | 202 | Scr >25% increase from baseline at 24 h | 16 (7.92) |
Er et al. (2012) [44] | 100 | Scr ≥ 25% or ≥ 0.5 mg/dL increase from baseline at 48 h after CM exposure | 26 (26) |
Luo et al. (2013) [45] | 205 | Scr > 25% or more than 44.2 mmoL/L increase from baseline within 16 h | 3 (1.46) |
Igarashi et al. (2013) [46] | 60 | An increase in serum creatinine > 25% from baseline or an absolute increase ≥ 0.5 mg/dL within 48 h | 0 (0) |
Lavi et al. (2014) [47] | 337 | Scr ≥ 25% or > 44 mmoL/L increase from baseline within 24 h | 21 (6.23) |
Crimi et al. (2014) [48] | 95 | Scr ≥ 25% increase from baseline | 13 9 (3.68) |
Xu et al. (2014) [49] | 200 | >25% or >44.2 mmoL/L increase in serum creatinine at 16 h after PCI | 7 (3.5) |
Yamanaka et al. (2015) [50] | 94 | An increase in serum creatinine > 0.5 mg/dL or > 25% over the baseline value after 48–72 h | 22 (23.4) |
First Author/Year | No. of Total Patients | Definition of AKI | Type(s), Volume of CM |
---|---|---|---|
Rashid et al. 2004 [116] | 94 | Increase in SCr level > 25% or 0.5 mg/dL increase at 48-h post procedure | Mean dose of contrast in patients with AKI was 135 ± 54 mL versus 140 ± 54 mL in patients without AKI |
Sandhu et al. 2006 [117] | 116 | Increase in SCr level > 25% or increase of > 0.5 mg/dL at 48-h post procedure | Mean dose of contrast in the NAC group was 150.9 ± 78.6 mL and in the placebo group was 125.4 ± 67.4 mL |
Lawlor et al. 2007 [118] | 78 | Increase in SCr level > 25% or > 0.5 mg/dL at 48-h post procedure | Contrast type not specifically reported; Range of contrast use was 158 ± 165 mL |
Karlsberg et al. 2010 [119] | 250 | Increase in SCr level ≥ 25% at 24 h | Mean dose of low osmolar contrast was 269 ± 96.79 mL and dose of iodixanol was 212 ± 94.72 mL |
Karlsberg et al. 2011 [120] | 253 | Increase in SCr level ≥ 25% at 24 h | 235 ± 99 mL(range, 38–589 mL) |
Hafiz et al. 2012 [121] | 320 | Increase in SCr level > 25% or >0.5 mg/dL at 48-h post procedure | Median dose of contrast was 110 mL (80–150) |
Timing of Prevention | Prevention Strategy |
---|---|
Preoperative | Avoidance of anemia 24- to 72-h delay between intravenous administration of CM and surgery |
Perioperative | Hemodynamic optimizationAvoidance of glucose variability |
Intraoperative | Cold renal perfusion therapy in pararenal AAA surgery Avoidance of hemodilution Techniques to prevent procedure-related atheroembolism Limited use of intraoperative blood transfusion Individualized blood pressure management based on preoperative reference blood pressure values Remote ischemic preconditioning for selected patients |
Postoperative | KDIGO bundle implementation |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krasinski, Z.; Krasińska, B.; Olszewska, M.; Pawlaczyk, K. Acute Renal Failure/Acute Kidney Injury (AKI) Associated with Endovascular Procedures. Diagnostics 2020, 10, 274. https://doi.org/10.3390/diagnostics10050274
Krasinski Z, Krasińska B, Olszewska M, Pawlaczyk K. Acute Renal Failure/Acute Kidney Injury (AKI) Associated with Endovascular Procedures. Diagnostics. 2020; 10(5):274. https://doi.org/10.3390/diagnostics10050274
Chicago/Turabian StyleKrasinski, Zbigniew, Beata Krasińska, Marta Olszewska, and Krzysztof Pawlaczyk. 2020. "Acute Renal Failure/Acute Kidney Injury (AKI) Associated with Endovascular Procedures" Diagnostics 10, no. 5: 274. https://doi.org/10.3390/diagnostics10050274
APA StyleKrasinski, Z., Krasińska, B., Olszewska, M., & Pawlaczyk, K. (2020). Acute Renal Failure/Acute Kidney Injury (AKI) Associated with Endovascular Procedures. Diagnostics, 10(5), 274. https://doi.org/10.3390/diagnostics10050274