Evidence of Oligoclonal Bands Does Not Exclude Non-Inflammatory Neurological Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. CSF and Serum Analytical Procedures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reiber, H. Cerebrospinal fluid—Physiology, analysis and interpretation of protein patterns for diagnosis of neurological diseases. Mult. Scler. J. 1998, 4, 99–107. [Google Scholar] [CrossRef]
- Stangel, M.; Fredrikson, S.; Meinl, E.; Petzold, A.; Stüve, O.; Tumani, H. The utility of cerebrospinal fluid analysis in patients with multiple sclerosis. Nat. Rev. Neurol. 2013, 9, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Lowenthal, A.; Van Sande, M.; Karcher, D. The differential diagnosis of neurological diseases by fractionating electrophoretically the CSF gamma-globulins. J. Neurochem. 1960, 6, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Chu, A.B.; Sever, J.L.; Madden, D.L.; Iivanainen, M.; Leon, M.; Wallen, W.; Brooks, B.R.; Lee, Y.J.; Houff, S. Oligoclonal IgG bands in cerebrospinal fluid in various neurological diseases. Ann. Neurol. 1983, 13, 434–439. [Google Scholar] [CrossRef]
- Sinclair, A.; Tantsis, E.; Wienholt, L.; Brilot, F.; Dale, R.C. Clinical association of intrathecal and mirrored oligoclonal bands in paediatric neurology. Dev. Med. Child Neurol. 2013, 55, 71–75. [Google Scholar] [CrossRef]
- Petzold, A. Intrathecal oligoclonal IgG synthesis in multiple sclerosis. J. Neuroimmunol. 2013, 262, 1–10. [Google Scholar] [CrossRef]
- Schwenkenbecher, P.; Sarikidi, A.; Wurster, U.; Bronzlik, P.; Sühs, K.-W.; Raab, P.; Stangel, M.; Pul, R.; Skripuletz, T. McDonald Criteria 2010 and 2005 Compared: Persistence of High Oligoclonal Band Prevalence Despite Almost Doubled Diagnostic Sensitivity. Int. J. Mol. Sci. 2016, 17, 1592. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Reiber, H. Flow rate of cerebrospinal fluid (CSF)—A concept common to normal blood-CSF barrier function and to dysfunction in neurological diseases. J. Neurol. Sci. 1994, 122, 189–203. [Google Scholar] [CrossRef]
- Andersson, M.; Alvarez-Cermeno, J.; Bernardi, G.; Cogato, I.; Fredman, P.; Frederiksen, J.; Fredrikson, S.; Gallo, P.; Grimaldi, L.M.; Gronning, M.; et al. Cerebrospinal fluid in the diagnosis of multiple sclerosis: A consensus report. J. Neurol. Neurosurg. Psychiatry 1994, 57, 897–902. [Google Scholar] [CrossRef] [Green Version]
- Freedman, M.S.; Thompson, E.J.; Deisenhammer, F.; Giovannoni, G.; Grimsley, G.; Keir, G.; Öhman, S.; Racke, M.K.; Sharief, M.; Sindic, C.J.M.; et al. Recommended standard of cerebrospinal fluid analysis in the diagnosis of multiple sclerosis: A consensus statement. Arch. Neurol. 2005, 62, 865–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiber, H. External quality assessment in clinical neurochemistry: Survey of analysis for cerebrospinal fluid (CSF) proteins based on CSF/serum quotients. Clin. Chem. 1995, 41, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Konen, F.F.; Wurster, U.; Witte, T.; Jendretzky, K.F.; Gingele, S.; Tumani, H.; Sühs, K.-W.; Stangel, M.; Schwenkenbecher, P.; Skripuletz, T. The Impact of Immunomodulatory Treatment on Kappa Free Light Chains as Biomarker in Neuroinflammation. Cells 2020, 9, 842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tintoré, M.; Rovira, À.; Río, J.; Otero-Romero, S.; Arrambide, G.; Tur, C.; Comabella, M.; Nos, C.; Arévalo, M.J.; Negrotto, L.; et al. Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain 2015, 138, 1863–1874. [Google Scholar] [CrossRef] [Green Version]
- Dobson, R.; Ramagopalan, S.; Davis, A.; Giovannoni, G. Cerebrospinal fluid oligoclonal bands in multiple sclerosis and clinically isolated syndromes: A meta-analysis of prevalence, prognosis and effect of latitude. J. Neurol. Neurosurg. Psychiatry 2013, 84, 909–914. [Google Scholar] [CrossRef]
- Zeman, D.; Hradílek, P.; Kušnierová, P.; Piza, R.; Reguliova, K.; Woznicová, I.; Zapletalova, O. Oligoclonal free light chains in cerebrospinal fluid as markers of intrathecal inflammation. Comparison with oligoclonal IgG. Biomed. Pap. 2015, 159, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Jesse, S.; Brettschneider, J.; Süssmuth, S.D.; Landwehrmeyer, B.G.; Von Arnim, C.A.; Ludolph, A.C.; Tumani, H.; Otto, M. Summary of cerebrospinal fluid routine parameters in neurodegenerative diseases. J. Neurol. 2010, 258, 1034–1041. [Google Scholar] [CrossRef] [Green Version]
- Bourahoui, A.; De Sèze, J.; Guttierez, R.; Onraed, B.; Hennache, B.; Ferriby, D.; Stojkovic, T.; Vermersch, P. CSF isoelectrofocusing in a large cohort of MS and other neurological diseases. Eur. J. Neurol. 2004, 11, 525–529. [Google Scholar] [CrossRef]
- Roström, B.; Link, H. Oligoclonal immunoglobulins in cerebrospinal fluid in acute cerebrovascular disease. Neurology 1981, 31, 590. [Google Scholar] [CrossRef]
- Prüss, H.; Iggena, D.; Baldinger, T.; Prinz, V.; Meisel, A.; Endres, M.; Dirnagl, U.; Schwab, J.M. Evidence of Intrathecal Immunoglobulin Synthesis in Stroke. Arch. Neurol. 2012, 69, 714–717. [Google Scholar] [CrossRef] [Green Version]
- Granata, T.; Cross, H.; Theodore, W.; Avanzini, G. Immune-mediated epilepsies. Epilepsia 2011, 52, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Fauser, S.; Soellner, C.; Bien, C.G.; Tumani, H. Intrathecal immunoglobulin synthesis in patients with symptomatic epilepsy and epilepsy of unknown etiology (‘cryptogenic’). Eur. J. Neurol. 2017, 24, 1188–1190. [Google Scholar] [CrossRef] [PubMed]
- Kowski, A.B.; Volz, M.S.; Holtkamp, M.; Prüss, H. High frequency of intrathecal immunoglobulin synthesis in epilepsy so far classified cryptogenic. Eur. J. Neurol. 2013, 21, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Zettl, U.K.; Lehmitz, R.; Mix, E. Klinische Liquordiagnostik; Walter de Gruyter: Berlin, Germany, 2005. [Google Scholar]
- Davenport, R.D.; Keren, D.F. Oligoclonal bands in cerebrospinal fluids: Significance of corresponding bands in serum for diagnosis of multiple sclerosis. Clin. Chem. 1988, 34, 764–765. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.; Staugaitis, S.; Shapshak, P.; Tourtellotte, W. Ultrasensitive detection of igg in uncon-centrated cerebrospinal-fluid utilizing silver-nitrate staining after isoelec-tric-focusing and immunofixation. Ann. Neurol. 1982, 12, 114. [Google Scholar]
- Halbgebauer, S.; Huss, A.; Buttmann, M.; Steinacker, P.; Oeckl, P.; Brecht, I.; Weishaupt, A.; Tumani, H.; Otto, M. Detection of intrathecal immunoglobulin G synthesis by capillary isoelectric focusing immunoassay in oligoclonal band negative multiple sclerosis. J. Neurol. 2016, 263, 954–960. [Google Scholar] [CrossRef]
- Hegen, H.; Walde, J.; Milosavljevic, D.; Aboulenein-Djamshidian, F.; Senel, M.; Tumani, H.; Deisenhammer, F.; Presslauer, S. Free light chains in the cerebrospinal fluid. Comparison of different methods to determine intrathecal synthesis. Clin. Chem. Lab. Med. 2019, 57, 1574–1586. [Google Scholar] [CrossRef]
- Huss, A.; Mojib-Yezdani, F.; Bachhuber, F.; Fangerau, T.; Lewerenz, J.; Otto, M.; Tumani, H.; Senel, M. Association of cerebrospinal fluid kappa free light chains with the intrathecal polyspecific antiviral immune response in multiple sclerosis. Clin. Chim. Acta 2019, 498, 148–153. [Google Scholar] [CrossRef]
- Presslauer, S.; Milosavljevic, D.; Huebl, W.; Aboulenein-Djamshidian, F.; Krugluger, W.; Deisenhammer, F.; Senel, M.; Tumani, H.; Hegen, H. Validation of kappa free light chains as a diagnostic biomarker in multiple sclerosis and clinically isolated syndrome: A multicenter study. Mult. Scler. J. 2015, 22, 502–510. [Google Scholar] [CrossRef]
- Senel, M.; Mojib-Yezdani, F.; Braisch, U.; Bachhuber, F.; Lewerenz, J.; Ludolph, A.C.; Otto, M.; Tumani, H. CSF Free Light Chains as a Marker of Intrathecal Immunoglobulin Synthesis in Multiple Sclerosis: A Blood-CSF Barrier Related Evaluation in a Large Cohort. Front. Immunol. 2019, 10, 641. [Google Scholar] [CrossRef]
- Schwenkenbecher, P.; Konen, F.F.; Wurster, U.; Jendretzky, K.F.; Gingele, S.; Sühs, K.-W.; Pul, R.; Witte, T.; Stangel, M.; Skripuletz, T. The Persisting Significance of Oligoclonal Bands in the Dawning Era of Kappa Free Light Chains for the Diagnosis of Multiple Sclerosis. Int. J. Mol. Sci. 2018, 19, 3796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrer, A.; Tumani, H.; Niendorf, S.; Lauda, F.; Geis, C.; Weishaupt, A.; Kleinschnitz, C.; Rauer, S.; Kuhle, J.; Stangel, M.; et al. Cerebrospinal fluid parameters of B cell-related activity in patients with active disease during natalizumab therapy. Mult. Scler. J. 2013, 19, 1209–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwenkenbecher, P.; Chacko, L.P.; Wurster, U.; Pars, K.; Pul, R.; Sühs, K.-W.; Stangel, M.; Skripuletz, T. Intrathecal synthesis of anti-Hu antibodies distinguishes patients with paraneoplastic peripheral neuropathy and encephalitis. BMC Neurol. 2016, 16, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molteni, M.; Rossetti, C. Neurodegenerative diseases: The immunological perspective. J. Neuroimmunol. 2017, 313, 109–115. [Google Scholar] [CrossRef]
- Leng, F.; Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nat. Rev. Neurol. 2020. [Google Scholar] [CrossRef]
- Rodrigues, M.C.; Sanberg, P.R.; Cruz, L.E.; Garbuzova-Davis, S. The innate and adaptive immunological aspects in neurodegenerative diseases. J. Neuroimmunol. 2014, 269, 1–8. [Google Scholar] [CrossRef]
- Novellino, F.; Saccà, V.; Donato, A.; Zaffino, P.; Spadea, M.F.; Vismara, M.F.M.; Arcidiacono, B.; Malara, N.; Presta, I.; Donato, G. Innate Immunity: A Common Denominator between Neurodegenerative and Neuropsychiatric Diseases. Int. J. Mol. Sci. 2020, 21, 1115. [Google Scholar] [CrossRef] [Green Version]
- Sabatino, J.J.; Pröbstel, A.-K.; Zamvil, S. B cells in autoimmune and neurodegenerative central nervous system diseases. Nat. Rev. Neurosci. 2019, 20, 728–745. [Google Scholar] [CrossRef]
- Dalmau, J.; Graus, F. Antibody-Mediated Encephalitis. N. Engl. J. Med. 2018, 378, 840–851. [Google Scholar] [CrossRef] [Green Version]
- Gövert, F.; Leypoldt, F.; Junker, R.; Wandinger, K.-P.; Deuschl, G.; Bhatia, K.P.; Balint, B. Antibody-related movement disorders—A comprehensive review of phenotype-autoantibody correlations and a guide to testing. Neurol. Res. Pr. 2020, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Chang, B.; Wei, X.; Wang, X.; Tang, Y.; Zhu, J.; Zheng, X.; Zhang, C.; Li, S. Metagenomic next-generation sequencing of viruses, bacteria, and fungi in the epineurium of the facial nerve with Bell’s palsy patients. J. Neurovirol. 2020, 26, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Denkinger, M.D.; Leins, H.; Schirmbeck, R.; Florian, M.C.; Geiger, H. HSC Aging and Senescent Immune Remodeling. Trends Immunol. 2015, 36, 815–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouyang, Q.; Wagner, W.M.; Wikby, A.; Walter, S.; Aubert, G.; Dodi, A.I.; Travers, P.; Pawelec, G. Large Numbers of Dysfunctional CD8+ T Lymphocytes Bearing Receptors for a Single Dominant CMV Epitope in the Very Old. J. Clin. Immunol. 2003, 23, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Castle, S.C. Clinical Relevance of Age-Related Immune Dysfunction. Clin. Infect. Dis. 2000, 31, 578–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castellazzi, M.; Morotti, A.; Tamborino, C.; Alessi, F.; Pilotto, S.; Baldi, E.; Caniatti, L.M.; Trentini, A.; Casetta, I.; Granieri, E.; et al. Increased age and male sex are independently associated with higher frequency of blood–cerebrospinal fluid barrier dysfunction using the albumin quotient. Fluids Barriers CNS 2020, 17, 14. [Google Scholar] [CrossRef] [PubMed]
- Wurster, U.S.R.; Windhagen, A.; Petereit, H.; Leweke, F. Reference values for standard cerebrospinal fluid examinations inmultiple sclerosis: Results from99 healthy volunteers. Mult. Scler. 2006, 12, S62. [Google Scholar] [CrossRef]
- Haghighi, S.; Andersen, O.; Rosengren, L.; Bergström, T.; Wahlström, J.; Nilsson, S. Incidence of CSF abnormalities in siblings of multiple sclerosis patients and unrelated controls. J. Neurol. 2000, 247, 616–622. [Google Scholar] [CrossRef]
- Pars, K.; Pul, R.; Schwenkenbecher, P.; Sühs, K.-W.; Wurster, U.; Witte, T.; Bronzlik, P.; Stangel, M.; Skripuletz, T. Cerebrospinal Fluid Findings in Neurological Diseases Associated with Sjögren’s Syndrome. Eur. Neurol. 2016, 77, 91–102. [Google Scholar] [CrossRef]
- Wenzel, C.; Wurster, U.; Müller-Vahl, K.R. Oligoclonal bands in cerebrospinal fluid in patients with Tourette’s syndrome. Mov. Disord. 2010, 26, 343–346. [Google Scholar] [CrossRef]
Diagnosis | Patients (n) | Female | Age, Mean ± SD (Years) | Intrathecal Synthesis | 2–3 CSF Oligoclonal Bands | ≥4 CSF Oligoclonal Bands | ||
---|---|---|---|---|---|---|---|---|
IgM | IgG | IgA | ||||||
All patients | 2114 | 48.1% | 52 (±18.8) | 0.2% | 0.3% | 0.0% | 3.8% | 4.4% |
Symptoms without a neurological disease | 494 | 60.5% | 42 (±17.4) | 0.0% | 0.2% | 0.0% | 5.3% | 5.5% |
Headache | 196 | 60.7% | 39 (±17.5) | 0.0% | 0.0% | 0.0% | 4.6% | 6.6% |
Vertigo | 43 | 60.5% | 52 (±20.0) | 0.0% | 0.0% | 0.0% | 0.0% | 4.7% |
Paresthesia | 138 | 57.6% | 37 (±13.2) | 0.0% | 0.7% | 0.0% | 5.1% | 3.6% |
Pain | 117 | 63.3% | 49 (±17.1) | 0.0% | 0.0% | 0.0% | 8.6% | 6.0% |
Neuropathy | 470 | 37.9% | 58 (±16.1) | 0.0% | 0.0% | 0.0% | 2.3% | 2.8% |
Peripheral neuropathy | 310 | 37.4% | 62 (±13.3) | 0.0% | 0.0% | 0.0% | 1.9% | 2.9% |
Cranial nerve impairment | 160 | 38.8% | 50 (±17.8) | 0.0% | 0.0% | 0.0% | 3.1% | 2.5% |
Facial palsy | 99 | 41.4% | 44 (±17.3) | 0.0% | 0.0% | 0.0% | 5.1% | 3.0% |
Trigeminal neuralgia | 8 | 62.5% | 46 (±13.3) | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
Vestibulopathy | 12 | 41.7% | 49 (±14.0) | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
Oculomotor palsy | 41 | 26.8% | 62 (±13.8) | 0.0% | 0.0% | 0.0% | 0.0% | 2.4% |
Neurovascular diseases | 255 | 55.3% | 60 (±16.3) | 0.4% | 0.4% | 0.0% | 4.7% | 3.5% |
Epileptic seizure | 264 | 45.1% | 53 (±20.8) | 0.0% | 0.4% | 0.0% | 3.8% | 4.9% |
Encephalopathy and Delirium | 41 | 39.0% | 67 (±14.4) | 0.0% | 0.0% | 0.0% | 4.9% | 2.4% |
Muscular diseases | 77 | 46.8% | 50 (±15.7) | 0.0% | 0.0% | 0.0% | 1.3% | 0.0% |
Neurodegenerativ diseases | 404 | 40.9% | 64 (±14.0) | 0.5% | 0.7% | 0.0% | 4.0% | 5.5% |
Movement disorder | 140 | 42.9% | 61 (±16.6) | 0.0% | 0.0% | 0.0% | 5.0% | 7.1% |
Motoneuron disease | 147 | 35.4% | 63 (±12.5) | 0.7% | 1.4% | 0.0% | 4.8% | 3.4% |
Dementia | 117 | 44.4% | 69 (±10.5) | 0.9% | 0.9% | 0.0% | 1.7% | 6.0% |
Cerebrospinal fluid flow diseases | 109 | 58.7% | 52 (±19.3) | 0.9% | 0.9% | 0.0% | 1.8% | 7.3% |
Idiopathic intracranial hypertension | 59 | 72.9% | 40 (±14.3) | 1.7% | 1.7% | 0.0% | 1.7% | 10.2% |
Normal pressure hydrocephalus | 46 | 39.1% | 71 (±9.3) | 0.0% | 0.0% | 0.0% | 2.2% | 4.4% |
Cerebrospinal fluid leakage syndrome | 4 | 75.0% | 49 (±15.3) | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
Diagnosis | Patients (n) | OCB Pattern | ||||||
---|---|---|---|---|---|---|---|---|
Typ 1 | Typ 2a | Typ 2 | Typ 3a | Typ 3 | Typ 4 | Typ 5 | ||
All patients | 2114 | 47.7% | 2.3% | 3.0% | 1.5% | 1.4% | 42.3% | 1.8% |
Symptoms without a neurological disease | 494 | 59.1% | 3.2% | 4.3% | 2.0% | 1.2% | 29.4% | 0.8% |
Headache | 196 | 61.7% | 3.6% | 6.6% | 1.0% | 0.0% | 26.0% | 1.0% |
Vertigo | 43 | 69.8% | 0.0% | 0.0% | 0.0% | 4.6% | 25.6% | 0.0% |
Paresthesia | 138 | 65.2% | 2.9% | 3.6% | 2.2% | 0.0% | 25.4% | 0.7% |
Pain | 117 | 43.6% | 4.3% | 2.6% | 4.3% | 3.4% | 41.0% | 0.8% |
Neuropathy | 470 | 47.2% | 1.7% | 2.1% | 0.6% | 0.6% | 45.5% | 2.1% |
Peripheral neuropathy | 310 | 43.6% | 1.0% | 2.3% | 1.0% | 0.7% | 49.4% | 2.3% |
Cranial nerve impairment | 160 | 54.4% | 3.1% | 1.9% | 0.0% | 0.6% | 38.1% | 1.9% |
Facial palsy | 99 | 53.5% | 5.1% | 2.0% | 0.0% | 1.0% | 36.4% | 2.0% |
Trigeminal neuralgia | 8 | 62.5% | 0.0% | 0.0% | 0.0% | 0.0% | 37.5% | 0.0% |
Vestibulopathy | 12 | 66.7% | 0.0% | 0.0% | 0.0% | 0.0% | 33.3% | 0.0% |
Oculomotor palsy | 41 | 51.2% | 0.0% | 2.5% | 0.0% | 0.0% | 43.9% | 2.4% |
Neurovascular diseases | 255 | 38.0% | 3.1% | 2.0% | 1.6% | 1.6% | 51.0% | 2.7% |
Epileptic seizure | 264 | 45.1% | 2.3% | 3.0% | 1.5% | 1.9% | 45.5% | 0.8% |
Encephalopathy and Delirium | 41 | 39.0% | 2.5% | 2.4% | 2.4% | 0.0% | 53.7% | 0.0% |
Muscular diseases | 77 | 46.8% | 0.0% | 0.0% | 1.3% | 0.0% | 52.0% | 0.0% |
Neurodegenerativ diseases | 404 | 44.8% | 1.7% | 3.5% | 2.2% | 2.0% | 42.8% | 3.0% |
Movement disorder | 140 | 44.3% | 2.1% | 3.6% | 2.8% | 3.6% | 40.0% | 3.6% |
Motoneuron disease | 147 | 50.3% | 2.1% | 2.0% | 2.7% | 1.4% | 38.8% | 2.7% |
Dementia | 117 | 38.5% | 0.8% | 5.1% | 0.8% | 0.9% | 51.3% | 2.6% |
Cerebrospinal fluid flow diseases | 109 | 41.3% | 1.8% | 3.6% | 0.0% | 3.7% | 45.9% | 3.7% |
Idiopathic intracranial hypertension | 59 | 50.8% | 1.7% | 5.1% | 0.0% | 5.1% | 33.9% | 3.4% |
Normal pressure hydrocephalus | 46 | 30.4% | 2.2% | 2.2% | 0.0% | 2.2% | 60.8% | 2.2% |
Cerebrospinal fluid leakage syndrome | 4 | 25.0% | 0.0% | 0.0% | 0.0% | 0.0% | 50.0% | 25.0% |
Diagnosis | Patients (n) | Female | Age, Mean ± SD (Years) | Intrathecal Synthesis | 2–3 CSF Oligoclonal Bands | ≥4 CSF Oligoclonal Bands | ||
---|---|---|---|---|---|---|---|---|
IgM | IgG | IgA | ||||||
Idiopathic Parkinson disease | 41 | 36.6% | 66 (±13.1) | 0.0% | 0.0% | 0.0% | 7.3% | 2.4% |
Atypical Parkinson disease | 25 | 40.0% | 67 (±9.3) | 0.0% | 0.0% | 0.0% | 4.0% | 8.0% |
Spinocerebellar syndrome | 25 | 60.0% | 54 (±15.6) | 0.0% | 0.0% | 0.0% | 4.0% | 12.0% |
Choreatic movement disorder | 11 | 36.4% | 51 (±20.9) | 0.0% | 0.0% | 0.0% | 18.2% | 0.0% |
Amyotrophic lateral sclerosis | 107 | 37.4% | 64 (±10.5) | 0.9% | 1.9% | 0.0% | 6.5% | 4.7% |
Frontotemporal lobar degeneration | 11 | 27.3% | 63 (±4.4) | 0.0% | 0.0% | 0.0% | 0.0% | 9.1% |
Vascular dementia | 23 | 39.1% | 74 (±8.8) | 0.0% | 0.0% | 0.0% | 4.3% | 4.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pannewitz-Makaj, K.; Wurster, U.; Jendretzky, K.F.; Gingele, S.; Sühs, K.-W.; Stangel, M.; Skripuletz, T.; Schwenkenbecher, P. Evidence of Oligoclonal Bands Does Not Exclude Non-Inflammatory Neurological Diseases. Diagnostics 2021, 11, 37. https://doi.org/10.3390/diagnostics11010037
Pannewitz-Makaj K, Wurster U, Jendretzky KF, Gingele S, Sühs K-W, Stangel M, Skripuletz T, Schwenkenbecher P. Evidence of Oligoclonal Bands Does Not Exclude Non-Inflammatory Neurological Diseases. Diagnostics. 2021; 11(1):37. https://doi.org/10.3390/diagnostics11010037
Chicago/Turabian StylePannewitz-Makaj, Katharina, Ulrich Wurster, Konstantin Fritz Jendretzky, Stefan Gingele, Kurt-Wolfram Sühs, Martin Stangel, Thomas Skripuletz, and Philipp Schwenkenbecher. 2021. "Evidence of Oligoclonal Bands Does Not Exclude Non-Inflammatory Neurological Diseases" Diagnostics 11, no. 1: 37. https://doi.org/10.3390/diagnostics11010037
APA StylePannewitz-Makaj, K., Wurster, U., Jendretzky, K. F., Gingele, S., Sühs, K.-W., Stangel, M., Skripuletz, T., & Schwenkenbecher, P. (2021). Evidence of Oligoclonal Bands Does Not Exclude Non-Inflammatory Neurological Diseases. Diagnostics, 11(1), 37. https://doi.org/10.3390/diagnostics11010037