Aortic Root Remodeling as an Indicator for Diastolic Dysfunction and Normative Ranges in Asians: Comparison and Validation with Multidetector Computed Tomography
Abstract
:1. Introduction
2. Methods
2.1. Study Subjects
2.2. Echocardiography
2.3. Serum NT-proBNP Analysis
2.4. Validation on Echo-Based Morphological Aortic Diameter Measure with MDCT
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Correlations of Echocardiography-based Aortic Diameter with CT-based Measures
3.3. Clinical Correlates of Aortic Diameter
3.4. Age- and Sex-Stratified Normal Reference Ranges of Aortic Diameter
3.5. Associations of Aortic Diameter with Cardiac Structure and Function
3.6. Associations of Aortic Diameter with Diastolic Dysfunction by ASE Criteria
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lam, C.S.; Xanthakis, V.; Sullivan, L.M.; Lieb, W.; Aragam, J.; Redfield, M.M.; Mitchell, G.F.; Benjamin, E.J.; Vasan, R.S. Aortic root remodeling over the adult life course: Longitudinal data from the Framingham Heart Study. Circulation 2010, 122, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Devereux, R.B.; De Simone, G.; Arnett, N.K.; Best, L.G.; Boerwinkle, E.; Howard, B.V.; Kitzman, D.; Lee, E.T.; Mosley, T.H.; Weder, A.; et al. Normal limits in relation to age, body size and gender of two-dimensional echocardiographic aortic root dimensions in persons ≥15 years of age. Am. J. Cardiol. 2012, 110, 1189–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasan, R.S.; Larson, M.G.; Benjamin, E.J.; Levy, D. Echocardiographic reference values for aortic root size: The Framingham Heart Study. J. Am. Soc. Echocardiogr. 1995, 8, 793–800. [Google Scholar] [CrossRef]
- Bella, J.N.; Wachtell, K.; Boman, K.; Palmieri, V.; Papademetriou, V.; Gerdts, E.; Aalto, T.; Olsen, M.H.; Olofsson, M.; Dahlöf, B.; et al. Relation of left ventricular geometry and function to aortic root dilatation in patients with systemic hypertension and left ventricular hypertrophy (the LIFE study). Am. J. Cardiol. 2002, 89, 337–341. [Google Scholar] [CrossRef]
- Cuspidi, C.; Meani, S.; Valerio, C.; Esposito, A.; Sala, C.; Maisaidi, M.; Zanchetti, A.; Mancia, G. Ambulatory blood pressure, target organ damage and aortic root size in never-treated essential hypertensive patients. J. Hum. Hypertens. 2007, 21, 531–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuspidi, C.; Facchetti, R.; Bombelli, M.; Re, A.; Cairoa, M.; Sala, C.; Tadic, M.; Grassı, G.; Mancia, G. Aortic root diameter and risk of cardiovascular events in a general population. J. Hypertens. 2014, 32, 1879–1887. [Google Scholar] [CrossRef]
- Gardin, J.M.; Arnold, A.M.; Polak, J.; Jackson, S.; Smith, V.; Gottdiener, J. Usefulness of Aortic Root Dimension in Persons ≥65 Years of Age in Predicting Heart Failure, Stroke, Cardiovascular Mortality, All-Cause Mortality and Acute Myocardial Infarction (from the Cardiovascular Health Study). Am. J. Cardiol. 2006, 97, 270–275. [Google Scholar] [CrossRef]
- Girnik, I.S.; Okunev, B.N.; Aristov, Y.I. Dynamics of Pressure- and Temperature-Initiated Cycles for Upgrading Low Temperature Heat: Flat Bed of Loose Grains. Appl. Therm. Eng. 2020, 165, 114654. [Google Scholar] [CrossRef]
- Kario, K.; Chen, C.-H.; Park, S.; Park, C.-G.; Hoshide, S.; Cheng, H.-M.; Huang, Q.-F.; Wang, J.-G. Consensus Document on Improving Hypertension Management in Asian Patients, Taking Into Account Asian Characteristics. Hypertension 2018, 71, 375–382. [Google Scholar] [CrossRef]
- Park, J.B.; Kario, K.; Wang, J.-G. Systolic hypertension: An increasing clinical challenge in Asia. Hypertens. Res. 2014, 38, 227–236. [Google Scholar] [CrossRef] [Green Version]
- Oktay, A.A.; Rich, J.D.; Shah, S.J. The emerging epidemic of heart failure with preserved ejection fraction. Curr. Hear. Fail. Rep. 2013, 10, 401–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karagodin, I.; Aba-Omer, O.; Sparapani, R.; Strande, J.L. Aortic stiffening precedes onset of heart failure with preserved ejection fraction in patients with asymptomatic diastolic dysfunction. BMC Cardiovasc. Disord. 2017, 17, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, C.S.P.; Gona, P.; Larson, M.G.; Aragam, J.; Lee, U.S.; Mitchell, G.F.; Levy, D.; Cheng, S.; Benjamin, E.J.; Vasan, R.S. Aortic Root Remodeling and Risk of Heart Failure in the Framingham Heart Study. JACC Heart Fail. 2012, 1, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Gevaert, A.; Boen, J.R.A.; Segers, V.F.; Van Craenenbroeck, E.M. Heart Failure With Preserved Ejection Fraction: A Review of Cardiac and Noncardiac Pathophysiology. Front. Physiol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Persson, H.; Lonn, E.; Edner, M.; Baruch, L.; Lang, C.C.; Morton, J.J.; Östergren, J.; McKelvie, R.S. Diastolic Dysfunction in Heart Failure With Preserved Systolic Function: Need for Objective Evidence. J. Am. Coll. Cardiol. 2007, 49, 687–694. [Google Scholar] [CrossRef] [Green Version]
- Masugata, H.; Senda, S.; Murao, K.; Okuyama, H.; Inukai, M.; Hosomi, N.; Iwado, Y.; Noma, T.; Kohno, M.; Himoto, T.; et al. Aortic root dilatation as a marker of subclinical left ventricular diastolic dysfunction in patients with cardiovascular risk factors. J. Int. Med. Res. 2011, 39, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Messika-Zeitoun, D.; Serfaty, J.-M.; Brochet, E.; Lepage, L.; Détaint, D.; Hyafil, F.; Himbert, D.; Iung, B.; Vahanian, A. 155 Multimodal Assessment of the Aortic Annulus Diameter. Implications for Transcatheter Aortic Valve Implantation. Arch. Cardiovasc. Dis. Suppl. 2010, 2, 50. [Google Scholar] [CrossRef] [Green Version]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [Green Version]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; Gonzalez-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar]
- Hung, C.-L.; Goncalves, A.; Lai, Y.-J.; Lai, Y.-H.; Sung, K.-T.; Lo, C.-I.; Liu, C.-C.; Kuo, J.-Y.; Hou, C.J.-Y.; Chao, T.-F.; et al. Light to Moderate Habitual Alcohol Consumption Is Associated with Subclinical Ventricular and Left Atrial Mechanical Dysfunction in an Asymptomatic Population: Dose-Response and Propensity Analysis. J. Am. Soc. Echocardiogr. 2016, 29, 1043–1051.e4. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.D.C.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, L.A.; Young, P.M.; Foley, T.A.; Williamson, E.E.; Bruce, C.J.; Greason, K.L. CT and MRI Assessment of the Aortic Root and Ascending Aorta. Am. J. Roentgenol. 2013, 200. [Google Scholar] [CrossRef] [PubMed]
- Wolak, A.; Gransar, H.; Thomson, L.E.; Friedman, J.D.; Hachamovitch, R.; Gutstein, A.; Shaw, L.J.; Polk, N.; Wong, N.D.; Saouaf, R.; et al. Aortic Size Assessment by Noncontrast Cardiac Computed Tomography: Normal Limits by Age, Gender, and Body Surface Area. JACC Cardiovasc. Imaging 2008, 1, 200–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawabe, M.; Hamamatsu, A.; Chida, K.; Mieno, M.N.; Ozawa, T. Age is a major pathobiological determinant of aortic dilatation: A large autopsy study of community deaths. J. Atheroscler. Thromb. 2010, 18, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Vriz, O.; Aboyans, V.; D’Andrea, A.; Ferrara, F.; Acri, E.; Limongelli, G.; Della Corte, A.; Driussi, C.; Bettio, M.; Pluchinotta, F.R.; et al. Normal Values of Aortic Root Dimensions in Healthy Adults. Am. J. Cardiol. 2014, 114, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Redfield, M.M.; Jacobsen, S.J.; Borlaug, B.A.; Rodeheffer, R.J.; Kass, D.A. Age- and Gender-Related Ventricular-Vascular Stiffening. Circulation 2005, 112, 2254–2262. [Google Scholar] [CrossRef] [Green Version]
- Vriz, O.; Driussi, C.; Bettio, M.; Ferrara, F.; D’Andrea, A.; Bossone, E. Aortic Root Dimensions and Stiffness in Healthy Subjects. Am. J. Cardiol. 2013, 112, 1224–1229. [Google Scholar] [CrossRef]
- Lai, C.-L.; Chien, K.-L.; Hsu, H.-C.; Su, T.-C.; Chen, M.-F.; Lee, Y.-T. Aortic Root Dimension as an Independent Predictor for All-Cause Death in Adults. Echocardiography 2010, 27, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Schlatmann, T.J.; Becker, A.E. Histologic changes in the normal aging aorta: Implications for dissecting aortic aneurysm. Am. J. Cardiol. 1977, 39, 13–20. [Google Scholar] [CrossRef]
- Agozzino, L.; Ferraraccio, F.; Esposito, S.; Trocciola, A.; Parente, A.; Della Corte, A.; De Feo, M.; Cotrufo, M. Medial degeneration does not involve uniformly the whole ascending aorta: Morphological, biochemical and clinical correlations. Eur. J. Cardio-Thoracic Surg. 2002, 21, 675–682. [Google Scholar] [CrossRef] [Green Version]
- Grande-Allen, K.J.; Cochran, R.P.; Reinhall, P.G.; Kunzelman, K.S. Stress variations in the human aortic root and valve: The role of anatomic asymmetry. Ann. Biomed. Eng. 1998, 26, 534–545. [Google Scholar] [CrossRef] [PubMed]
- Severino, P.; D’Amato, A.; Pucci, M.; Infusino, F.; Birtolo, L.I.; Mariani, M.V.; LaValle, C.; Maestrini, V.; Mancone, M.; Fedele, F. Ischemic Heart Disease and Heart Failure: Role of Coronary Ion Channels. Int. J. Mol. Sci. 2020, 21, 3167. [Google Scholar] [CrossRef] [PubMed]
- Arcopinto, M.; Schiavo, A.; Salzano, A.; Bossone, E.; D’Assante, R.; Marsico, F.; Demelo-Rodriguez, P.; Baliga, R.R.; Cittadini, A.; Marra, A.M. Metabolic Syndrome in Heart Failure: Friend or Foe? Heart Fail. Clin. 2019, 15, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, V.; Bella, J.N.; Arnett, N.K.; Roman, M.J.; Oberman, A.; Kitzman, D.W.; Hopkins, P.; Paranicas, M.; Rao, D.C.; Devereux, R.B. Aortic Root Dilatation at Sinuses of Valsalva and Aortic Regurgitation in Hypertensive and Normotensive Subjects. Hypertension 2001, 37, 1229–1235. [Google Scholar] [CrossRef] [Green Version]
- Nwabuo, C.C.; Moreira, H.T.; De Vasconcellos, H.D.; Ambale-Venkatesh, B.; Yoneyama, K.; Ohyama, Y.; Sharma, R.K.; Armstrong, A.C.; Ostovaneh, M.R.; Lewis, C.E.; et al. Association of Aortic Root Dilation from Early Adulthood to Middle Age with Cardiac Structure and Function: The CARDIA Study. J. Am. Soc. Echocardiogr. 2017, 30, 1172–1179. [Google Scholar] [CrossRef]
- Roman, M.J.; Devereux, R.B.; Niles, N.W.; Hochreiter, C.; Kligfield, P.; Sato, N.; Spitzer, M.C.; Borer, J.S. Aortic Root Dilatation as a Cause of Isolated, Severe Aortic Regurgitation. Ann. Intern. Med. 1987, 106, 800–807. [Google Scholar] [CrossRef]
- Wang, T.J.; Larson, M.G.; Levy, D.; Leip, E.P.; Omland, T.; Benjamin, E.J.; Wolf, P.A.; Vasan, R.S. Plasma Natriuretic Peptide Levels and the Risk of Cardiovascular Events and Death. N. Engl. J. Med. 2004, 350, 655–663. [Google Scholar] [CrossRef]
- Severino, P.; Maestrini, V.; Mariani, M.V.; Birtolo, L.I.; Scarpati, R.; Mancone, M.; Fedele, F.; Mestrini, V. Structural and myocardial dysfunction in heart failure beyond ejection fraction. Heart Fail. Rev. 2019, 25, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Choo, S.J.; McRae, G.; Olomon, J.P.; George, G.S.; Davis, W.; Burleson-Bowles, C.L.; Pang, D.; Luo, H.H.; Vavra, D.; Cheung, D.T.; et al. Aortic root geometry: Pattern of differences between leaflets and sinuses of Valsalva. J. Heart Valve Dis. 1999, 8, 407–415. [Google Scholar]
- Hahn, R.T.; Little, S.H.; Monaghan, M.J.; Kodali, S.K.; Williams, M.; Leon, M.B.; Gillam, L.D. Recommendations for Comprehensive Intraprocedural Echocardiographic Imaging During TAVR. JACC Cardiovasc. Imaging 2015, 8, 261–287. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, S.A.; Evangelista, A.; Abbara, S.; Arai, A.; Acsh, F.; Badano, L.P. ASE/EAE recommendations for multimodality imaging techniques for diseases of the aorta: Expert consensus statement. J. Am. Soc. Echocardiogr. 2014, (in press). [Google Scholar]
AoDi Quintiles | 1st Quintile | 2nd Quintile | 3rd Quintile | 4th Quintile | 5th Quintile | p (Trend) |
---|---|---|---|---|---|---|
Range | (<15.4 mm/m2) | (15.4–16.5 mm/m2) | (16.5–17.5 mm/m2) | (17.5–18.7 mm/m2) | (≥18.7 mm/m2) | |
Number, n | (n = 1075) | (n = 1061) | (1075) | (n = 1067) | (n = 1062) | |
Age, y | 43.6 ± 10.3 | 46.7 ± 10.4 | 48.7 ± 10.3 | 51.1 ± 10.5 | 56.4 ± 10.5 | <0.001 |
Male sex, % | 680 (69.5%) | 675 (69.2%) | 610 (62.7%) | 610 (62.1%) | 551 (57.0%) | <0.001 |
Height, cm | 168.9 ± 8.64 | 167.2 ± 8.12 | 165.4 ± 7.93 | 163.7 ± 8.15 | 161.1 ± 8.44 | <0.001 |
Weight, kg | 74.7 ± 14.7 | 69.3 ± 11.9 | 66.5 ± 11.3 | 63.5 ± 10.7 | 59.9 ± 10.2 | <0.001 |
BMI, kg/m2 | 26.1 ± 4.33 | 24.7 ± 3.41 | 24.2 ± 3.15 | 23.6 ± 3.11 | 23.0 ± 3.02 | <0.001 |
SBP, mmHg | 123.5 ± 17.1 | 121.3 ± 16.0 | 122.0 ± 17.1 | 122.3 ± 17.1 | 126.0 ± 18.9 | 0.001 |
DBP, mmHg | 75.9 ± 11.4 | 75.2 ± 10.6 | 75.6 ± 10.8 | 75.6 ± 10.9 | 76.3 ± 11.3 | 0.25 |
HR, per min | 75.5 ± 11.1 | 74.4 ± 10.0 | 74.4 ± 10.2 | 74.5 ± 10.4 | 74.2 ± 9.93 | 0.02 |
Fasting glucose, mg/dL | 100.8 ± 22.8 | 99.9 ± 18.2 | 100.2 ± 20.4 | 100.2 ± 18.0 | 103.7 ± 30.1 | 0.009 |
Cholesterol, mg/dL | 200.0 ± 36.1 | 200.3 ± 36.1 | 199.6 ± 35.4 | 203.6 ± 41.1 | 202.8 ± 37.2 | 0.02 |
Triglyceride, mg/dL | 150.1 ± 128.0 | 138.4 ± 95.8 | 133.0 ± 98.8 | 134.3 ± 145.9 | 126.9 ± 90.7 | <0.001 |
LDL, mg/dL | 128.9 ± 33.1 | 129.2 ± 33.4 | 128.0 ± 31.9 | 131.5 ± 34.8 | 129.7 ± 34.1 | 0.28 |
HDL, mg/dL | 50.6 ± 14.2 | 52.1 ± 14.1 | 53.4 ± 14.8 | 54.6 ± 14.7 | 56.4 ± 16.4 | <0.001 |
eGFR, mL/min/1.73 m2 | 90.3 ± 17.0 | 89.6 ± 16.7 | 88.8 ± 17.2 | 88.0 ± 17.8 | 86.7 ± 18.7 | <0.001 |
QRS duration, ms | 90.3 ± 11.1 | 89.7 ± 10.8 | 88.9 ± 10.5 | 88.7 ± 10.4 | 89.8 ± 13.6 | 0.12 |
Hypertension, % | 141 (14.4%) | 162 (16.6%) | 176 (18.1%) | 195 (19.8%) | 235 (24.3%) | <0.001 |
Diabetes, % | 47 (4.8%) | 50 (5.1%) | 52 (5.3%) | 82 (8.3%) | 96 (9.9%) | <0.001 |
Hyperlipidemia treatment, % | 78 (8.0%) | 67 (6.9%) | 71 (7.3%) | 86 (8.7%) | 84 (8.7%) | 0.23 |
CAD, % | 63 (5.9%) | 47 (4.4%) | 65 (6.1%) | 67 (6.3%) | 72 (6.8%) | 0.17 |
Alcohol, % | 59 (6.0%) | 71 (7.3%) | 61 (6.3%) | 65 (6.6%) | 66 (6.8%) | 0.71 |
Exercise, % | 115 (11.8%) | 145 (14.9%) | 152 (15.6%) | 154 (15.7%) | 141 (14.6%) | 0.07 |
Active smoking, % | 100 (10.2%) | 127 (13.0%) | 124 (12.7%) | 112 (11.4%) | 111 (11.5%) | 0.77 |
AoDi Quintiles | 1st Quintile | 2nd Quintile | 3rd Quintile | 4th Quintile | 5th Quintile | p (Trend) | Pearson’s Correlation | Coef | 95% CI | p Value |
---|---|---|---|---|---|---|---|---|---|---|
Biomarker | ||||||||||
NT-proBNP, pg/mL | 33.4 ± 36.0 | 37.3 ± 46.9 | 40.9 ± 44.3 | 45.6 ± 102.5 | 65.8 ± 180.1 | <0.001 | 0.135 | 6.50 | 5.08, 7.92 | <0.001 |
Cardiac Structure/Function | ||||||||||
IVS, mm | 8.98 ± 1.04 | 9.03 ± 1.07 | 9.07 ± 1.05 | 9.08 ± 1.09 | 9.24 ± 1.11 | <0.001 | 0.073 | 0.04 | 0.02, 0.05 | <0.001 |
LVIDd, mm | 46.8 ± 3.51 | 46.8 ± 3.62 | 46.5 ± 3.78 | 46.4 ± 3.60 | 46.4 ± 3.91 | 0.002 | −0.045 | −0.08 | −0.12, −0.03 | 0.002 |
LVMI, g/m2 | 70.9 ± 12.4 | 74.3 ± 13.3 | 76.0 ± 13.4 | 77.9 ± 14.1 | 83.1 ± 16.7 | <0.001 | 0.294 | 2.05 | 1.86, 2.24 | <0.001 |
RWT | 38.5 ± 4.2 | 38.7 ± 4.3 | 39.1 ± 4.6 | 39.3 ± 4.6 | 39.9 ± 4.9 | <0.001 | 0.11 | 0.24 | 0.18, 0.30 | <0.001 |
LVH (%) | 7 (0.7%) | 8 (2.9%) | 21 (2.2%) | 36 (3.7%) | 99 (10.2%) | <0.001 | — | — | — | — |
EDVi, mL/m2 | 38.4 ± 5.5 | 40.0 ± 5.8 | 40.3 ± 6.2 | 41.2 ± 6.2 | 43.0 ± 7.4 | <0.001 | 0.25 | 0.77 | 0.68, 0.85 | <0.001 |
LVEF, % | 62.2 ± 5.7 | 62.7 ± 5.2 | 62.9 ± 5.3 | 62.8 ± 5.3 | 62.7 ± 5.6 | 0.046 | 0.041 | 0.11 | 0.04, 0.18 | 0.003 |
DT, ms | 196.7 ± 41.3 | 200.0 ± 40.8 | 202.1 ± 42.5 | 204.0 ± 41.7 | 212.5 ± 45.7 | <0.001 | 0.121 | 2.47 | 1.89, 3.04 | <0.001 |
IVRT, ms | 85.9 ± 12.3 | 88.9 ± 13.6 | 89.5 ± 14.7 | 89.6 ± 15.5 | 94.2 ± 17.6 | <0.001 | 0.180 | 1.30 | 1.08, 1.53 | <0.001 |
E/A ratio | 1.28 ± 0.42 | 1.24 ± 0.42 | 1.22 ± 0.42 | 1.19 ± 0.42 | 1.08 ± 0.43 | <0.001 | −0.162 | −0.03 | −0.04, −0.03 | <0.001 |
TDI-s′ (average), mm | 8.42 ± 1.55 | 8.40 ± 1.54 | 8.33 ± 1.54 | 8.19 ± 1.54 | 7.95 ± 1.60 | <0.001 | −0.109 | −0.08 | −0.10, −0.06 | <0.001 |
Diastolic indices by ASE [18] | ||||||||||
LAVi, mL/m2 | 16.2 ± 5.08 | 15.9 ± 5.59 | 16.4 ± 5.70 | 16.5 ± 6.20 | 17.1 ± 6.51 | <0.001 | 0.071 | 0.20 | 0.12, 0.28 | <0.001 |
TDI-e′ (average), mm | 9.79 ± 2.42 | 9.57 ± 2.39 | 9.30 ± 2.43 | 8.87 ± 2.28 | 8.16 ± 2.27 | <0.001 | −0.236 | −0.28 | −0.31, −0.24 | <0.001 |
E/e′ (average) | 7.39 ± 2.22 | 7.52 ± 2.24 | 7.75 ± 2.40 | 8.11 ± 2.55 | 8.60 ± 2.98 | <0.001 | 0.171 | 0.21 | 0.17, 0.24 | <0.001 |
TR velocity, m/sec | 17.3 ± 4.85 | 17.5 ± 5.09 | 17.7 ± 5.29 | 17.9 ± 5.55 | 18.8 ± 5.98 | <0.001 | 0.114 | 0.29 | 0.22, 0.37 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.Y.-m.; Yun, C.-H.; Kuo, J.-Y.; Lai, Y.-H.; Sung, K.-T.; Yuan, P.-J.; Tsai, J.-P.; Huang, W.-H.; Lin, Y.-H.; Hung, T.-C.; et al. Aortic Root Remodeling as an Indicator for Diastolic Dysfunction and Normative Ranges in Asians: Comparison and Validation with Multidetector Computed Tomography. Diagnostics 2020, 10, 712. https://doi.org/10.3390/diagnostics10090712
Liu LY-m, Yun C-H, Kuo J-Y, Lai Y-H, Sung K-T, Yuan P-J, Tsai J-P, Huang W-H, Lin Y-H, Hung T-C, et al. Aortic Root Remodeling as an Indicator for Diastolic Dysfunction and Normative Ranges in Asians: Comparison and Validation with Multidetector Computed Tomography. Diagnostics. 2020; 10(9):712. https://doi.org/10.3390/diagnostics10090712
Chicago/Turabian StyleLiu, Lawrence Yu-min, Chun-Ho Yun, Jen-Yuan Kuo, Yau-Huei Lai, Kuo-Tzu Sung, Po-Jung Yuan, Jui-Peng Tsai, Wen-Hung Huang, Yueh-Hung Lin, Ta-Chuan Hung, and et al. 2020. "Aortic Root Remodeling as an Indicator for Diastolic Dysfunction and Normative Ranges in Asians: Comparison and Validation with Multidetector Computed Tomography" Diagnostics 10, no. 9: 712. https://doi.org/10.3390/diagnostics10090712
APA StyleLiu, L. Y. -m., Yun, C. -H., Kuo, J. -Y., Lai, Y. -H., Sung, K. -T., Yuan, P. -J., Tsai, J. -P., Huang, W. -H., Lin, Y. -H., Hung, T. -C., Chen, Y. -J., Su, C. -H., Tsai, C. -T., Yeh, H. -I., & Hung, C. -L. (2020). Aortic Root Remodeling as an Indicator for Diastolic Dysfunction and Normative Ranges in Asians: Comparison and Validation with Multidetector Computed Tomography. Diagnostics, 10(9), 712. https://doi.org/10.3390/diagnostics10090712