Diagnosing Organic Causes of Schizophrenia Spectrum Disorders: Findings from a One-Year Cohort of the Freiburg Diagnostic Protocol in Psychosis (FDPP)
Abstract
:1. Introduction
Rationale of the Current Study
2. Materials and Methods
2.1. Patient Cohort
2.2. Blood and Cerebrospinal Fluid Analyses
2.3. Electroencephalography
2.4. Cerebral Magnetic Resonance Imaging
2.5. Statistics
3. Results
3.1. Sociodemographic Data
3.2. Laboratory Findings
3.2.1. Basic Laboratory Findings
3.2.2. Vitamins/Trace Elements
3.2.3. Pathogen Diagnostics
3.2.4. Immunological Serum Screening
3.3. Cerebrospinal Fluid Findings
3.4. Instrument-Based Diagnostics
3.5. Overall Alterations
3.6. Correlation Analyses
4. Discussion
4.1. Blood Analyses
4.2. CSF Markers
4.3. Instrument-Based Diagnostics
4.4. Overall Alterations
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marder, S.R.; Cannon, T.D. Schizophrenia. N. Engl. J. Med. 2019, 381, 1753–1761. [Google Scholar] [CrossRef]
- Owen, M.J.; Sawa, A.; Mortensen, P.B. Schizophrenia. Lancet 2016, 388, 86–97. [Google Scholar] [CrossRef] [Green Version]
- Serafini, G.; Pompili, M.; Haghighat, R.; Pucci, D.; Pastina, M.; Lester, D.; Angeletti, G.; Tatarelli, R.; Girardi, P. Stigmatization of schizophrenia as perceived by nurses, medical doctors, medical students and patients. J. Psychiatry Ment. Health Nurs. 2011, 18, 576–585. [Google Scholar] [CrossRef]
- Fusar-Poli, P.; Smieskova, R.; Serafini, G.; Politi, P.; Borgwardt, S. Neuroanatomical markers of genetic liability to psychosis and first episode psychosis: A voxelwise meta-analytical comparison. World J. Biol. Psychiatry 2014, 15, 219–228. [Google Scholar] [CrossRef]
- Tebartz van Elst, L. Vom Anfang und Ende der Schizophrenie: Eine Neuropsychiatrische Perspektive auf das Schizophrenie-Konzept; Kohlhammer: Stuttgart, Germany, 2017. [Google Scholar]
- Keshavan, M.S.; Kaneko, Y. Secondary psychoses: An update. World Psychiatry 2013, 12, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Pollak, T.A.; Lennox, B.R.; Müller, S.; Benros, M.E.; Prüss, H.; Tebartz van Elst, L.; Klein, H.; Steiner, J.; Frodl, T.; Bogerts, B.; et al. Autoimmune psychosis: An international consensus on an approach to the diagnosis and management of psychosis of suspected autoimmune origin. Lancet Psychiatry 2020, 7, 93–108. [Google Scholar] [CrossRef]
- DGPPN e.V. (Hrsg.) für die Leitliniengruppe: S3-Leitlinie Schizophrenie. Langfassung, 2019, Version 1.0, Zuletzt Geändert am 15. März 2019. Available online: https://www.awmf.org/leitlinien/detail/ll/038-009.html (accessed on 5 September 2020).
- Endres, D.; Bechter, K.; Prüss, H.; Hasan, A.; Steiner, J.; Leypoldt, F.; Tebartz van Elst, L. Autoantibody-associated schizophreniform psychoses: Clinical symptomatology. Nervenarzt 2019, 90, 547–563. [Google Scholar] [CrossRef]
- Graus, F.; Titulaer, M.J.; Balu, R.; Benseler, S.; Bien, C.G.; Cellucci, T.; Cortese, I.; Dale, R.C.; Gelfand, J.M.; Geschwind, M.; et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 2016, 15, 391–404. [Google Scholar] [CrossRef] [Green Version]
- Tebartz van Elst, L.; Bechter, K.; Prüss, H.; Hasan, A.; Steiner, J.H.; Leypoldt, F.; Endres, D. Autoantibody-associated schizophreniform psychoses: Pathophysiology, diagnostics, and treatment. Nervenarzt 2019, 90, 745–761. [Google Scholar] [CrossRef] [Green Version]
- Endres, D.; Prüss, H.; Rauer, S.; Süß, P.; Venhoff, N.; Feige, B.; Schweizer, T.; Nickel, K.; Maier, S.; Egger, K.; et al. Probable autoimmune catatonia with antibodies against cilia on hippocampal granule cells and highly suspicious cerebral FDG-PET findings. Biol. Psychiatry 2020, 87, e29–e31. [Google Scholar] [CrossRef]
- Endres, D.; Rauer, S.; Pschibul, A.; Süß, P.; Venhoff, N.; Runge, K.; Feige, B.; Denzel, D.; Nickel, K.; Schweizer, T.; et al. Novel antineuronal autoantibodies with somatodendritic staining pattern in a patient with autoimmune psychosis. Front. Psychiatry 2020, 11, 627. [Google Scholar] [CrossRef] [PubMed]
- Endres, D.; Perlov, E.; Baumgartner, A.; Hottenrott, T.; Dersch, R.; Stich, O.; Tebartz van Elst, L. Immunological findings in psychotic syndromes: A tertiary care hospital’s CSF sample of 180 patients. Front. Hum. Neurosci. 2015, 9, 476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tebartz van Elst, L.; Klöppel, S.; Rauer, S. Voltage-gated potassium channel/LGI1 antibody-associated encephalopathy may cause brief psychotic disorder. J. Clin. Psychiatry 2011, 72, 722–723. [Google Scholar] [CrossRef] [PubMed]
- Engelborghs, S.; Niemantsverdriet, E.; Struyfs, H.; Blennow, K.; Brouns, R.; Comabella, M.; Dujmovic, I.; van der Flier, W.; Frölich, L.; Galimberti, D.; et al. Consensus guidelines for lumbar puncture in patients with neurological diseases. Alzheimers Dement. 2017, 8, 111–126. [Google Scholar] [CrossRef]
- Venhoff, N.; Thiel, J.; Rizzi, M.; Venhoff, A.; Rauer, S.; Endres, D.; Hentze, C.; Staniek, J.; Huzly, D.; Voll, R.E.; et al. The MRZ-reaction and specific autoantibody detection for differentiation of ANA-positive multiple sclerosis from rheumatic diseases with cerebral involvement. Front. Immunol. 2019, 10, 514. [Google Scholar] [CrossRef]
- Endres, D.; Maier, S.; Feige, B.; Mokhtar, N.B.; Nickel, K.; Goll, P.; Meyer, S.A.; Matthies, S.; Ebert, D.; Philipsen, A.; et al. Increased rates of intermittent rhythmic delta and theta activity in the electroencephalographies of adult patients with attention-deficit hyperactivity disorder. Epilepsy Behav. 2017, 75, 60–65. [Google Scholar] [CrossRef]
- Endres, D.; Maier, S.; Feige, B.; Posielski, N.A.; Nickel, K.; Ebert, D.; Riedel, A.; Philipsen, A.; Perlov, E.; Tebartz van Elst, L. Altered Intermittent rhythmic delta and theta activity in the electroencephalographies of high functioning adult patients with autism spectrum disorder. Front. Hum. Neurosci. 2017, 11, 66. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.J.O. Hypercalcaemia-presentation and management. Clin. Med. 2017, 17, 270–273. [Google Scholar] [CrossRef]
- Gairing, S.; Wiest, R.; Metzler, S.; Theodoridou, A.; Hoff, P. Fabry’s disease and psychosis: Causality or coincidence? Psychopathology 2011, 44, 201–204. [Google Scholar] [CrossRef] [Green Version]
- Grewal, R.P. Psychiatric disorders in patients with Fabry’s disease. Int. J. Psychiatry Med. 1993, 23, 307–312. [Google Scholar] [CrossRef]
- Mahmud, H.M. Fabry’s disease-a comprehensive review on pathogenesis, diagnosis and treatment. J. Pak. Med. Assoc. 2014, 64, 189–194. [Google Scholar] [PubMed]
- Pierrot-Deseilligny, C.; Souberbielle, J.C. Vitamin D and multiple sclerosis: An update. Mult. Scler. Relat. Disord. 2017, 14, 35–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiang, M.; Natarajan, R.; Fan, X. Vitamin D in Schizophrenia: A clinical review. Evid. Based Ment. Health 2016, 19, 6–9. [Google Scholar] [CrossRef]
- Cao, B.; Wang, D.F.; Xu, M.Y.; Liu, Y.Q.; Yan, L.L.; Wang, J.Y.; Lu, Q.B. Lower folate levels in schizophrenia: A meta-analysis. Psychiatry Res. 2016, 245, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hufschmidt, A.; Lücking, C.H.; Rauer, S. Neurologie Compact-Für Klinik und Praxis; Thieme: Stuttgart, Germany, 2013. [Google Scholar]
- Sakuma, K.; Matsunaga, S.; Nomura, I.; Okuya, M.; Kishi, T.; Iwata, N. Folic acid/methylfolate for the treatment of psychopathology in schizophrenia: A systematic review and meta-analysis. Psychopharmacology 2018, 235, 2303–2314. [Google Scholar] [CrossRef]
- Cai, L.; Chen, T.; Yang, J.; Zhou, K.; Yan, X.; Chen, W.; Sun, L.; Li, L.; Qin, S.; Wang, P.; et al. Serum trace element differences between Schizophrenia patients and controls in the Han Chinese population. Sci. Rep. 2015, 5, 15013. [Google Scholar] [CrossRef] [Green Version]
- Winther, K.H.; Bonnema, S.J.; Hegedüs, L. Is selenium supplementation in autoimmune thyroid diseases justified? Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 348–355. [Google Scholar] [CrossRef]
- Grain, R.; Lally, J.; Stubbs, B.; Malik, S.; LeMince, A.; Nicholson, T.R.; Murray, R.M.; Gaughran, F. Autoantibodies against voltage-gated potassium channel and glutamic acid decarboxylase in psychosis: A systematic review, meta-analysis, and case series. Psychiatry Clin. Neurosci. 2017, 71, 678–689. [Google Scholar] [CrossRef]
- Dalmau, J.; Geis, C.; Graus, F. Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system. Physiol. Rev. 2017, 97, 839–887. [Google Scholar] [CrossRef]
- Fernandes, B.S.; Steiner, J.; Bernstein, H.G.; Dodd, S.; Pasco, J.A.; Dean, O.M.; Nardin, P.; Gonçalves, C.A.; Berk, M. C-reactive protein is increased in schizophrenia but is not altered by antipsychotics: Meta-analysis and implications. Mol. Psychiatry 2016, 21, 554–564. [Google Scholar] [CrossRef]
- Leffler, J.; Bengtsson, A.A.; Blom, A.M. The complement system in systemic lupus erythematosus: An update. Ann. Rheum. Dis. 2014, 73, 1601–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lüngen, E.M.; Maier, V.; Venhoff, N.; Salzer, U.; Dersch, R.; Berger, B.; Riering, A.N.; Nickel, K.; Fiebich, B.L.; Süß, P.; et al. Systemic lupus erythematosus with isolated psychiatric symptoms and antinuclear antibody detection in the cerebrospinal fluid. Front. Psychiatry 2019, 10, 226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekar, A.; Bialas, A.R.; de Rivera, H.; Davis, A.; Hammond, T.R.; Kamitaki, N.; Tooley, K.; Presumey, J.; Baum, M.; Van Doren, V.; et al. Schizophrenia risk from complex variation of complement component 4. Nature 2016, 530, 177–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Byrne, E.M.; Hultman, C.M.; Kähler, A.; Vinkhuyzen, A.A.; Ripke, S.; Andreassen, O.A.; Frisell, T.; Gusev, A.; Hu, X.; et al. New data and an old puzzle: The negative association between schizophrenia and rheumatoid arthritis. Int. J. Epidemiol. 2015, 44, 1706–1721. [Google Scholar] [CrossRef] [Green Version]
- Sturgeon, J.A.; Finan, P.H.; Zautra, A.J. Affective disturbance in rheumatoid arthritis: Psychological and disease-related pathways. Nat. Rev. Rheumatol. 2016, 12, 532–542. [Google Scholar] [CrossRef] [Green Version]
- Hoirisch-Clapauch, S.; Amaral, O.B.; Mezzasalma, M.A.; Panizzutti, R.; Nardi, A.E. Dysfunction in the coagulation system and Schizophrenia. Transl. Psychiatry 2016, 6, e704. [Google Scholar] [CrossRef] [Green Version]
- Regina, P.; Pnina, R.; Natur, A.; Yair, L. Anti-phospholipid syndrome associated with schizophrenia description of five patients and review of the literature. Immunol. Res. 2017, 65, 438–446. [Google Scholar] [CrossRef]
- Sæther, S.G.; Rø, A.D.B.; Larsen, J.B.; Vaaler, A.; Kondziella, D.; Reitan, S.K. Biomarkers of autoimmunity in acute psychiatric disorders. J. Neuropsychiatry Clin. Neurosci. 2019, 31, 246–253. [Google Scholar] [CrossRef]
- Mahler, M.; Andrade, L.E.; Casiano, C.A.; Malyavantham, K.; Fritzler, M.J. Anti-DFS70 antibodies: An update on our current understanding and their clinical usefulness. Expert. Rev. Clin. Immunol. 2019, 15, 241–250. [Google Scholar] [CrossRef]
- Jarius, S.; Ruprecht, K.; Kleiter, I.; Borisow, N.; Asgari, N.; Pitarokoili, K.; Pache, F.; Stich, O.; Beume, L.A.; Hümmert, M.W.; et al. In cooperation with the neuromyelitis optica study group (NEMOS). MOG-IgG in NMO and related disorders: A multicenter study of 50 patients. Part 2: Epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J. Neuroinflammation 2016, 13, 280. [Google Scholar]
- Bechter, K. CSF diagnostics in psychiatry-present status-future projects. Neurol. Psychiatry Brain Res. 2016, 22, 69–74. [Google Scholar] [CrossRef]
- Reiber, H. Proteins in cerebrospinal fluid and blood: Barriers, CSF flow rate and source-related dynamics. Restor. Neurol. Neurosci. 2003, 21, 79–96. [Google Scholar] [PubMed]
- Bechter, K.; Reiber, H.; Herzog, S.; Fuchs, D.; Tumani, H.; Maxeiner, H.G. Cerebrospinal fluid analysis in affective and schizophrenic spectrum disorders: Identification of subgroups with immune responses and blood-CSF barrier dysfunction. J. Psychiatr. Res. 2010, 44, 321–330. [Google Scholar] [CrossRef]
- Orlovska-Waast, S.; Köhler-Forsberg, O.; Brix, S.W.; Nordentoft, M.; Kondziella, D.; Krogh, J.; Benros, M.E. Cerebrospinal fluid markers of inflammation and infections in schizophrenia and affective disorders: A systematic review and meta-analysis. Mol. Psychiatry 2019, 24, 869–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Najjar, S.; Pahlajani, S.; De Sanctis, V.; Stern, J.N.H.; Najjar, A.; Chong, D. Neurovascular unit dysfunction and blood-brain barrier hyperpermeability contribute to Schizophrenia neurobiology: A theoretical integration of clinical and experimental evidence. Front. Psychiatry 2017, 8, 83. [Google Scholar] [CrossRef]
- Pollak, T.A.; Drndarski, S.; Stone, J.M.; David, A.S.; McGuire, P.; Abbott, N.J. The blood-brain barrier in psychosis. Lancet Psychiatry 2018, 555, 79–92. [Google Scholar] [CrossRef]
- Oviedo-Salcedo, T.; de Witte, L.; Kümpfel, T.; Kahn, R.S.; Falkai, P.; Eichhorn, P.; Luykx, J.; Hasan, A. Absence of cerebrospinal fluid antineuronal antibodies in schizophrenia spectrum disorders. Br. J. Psychiatry 2018, 212, 318–320. [Google Scholar] [CrossRef]
- Endres, D.; Perlov, E.; Feige, B.; Fleck, M.; Bartels, S.; Altenmüller, D.M.; Tebartz van Elst, L. Electroencephalographic findings in schizophreniform and affective disorders. Int. J. Psychiatry Clin. Pr. 2016, 20, 157–164. [Google Scholar] [CrossRef]
- Tebartz van Elst, L.; Krishnamoorthy, E.S.; Schulze-Bonhage, A.; Altenmüller, D.M.; Richter, H.; Ebert, D.; Feige, B. Local area network inhibition: A model of a potentially important paraepileptic pathomechanism in neuropsychiatric disorders. Epilepsy Behav. 2011, 22, 231–239. [Google Scholar] [CrossRef]
- Najjar, S.; Pearlman, D.M. Neuroinflammation and white matter pathology in schizophrenia: Systematic review. Schizophr. Res. 2015, 161, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Sachdev, P.; Chen, X.; Wen, W. White matter hyperintensities in mid-adult life. Curr. Opin. Psychiatry 2008, 21, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Gur, R.E.; Kaltman, D.; Melhem, E.R.; Ruparel, K.; Prabhakaran, K.; Riley, M.; Yodh, E.; Hakonarson, H.; Satterthwaite, T.; Gur, R.C. Incidental findings in youths volunteering for brain MRI research. AJNR Am. J. Neuroradiol. 2013, 34, 2021–2025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, X.; Chen, Y.; Zhou, Z.; Luo, L.; Hu, W.; Zheng, H.; Zhu, Z.; Wang, J.; Chen, Z. Surgical resection of pineal epidermoid cyst contributed to relieving schizophrenia symptoms. World Neurosurg. 2018, 113, 304–307. [Google Scholar] [CrossRef] [PubMed]
- Benros, M.E.; Nielsen, P.R.; Nordentoft, M.; Eaton, W.W.; Dalton, S.O.; Mortensen, P.B. Autoimmune diseases and severe infections as risk factors for schizophrenia: A 30-year population-based register study. Am. J. Psychiatry 2011, 168, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Benros, M.E.; Pedersen, M.G.; Rasmussen, H.; Eaton, W.W.; Nordentoft, M.; Mortensen, P.B. A nationwide study on the risk of autoimmune diseases in individuals with a personal or a family history of schizophrenia and related psychosis. Am. J. Psychiatry 2014, 171, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Benros, M.E.; Eaton, W.W.; Mortensen, P.B. The epidemiologic evidence linking autoimmune diseases and psychosis. Biol. Psychiatry 2014, 75, 300–306. [Google Scholar] [CrossRef]
- Endres, D.; Huzly, D.; Dersch, R.; Stich, O.; Berger, B.; Schuchardt, F.; Perlov, E.; Venhoff, N.; Hellwig, S.; Fiebich, B.L.; et al. Do patients with schizophreniform and bipolar disorders show an intrathecal, polyspecific, antiviral immune response? A pilot study. Fluids Barriers CNS 2017, 14, 34. [Google Scholar] [CrossRef]
- Jézéquel, J.; Rogemond, V.; Pollak, T.; Lepleux, M.; Jacobson, L.; Gréa, H.; Iyegbe, C.; Kahn, R.; McGuire, P.; Vincent, A.; et al. Cell-and single molecule-based methods to detect Anti-N-Methyl-D-aspartate receptor autoantibodies in patients with first-episode psychosis from the OPTiMiSE project. Biol. Psychiatry 2017, 82, 766–772. [Google Scholar] [CrossRef] [Green Version]
Freiburg FDPP Screening | Additional Analyses in Selected Cases | ||
---|---|---|---|
Extended basic laboratory analyses | Blood count | -- Differential blood count | -- Acanthocytes 1 |
Coagulation | -- INR/Quick, PTT | -- Lupus anticoagulant 2 | |
Electrolytes | -- Sodium, potassium, calcium, magnesium | ||
Metabolic markers | -- Creatinine, CK, GOT, GPT, AP, γ-GT, lipase -- HbA1C, total triglycerides, total cholesterol, homogeneous LDL cholesterol, homogeneous HDL cholesterol Alpha-galactosidase 3 | -- Parathyroid hormone 4, phosphate; ceruloplasmin 5, copper; bilirubin -- Arylsulfatase activity 6, homocysteine, long-chain fatty acids 7, chitotriosidase activity 8 -- Mutation analysis in NPC1/2 gene 8, mutation search, and MLPA analysis GLA gene 3 | |
Thyroid hormones | -- TSH, free T3, free T4 | ||
Vitamins/trace elements | Vitamins | -- Vitamin D -- Folic acid (vit. B9), cobalamin (vit. B12) | -- Thiamine (vit. B1), niacin (vit. B3), pyridoxine (vit. B6) -- Holotranscobalamin, methylmalonic acid |
Trace elements | -- Selenium | -- Zinc | |
Pathogens | -- Serologies for Lyme disease and lues | -- Serologies for HIV, toxoplasmosis, bartonella hanselae, TBE/FSME, EBV, hepatitis, etc. | |
Immuno-logical serum screening | Rheumatic/immunological markers | -- CRP, IgG/IgA/IgM, immune fixation -- CH50, C3, C4, C3d -- Rheumatoid factor 9 | -- Interleukin 6, erythrocyte sedimentation rate, C1q complement factor, ACE 10, interleukin-2 receptor 10, neopterin 10, anti-streptolysin titers 11, CCP 9, HLA-B51 12 |
Brain-associated systemic antibodies | -- TRAKs 13, TPO/TG 13, and GAD65 14 antibodies | -- Gliadin and transglutaminase antibodies 15 | |
Potential antineuronal-rheumatic/other rheumatic antibodies | -- ANA 16/ANCA 17 screening -- Anti-phospholipid (ß2 glycoprotein-I) IgG/M antibodies 2 -- AMA 18/LMA 19/SMA 19 antibodies | -- Against extractable nuclear antigens (ENA; ds-DNA, nRNP/Sm, Sm, SS-A/B, Scl-70, nucleosomes, histones, DFS70, etc.) 16, against PR3/MPO 17, against cardiolopin 2 | |
Antineuronal serum IgG autoantibodies 20 | -- Against cell surface antigens: NMDA-R, AMPA-1/2-R, GABAB-R, LGI1, CASPR2 -- Against intracellular antigens: Yo, Hu, CV2/CRMP5, Ri, Ma1/2, SOX1, Tr, Zic4, GAD65, amphiphysin -- Against “NMO spectrum antigens”: MOG, AQP4 | -- Tissue-based assays using indirect immunofluorescence (IIF) on unfixed murine brain tissue/neuropil antibodies (IIF on fixed mouse brain tissue) -- Against other antineuronal antigens: adenylate kinase 5, DPPX, glycine-R, mGluR1/5, IgLON5, VGCC, MBP, GFAP, DRD2, etc. | |
Cerebro-spinal fluid basic markers and antineuronal antibodies | Basic cerebrospinal fluid analyses | -- White blood cell count, total protein, albumin quotient, IgG index, OCBs in serum/CSF, lactate | -- Glucose |
Antineuronal IgG antibodies20 | -- Against different cell surface antigens: NMDA-R, AMPA-1/2-R, GABAB-R, LGI1, CASPR2 | -- Tissue-based assays using IIF on unfixed murine brain tissue/neuropil antibodies (IIF on fixed mouse brain tissue) -- Against intracellular antigens: Yo, Hu, CV2/CRMP5, Ri, Ma1/2, SOX1, Tr, Zic4, GAD65, amphiphysin, etc. -- Against other antineuronal antigens: adenylate kinase 5, DPPX, glycine-R, mGluR1/5, IgLON5, VGCC, MBP, GFAP, DRD2, etc. | |
Infectious, neuro-degenerative and other markers | -- MRZ reaction 21, antibody indices (AIs) for HSV, Borrelia burgdorferi etc.; pathogen detection of HSV, Tropheryma whippelii, etc.; CXCL13 22 -- Tau, p-tau 23, ß-amyloid quotient 23, protein 14-3-3 24, α-synuclein 25 -- Cytopathology and cell markers, hypocretin 26 | ||
Instrument-based diagnostics | EEG | -- Resting state EEG including hyperventilation period | -- Independent component analyses of the EEG -- EEG video telemetry, sleep/sleep deprivation EEG |
Brain imaging | -- cMRI (mostly on a 3 Tesla, rarely on a 1.5 Tesla scanner) included T1-weighted (on the 1.5 Tesla)/MPRAGE (on the 3 Tesla scanner), FLAIR, and DWI sequences | -- FDG-PET, TSPO-PET, SPECT -- Additional cMRI sequences/methods: T2*, T1 + contrast agent, MR-spectroscopy; resting state fMRI, DTI, etc. | |
Other | Urine | -- Urine status, urine drug screening, pregnancy test (for women) | -- δ-Amino-laevulinic 27 acid and porphobilinogen concentrations 27 |
Neuropsycho-logical testing | -- Test battery for attentional performance |
Patients with SSDs (N = 76) | |
---|---|
Age in years ± SD (range) | 37.22 ± 14.10 (19–82 years) |
Sex | 32 males/44 females |
Highest level of education | |
Low degree | 15/76 (20%) |
Medium degree | 21/76 (28%) |
High degree | 22/76 (29%) |
University degree | 6/76 (8%) |
Unknown | 12/76 (16%) |
Present professional situation | |
Unemployed | 17/76 (22%) |
Pension (retirement, disability) | 15/76 (20%) |
In training/study | 17/76 (22%) |
Unskilled/semiskilled work | 1/76 (1%) |
Qualified/first labour market | 14/76 (18%) |
Unknown | 12/76 (16%) |
Abnormal psychopathological findings * | |
Attention and memory | 63/76 (83%) |
Formal thought | 61/76 (80%) |
Fear and compulsion | 53/76 (70%) |
Delusions | 58/76 (76%) |
Hallucinations | 41/76 (54%) |
Ego-environment boundary | 32/76 (42%) |
Affectivity | 64/76 (84%) |
Energy and psychomotor domain | 64/76 (84%) |
Circadian rhythm | 22/76 (29%) |
Suicidal tendency | 14/76 (18%) |
Global Assessment of Functioning (GAF) score | 34 ± 15.54 (N = 65) |
Affected by disorder according to Clinical Global Impression (CGI) scores | |
Moderately affected | 2/76 (3%) |
Clearly affected | 17/76 (22%) |
Seriously affected | 39/76 (51%) |
Extremely seriously affected | 8/76 (11%) |
Unknown | 10/76 (13%) |
Psychopharmacological treatment | |
Atypical neuroleptics | 58 (76%) |
Typical neuroleptics | 4 (5%) |
Antidepressants | 7 (9%) |
Lithium | 8 (11%) |
Anticonvulsants (excluding benzodiazepines) | 3 (4%) |
Benzodiazepines | 7 (9%) |
Melatonin | 2 (3%) |
L-thyroxine | 8 (11%) |
Overall psychopharmacological treatment | 63 (83%) |
Patients with SSDs (N = 76) | |
---|---|
Differential blood count | |
Leukocytes/µL (mean ± SD) | 6.61 ± 1.90 |
Increased/decreased leukocytes (ref. 4.0–10.4 Tsd/µL) | 2↑ (3%), 4↓ (5%), 70 normal (92%) |
Platelets (mean ± SD) | 253.57 ± 56.65 |
Increased/decreased platelets (ref. 146–328 Tsd/µL) | 6↑ (8%), 1↓ (1%), 69 normal (91%) |
Hemoglobin (mean ± SD) | 14.14 ± 1.34 |
Increased/decreased hemoglobin (ref. 11.6–15.5 g/dL) | 11↑ (14%), 1↓ (%), 64 normal (84%) |
Hematocrit (mean ± SD) | 40.48 ± 3.50 |
Increased/decreased hematocrit (ref. 34.6–45.3 fL) | 5↑ (7%), 7↓ (9%), 64 normal (84%) |
Neutrophil granulocytes | 56.13 ± 9.34 |
Increased/decreased neutrophil granulocyte rate (ref. 40–75%) | 1↑ (1%), 4↓ (5%), 71 normal (93%) |
Lymphocytes (mean ± SD) | 32.54 ± 8.95 (N = 75) |
Increased/decreased lymphocyte rate (ref. 19–51%) | 3↑ (4%), 5↓ (7%), 67 normal (88%) |
Coagulation | |
Quick (mean ± SD) | 99.06 ± 15.71 (N = 72) |
Increased/decreased quick (ref. 70–130%) | 0↑ (0%), 2↓ (3%), 70 normal (97%) |
INR (mean ± SD) | 1.02 ± 0.22 (N = 75) |
Increased/decreased INR (ref. 0.85–1.15) | 2↑ (3%), 1↓ (1%), 72 normal (96%) |
PTT (mean ± SD) | 30.36 ± 5.61 (N = 75) |
Increased/decreased PTT (ref. 25.1–37.7 s) | 4↑ (5%), 7↓ (9%), 64 normal (85%) |
Electrolytes | |
Sodium (mean ± SD) | 140.68 ± 2.00 |
Increased/decreased sodium (ref. 136–145 mmol/L) | 1↑ (1%), 1↓ (1%), 74 normal (97%) |
Potassium (mean ± SD) | 4.36 ± 0.27 |
Increased/decreased potassium (ref. 3.5–5.1 mmol/L) | 1↑ (1%), 0↓ (0%), 75 normal (99%) |
Calcium (mean ± SD) | 2.39 ± 0.16 (N = 75) |
Increased/decreased calcium (ref. 2.15–2.5 mmol/L) | 9↑ (12%), 1↓ (1%), 65 normal (87%) |
Magnesium (mean ± SD) | 0.85 ± 0.06 (N = 72) |
Increased/decreased magnesium (ref. 0.66–1.07 mmol/L) | 0↑ (0%), 0↓ (0%), 72 normal (100%) |
Metabolic markers | |
Creatinine (mean ± SD) | 0.88 ± 0.15 |
Increased/decreased creatinine | 60 < 1 (79%), 16 < 1.5 (21%), 0 ≥ 1.5 (0%) |
α-Galactosidase (mean ± SD) | 7.80 ± 3.64 (N = 70) |
Increased/decreased α-galactosidase (ref. 3.4–13 nmol/h/mL) | 7↑ (10%), 8↓ (11%), 55 normal (79%) |
CK (mean ± SD) | 142.70 ± 204.91 (N = 73) |
Increased CK (ref. < 170 U/L) | 11↑ (15%), 62 normal (85%) |
GOT (mean ± SD) | 26.97 ± 19.45 |
Increased/decreased GOT (ref. 10–35 U/L) | 10↑ (13%), 0↓ (0%), 66 normal (87%) |
GPT (mean ± SD) | 32.34 ± 36.74 |
Increased/decreased GPT (ref. 10–35 U/L) | 20↑ (26%), 5↓ (7%), 51 normal (67%) |
Alkaline phosphatase (mean ± SD) | 80.13 ± 32.69 (N = 70) |
Increased/decreased alkaline phosphatase (ref. 35–105 U/L) | 11↑ (16%), 0↓ (0%), 59 normal (84%) |
Gamma-GT (mean ± SD) | 28.83 ± 26.32 (N = 75) |
Increased gamma-GT (ref. < 40 U/L) | 13↑ (17%) 62 normal (83%) |
Lipase (mean ± SD) | 32.78 ± 12.57 (N = 68) |
Increased/decreased lipase (ref. 13–60 U/L) | 1↑ (1%), 1↓ (1%), 66 normal (97%) |
HbA1C (mean ± SD) | 5.40 ± 0.42 (N = 72) |
Increased HbA1C (ref. 3.4–6%) | 3↑ (4%) 0↓ (0%) 69 normal (96%) |
Total triglycerides (mean ± SD) | 145.23 ± 84.05 (N = 70) |
Increased total glycerides (ref. < 150 mg/dL) | 25↑ (36%), 45 normal (64%) |
Thyroid hormones | |
TSH (mean ± SD) | 2.28 ± 1.40 |
Increased/decreased TSH (ref. 0.27–4.20 µU/mL) | 4↑ (5%), 3↓ (4%), 69 normal (91%) |
Free T3 (mean ± SD) | 4.71 ± 0.71 |
Increased/decreased free T3 (ref. 3.1–6.8 pmol/L) | 0↑ (0%), 0↓ (0%), 76 normal (100%) |
Free T4 (mean ± SD) | 16.51 ± 3.11 |
Increased/decreased free T4 (ref. 12–22 pmol/L) | 2↑ (3%), 5↓ (6%), 69 normal (91%) |
Patients with SSDs (N = 76) | |
---|---|
Vitamins | |
25-OH-Vitamin D2/D3 (mean ± SD) | 22.16 ± 10.71 (N = 74) |
Increased/decreased vitamin D levels (ref. > 20 ng/mL) | 34↓ (46%), 40 normal (54%) |
Optimal vitamin D levels (ref. > 30 ng/mL) | 62↓ (84%), 12 optimal (16%) |
Folic acid (mean ± SD) | 8.80 ± 7.16 (N = 75) |
Increased/decreased folic acid (ref. 4.8–37.3 ng/mL) | 0↑ (0%), 24↓ (32%), 51 normal (68%) |
Vitamin B12 (mean ± SD) | 523.01 ± 303.49 (N = 75) |
Increased/decreased vitamin B12 (ref. 197–771 pg/mL) | 8↑ (11%), 1↓ (1%), 66 normal (88%) |
Trace elements | |
Selenium (mean ± SD) | 64.62 ± 17.01 (N = 71) |
Increased/decreased selenium (ref. 75–140 µg/L) | 0↑ (0%), 57↓ (80%), 14 normal (20%) |
Vitamins and trace elements overall | 69 reduced (92%), 6 normal (8%) (N = max. 75) |
Patients with SSDs (N = 76) | |
---|---|
Serology for Lyme disease | |
IgM-ELISA screening (ref. up to 5 units) | 3↑ (4%), 64 normal (89%), 5 borderline (7%) (N = 72) |
IgG-ELISA screening (ref. up to 16 RE) | 10↑ (14%), 60 normal (83%), 2 borderline (3%) (N = 72) |
Western blot confirmation test (only performed if ELISA screening was conspicuous) | 5 positive (7%), 14 negative (N = 19) -- IgM: negative: 8, positive: 0 -- IgG: negative: 7, positive: 5 |
Serology for lues | |
Screening using CLIA (ref. < 0.9) | 1 *↑ (1%), 72 normal (99%) (N = 73) |
Patients with SSDs (N = 76) | |
---|---|
Rheumatic/immunological markers | |
Increased C-reactive protein (ref. < 5 mg/L) | 13↑ (17%), 62 normal (83%) (N = 75) |
IgG levels (mean ± SD) | 10.59 ± 1.91 (N = 72) |
IgG levels increased/decreased (ref. 7–16 g/L) | 1↓ (1%), 1↑ (1%), 70 normal (97%) (N = 72) |
IgA levels (mean ± SD) | 2.09 ± 0.906 |
IgA levels increased/decreased (ref. 0.70–4 g/L) | 1↓ (1%), 3↑ (4%), 68 normal (94%) (N = 72) |
IgM levels (mean ± SD) | 0.99 ± 0.55 |
IgM increased/decreased (ref. 0.40–2.30 g/L) | 4↓ (6%), 3↑ (4%), 65 normal (90%) (N = 72) |
Immunofixation (screening)* | 6 altered (8%)*, 66 normal (92%) (N = 72) |
CH50 (ref. 65–115%) | 1↓ (2%), 18↑ (27%), 47 normal (71%) (N = 66) |
C3 (ref. 0.90–1.80 g/L) | 11↓ (15%), 0↑ (0%), 61 normal (85%) (N = 72) |
C4 (ref. 0.10–0.40 g/L) | 1↓ (1%), 0↑ (0%), 71 normal (99%) (N = 72) |
Rheumatoid factor (ref. < 16 IE/mL) | 73 normal (100%) (N = 73) |
C3d (ref. < 9 mg/L) | 8↑ (12%), 61 normal (88%) (N = 69) |
Rheumatic markers overall | 45 positive (60%), 30 negative (40%) (N = max. 75) |
Brain-associated systemic antibodies | |
TRAKs (ref. < 1.75 IU/L) | 1↑ (1%), 72 normal (98%) (N = 73) |
Anti-TPO antibodies (ref. < 34 IU/mL) | 9↑ (12%), 66 normal (88%) (N = 75) |
Anti-TG antibodies (ref. < 115 IU/mL) | 3↑ (4%), 71 normal (96%) (N = 74) |
Anti- GAD65 antibodies measured by RIA | 1↑ (1%), 1 borderline (1%), 68 normal (97%) (N = 70) |
Anti-thyroid and diabetes antibodies overall | 12 positive (16%), 63 negative (84%) (N = max. 75) |
Potential antineuronal-rheumatic and other rheumatic serum antibodies | |
Anti-phospholipid/ß2GP IgG antibodies (ref. < 14 GPL-U/mL) | 5↑ (7%), 68 normal (93%) (N = 73) (range from 15 to 19 GPL-U/mL) |
Anti-phospholipid/ß2GP IgM antibodies (ref. < 10 MPL-U/mL) | 3↑ (4%), 69 normal (96%) (N = 72) (range from 1 to 32 MPL-U/mL) |
ANA-Hep-2 (against nucleus) | Positive 9 (12%), negative 65 (88%) (N = 74)(In detail: trace finely spotted: 2; (+) spotted: 1 +; spotted: 1; trace homogeneous: 2; (+)-+ homogeneous: 1; (+) homogeneous: 1; + homogeneous-fine-spotted: 1) |
ANA-Hep-2 (nucleoli) | Positive 0 (0%), negative 74 (100%) (N = 74) |
ANA-Hep-2 (chromosomes) | Positive 4 (5%), negative 70 (95%) (N = 74) (In detail: trace: 1, (+): 1, + stripy: 1, (+)-+ homogeneously: 1) |
ANA-Hep-2 (cytoplasm) | Positive 2 (3%), negative 72 (97%) (N = 74) (In detail: Trace reticular: 2) |
ANA overall positive/borderline findings | Positive 11 (15%), negative 63 (85%) (N = max. 74) |
ENA screening (only performed if ANAs were clearly positive) | Positive 3 (33%), negative 6 (66%) (N = 9) Positive cases in detail: anti-snRNP/Sm +++ in one patient, anti-DFS70 +++ in two patients; anti-centromere (CENP B) (+) in one patient, anti-AMA-M2 (IgG) (+) in one patient |
Anti-dsDNA ELISA (ref. < 40 U/mL; only performed if ANAs were clearly positive and suspicious clinical findings were present) | 12.33 ± 7.02 (N = 3) 0↑ (0%), 3 normal (100%) |
ANCAs (IgG, ref. 1:10) | 2 positive (3%), 71 negative (97%) (N = 73) Positive cases: n = 1 anti-MPO negative (2 U/mL; ref. <5 U/mL), anti-PR3 negative (1 U/mL; ref. <10 U/mL; in n = 1 not performed |
AMA/LKM (kidney, ref. 1:50) | 0 Positive (0%), 60 negative (100%) (N = 60) |
SMA (kidney, ref. 1:50) | 4 borderline positive (7%), 56 negative (93%) (N = 60) (In detail: n = 2 trace, n = 2 (+)) |
Rheumatic antibodies overall | 23 positive (31%), 51 negative (69%) (N = max. 74) |
Established antineuronal serum antibodies | |
Antibodies against intracellular onconeural antigens (Hu, Yo, Ri, cv2(CRMP5), Ma1/-Ma2, SOX, Tr(DNER), Zic4, amphiphysin, GAD65) | Clear positive: in 1 case (Yo; 2%) Weak, non-specific bands: in 5 cases (Yo 3x, SOX 2x, Zic4 1x; 8%) Negative: 54 (90%) (N = 60) |
Antibodies against neuronal cell surface antigens (LGI1, CASPR2, GABA-B, NMDA-R, AMPA 1/2) | 0 positive (0%), 56 negative (100%) (N = 56) |
Anti-AQGP4 antibodies | 0 positive (0%), 52 negative (100%) (N = 52) |
Anti-MOG antibodies | 1 positive (2%), 49 negative (98%) (N = 50) |
Patients with SSDs (N = 48) | |
---|---|
CSF basic analyses | |
WBC count (mean ± SD) | 1.38 ± 0.67 |
Increased WBC count (ref. < 5/µL) | 0↑ (0%), 48 normal (100%) |
Protein (mean ± SD) | 553.18 ± 401.82 (N = 45) |
Increased protein (ref. < 450 mg/L) | 25↑ (56%), 20 normal (44%) |
Albumin quotient (mean ± SD) | 6.14 ± 5.39 |
Increased albumin quotient (references: <40 years: < 6.5 × 10−3; 40–60 years: < 8 × 10−3; >60 years: < 9.3 × 10−3) | 10↑ (21%), 38 normal (79%) |
IgG index (mean ± SD) | 0.52 ± 0.09 |
Number of patients with increased IgG indices (ref. < 0.7 mg/L) | 2↑ (4%), 46 normal (96%) |
Oligoclonal bands in CSF | 47 negative (98%), 1 positive (2%) |
Oligoclonal bands in serum | 48 negative (100%), 0 positive (0%) |
Lactate (mean ± SD) | 1.60 ± 0.29 (N = 40) |
Increased lactate (ref. 16–50 years: 1.5–2.1 mmol/L; >51 years 1.7–2.6 mmol/L) | 18↓ (45%), 0↑ (0%), 22 normal (55%) |
CSF overall alterations (without decreased lactate levels) | 26/48 (54%) |
Established antineuronal antibodies | |
Antibodies against established cell surface antigens (LGI1, CASPR2, GABA B, NMDA, AMPA 1 and AMPA 2, DPPX) | 47 negative (100%), 0 positive (0%) (N = 47) |
Patients with SSDs | |
---|---|
EEG (N = 76)-Visual assessment | |
Continuous generalized slow activity | 0/76 (0%) |
Continuous regional slow activity | 1/76 (1%) |
Intermittent generalized slow activity | 16/76 (21%) |
Intermittent regional slow activity | 6/76 (8%) |
Epileptic pattern | 0/76 (0%) |
EEG overall alterations | 22/76 (29%) |
EEG (N = 76)—Automatic IRDA/IRTA quantification (mean values) | |
IRDA/IRTA rate before hyperventilation | 1.18 ± 1.79 (N = 76) |
IRDA/IRTA rate after hyperventilation | 1.64 ± 2.23 (N = 66, hyperventilation was not performed in all patients) |
IRDA/IRTA difference (post-hyperventilation–pre-hyperventilation) | 0.46 ± 1.59 (N = 66) |
IRDA/IRTA rates overall | 1.27 ± 1.70 (N = 76) |
cMRI (N = 74)—Visual assessment | |
(Non-specific) white matter lesions | 28/74 (38%) |
Chronic inflammatory lesions * | 3/74 (4%) |
Atrophy | 1/74 (1%) |
Pineal cyst ** | 12/74 (16%) |
Others | 19/74 (26%) |
cMRI overall alterations | 45/74 (61%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Endres, D.; Matysik, M.; Feige, B.; Venhoff, N.; Schweizer, T.; Michel, M.; Meixensberger, S.; Runge, K.; Maier, S.J.; Nickel, K.; et al. Diagnosing Organic Causes of Schizophrenia Spectrum Disorders: Findings from a One-Year Cohort of the Freiburg Diagnostic Protocol in Psychosis (FDPP). Diagnostics 2020, 10, 691. https://doi.org/10.3390/diagnostics10090691
Endres D, Matysik M, Feige B, Venhoff N, Schweizer T, Michel M, Meixensberger S, Runge K, Maier SJ, Nickel K, et al. Diagnosing Organic Causes of Schizophrenia Spectrum Disorders: Findings from a One-Year Cohort of the Freiburg Diagnostic Protocol in Psychosis (FDPP). Diagnostics. 2020; 10(9):691. https://doi.org/10.3390/diagnostics10090691
Chicago/Turabian StyleEndres, Dominique, Miriam Matysik, Bernd Feige, Nils Venhoff, Tina Schweizer, Maike Michel, Sophie Meixensberger, Kimon Runge, Simon J. Maier, Kathrin Nickel, and et al. 2020. "Diagnosing Organic Causes of Schizophrenia Spectrum Disorders: Findings from a One-Year Cohort of the Freiburg Diagnostic Protocol in Psychosis (FDPP)" Diagnostics 10, no. 9: 691. https://doi.org/10.3390/diagnostics10090691
APA StyleEndres, D., Matysik, M., Feige, B., Venhoff, N., Schweizer, T., Michel, M., Meixensberger, S., Runge, K., Maier, S. J., Nickel, K., Bechter, K., Urbach, H., Domschke, K., & Tebartz van Elst, L. (2020). Diagnosing Organic Causes of Schizophrenia Spectrum Disorders: Findings from a One-Year Cohort of the Freiburg Diagnostic Protocol in Psychosis (FDPP). Diagnostics, 10(9), 691. https://doi.org/10.3390/diagnostics10090691