Recent Updates and Advances in Winiwarter-Buerger Disease (Thromboangiitis Obliterans): Biomolecular Mechanisms, Diagnostics and Clinical Consequences
Abstract
:1. Introduction
2. Complete Blood Count (CBC)
3. Biochemical Markers
3.1. Lipid Profile
3.2. Blood Sugar
3.3. Oxidative Stress
3.4. Creatinine
3.5. Catecholamine Concentration
3.6. Heavy Metals
3.7. Bilirubin
3.8. Liver Function Test
4. Inflammatory Biomarkers
4.1. C-Reactive Protein and Erythrocyte Sedimentation Rate
4.2. Cytokines
4.3. Complement Component
4.4. Other Inflammatory Mediators
5. Autoantibodies
6. Thrombogenicity
Hypercoagulation
7. Infection
8. Genetic Background
9. Discussion
9.1. Similar Biomarkers
9.2. Controversial Biomarkers
9.3. Differential Biomarkers
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Fazeli, B.; Rezaee, S.A. A review on Thromboangiitis obliterans pathophysiology: Thrombosis and angiitis, which is to blame? Vascular 2011, 19, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Mills, J.L., Sr. Buerger’s disease in the 21st century: Diagnosis, clinical features, and therapy. In Seminars in Vascular Surgery; WB Saunders: Philadelphia, PA, USA, 2003; Volume 16, pp. 179–189. [Google Scholar]
- Joviliano, E.E.; Dellalibera-Joviliano, R.; Dalio, M.; Evora, P.R.; Piccinato, C.E. Etiopathogenesis, clinical diagnosis and treatment of Thromboangiitis obliterans—Current practices. Int. J. Angiol. 2009, 18, 119–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shionoya, S. Diagnostic criteria of Buerger’s disease. Int. J. Cardiol. 1998, 66 (Suppl. S1), S243–S245. [Google Scholar] [CrossRef]
- Fazeli, B. Buerger’s disease as an indicator of socioeconomic development in different societies, a cross-sectional descriptive study in the North-East of Iran. Arch. Med. Sci. 2010, 6, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Fazeli, B.; Ravari, H. Hyperhomocysteinemia as a consequence of life style among patients suffering from Thromboangiitis obliterans. Int. Angiol. 2013, 32, 442–443. [Google Scholar]
- Zhou, J.; Austin, R.C. Contributions of hyperhomocysteinemia to atherosclerosis: Causal relationship and potential mechanisms. Biofactors 2009, 35, 120–129. [Google Scholar] [CrossRef]
- Jorge, V.C.; Araújo, A.C.; Noronha, C.; Panarra, A.; Riso, N.; Vaz Riscado, M. Buerger’s disease (Thromboangiitis obliterans): A diagnostic challenge. BMJ Case Rep. 2011, 2011, bcr0820114621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fazeli, B.; Ravari, H. A disease-specific activity score for Thromboangiitis obliterans. Vascular 2014, 22, 336–340. [Google Scholar] [CrossRef]
- Akbarin, M.M.; Ravari, H.; Rajabnejad, A.; Valizadeh, N.; Fazeli, B. Investigation of the Etiology of Anemia in Thromboangiitis Obliterans. Int. J. Angiol. 2016, 25, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Suresh, E. Diagnostic approach to patients with suspected vasculitis. Postgrad. Med. J. 2006, 82, 483–488. [Google Scholar] [CrossRef]
- Kirkland, G.S.; Savige, J.; Wilson, D.; Heale, W.; Sinclair, R.A.; Hope, R.N. Classical polyarteritis nodosa and microscopic polyarteritis with medium vessel involvement—A comparison of the clinical and laboratory features. Clin. Nephrol. 1997, 47, 176–180. [Google Scholar]
- Pietraszek, M.H.; Choudhury, N.A.; Koyano, K.; Sakaguchi, S.; Kamiya, T.; Urano, T.; Takada, Y.; Takada, A. Enhanced platelet response to serotonin in Buerger’s disease. Thromb Res. 1990, 60, 241–246. [Google Scholar] [CrossRef]
- Keramat, S.; Sadeghian, M.H.; Keramati, M.R.; Fazeli, B. Assessment of T helper 17-associated cytokines in thromboangiitis obliterans. J. Inflamm. Res. 2019, 12, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Murat, S.N.; Duran, M.; Kalay, N.; Gunebakmaz, O.; Akpek, M.; Doger, C.; Elcik, D.; Ocak, A.; Vatankulu, M.A.; Turfan, M.; et al. Relation between mean platelet volume and severity of atherosclerosis in patients with acute coronary syndromes. Angiology 2013, 64, 131–136. [Google Scholar] [CrossRef]
- Ataş, H.; Canpolat, F.; Eskioglu, F. Evaluation of Mean Platelet Volume in Patients with Behcet’s Disease as an Indicator of Vascular Thrombosis. Arch. Iran Med. 2018, 21, 234–239. [Google Scholar] [PubMed]
- Khan, A.; Haider, I.; Ayub, M.; Khan, S. Mean Platelet Volume (MPV) as an indicator of disease activity and severity in lupus. F1000Res. 2017, 6, 126. [Google Scholar] [CrossRef]
- Wessler, S. Thromboangiitis obliterans: Fact or fancy. Circulation 1961, 23, 165–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prusik, B.; Reinis, Z. Does Buerger’s disease exist? Angiologica 1964, 1, 94–102. [Google Scholar] [CrossRef]
- Jain, R.B.; Ducatman, A. Associations between smoking and lipid/lipoprotein concentrations among US adults aged ≥20 years. J. Circ. Biomark. 2018, 7, 1849454418779310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hus, I.; Sokolowska, B.; Walter-Croneck, A.; Chrapko, M.; Nowaczynska, A.; Dmoszynska, A. Assessment of plasma prothrombotic factors in patients with Buerger’s disease. Blood Coagul. Fibrinolysis 2013, 24, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Ramin, M.; Salimi, J.; Meysamie, A. An Iranian scoring system for diagnosing Buerger’s disease. Acta Med. Iran 2014, 52, 60–65. [Google Scholar]
- Hewing, B.; Stangl, V.; Stangl, K.; Enke-Melzer, K.; Baumann, G.; Ludwig, A. Circulating angiogenic factors in patients with Thromboangiitis obliterans. PLoS ONE 2012, 7, e34717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collens, W.S.; Wilensky, N.D. Thromboangiitis obliterans in a diabetic. Am. Heart J. 1939, 17, 624–627. [Google Scholar] [CrossRef]
- Helm, S.; Horton, B. Thrombo-angiitis obliterans associated with diabetes mellitus. Ann. Intern. Med. 1939, 12, 1493–1498. [Google Scholar]
- Papa, M.Z.; Adar, R. A Critical Look at Thromboangiitis Obliterans (Buerger’s disease). Perspect. Vasc. Surg. Endovasc. Ther. 1992, 5, 1–18. [Google Scholar] [CrossRef]
- Igari, K.; Kudo, T.; Toyofuku, T.; Inoue, Y. Endothelial dysfunction in patients with Buerger disease. Vasc. Health Risk Manag. 2017, 13, 317–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujii, Y.; Ohmura, Y.; Takeuchi, R.; Morimoto, S.; Uchida, H.; Hayashi, K.; Sano, S. Buerger’s disease in a middle-aged woman with diabetes mellitus. A case report. Angiology 1996, 47, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Zannini, G.; Cotrufo, M. Epidemiological, angiographic and clinical aspects of Buerger’s disease. J. Cardiovasc. Surg. 1973, 14, 17–20. [Google Scholar]
- Sena, C.M.; Leandro, A.; Azul, L.; Seiça, R.; Perry, G. Vascular Oxidative Stress: Impact and Therapeutic Approaches. Front. Physiol. 2018, 9, 1668. [Google Scholar] [CrossRef] [Green Version]
- Marchio, P.; Guerra-Ojeda, S.; Vila, J.M.; Aldasoro, M.; Victor, V.M.; Mauricio, M.D. Targeting Early Atherosclerosis: A Focus on Oxidative Stress and Inflammation. Oxid. Med. Cell Longev. 2019, 2019, 8563845. [Google Scholar] [CrossRef]
- Senoner, T.; Dichtl, W. Oxidative Stress in Cardiovascular Diseases: Still a Therapeutic Target? Nutrients 2019, 11, 2090. [Google Scholar] [CrossRef] [Green Version]
- Ito, F.; Sono, Y.; Ito, T. Measurement and Clinical Significance of Lipid Peroxidation as a Biomarker of Oxidative Stress: Oxidative Stress in Diabetes, Atherosclerosis, and Chronic Inflammation. Antioxidants 2019, 8, 72. [Google Scholar] [CrossRef] [Green Version]
- Alamdari, D.H.; Ravarit, H.; Tavallaie, S.; Fazeli, B. Oxidative and antioxidative pathways might contribute to Thromboangiitis obliterans pathophysiology. Vascular 2014, 22, 46–50. [Google Scholar] [CrossRef]
- Sharebiani, H.; Fazeli, B.; Maniscalco, R.; Ligi, D.; Mannello, F. The Imbalance among Oxidative Biomarkers and Antioxidant Defense Systems in Thromboangiitis Obliterans (Winiwarter-Buerger Disease). J. Clin. Med. 2020, 9, 1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masoudian, M.; Fazeli, B.; Sharebiani, H.; Rajabnejad, A.; Ravari, H.; Akbarin, M.M.; Dadgarmoghaddam, M. Association of the five gene related endothelial cell dysfunction polymorphisms with Buerger’s disease development. Int. Angiol. 2016, 35, 205–211. [Google Scholar] [PubMed]
- Muñoz-Sánchez, J.; Chánez-Cárdenas, M.E. A review on hemeoxygenase-2: Focus on cellular protection and oxygen response. Oxid Med Cell Longev. 2014, 2014, 604981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cziráki, A.; Lenkey, Z.; Sulyok, E.; Szokodi, I.; Koller, A. L-Arginine-Nitric Oxide-Asymmetric Dimethylarginine Pathway and the Coronary Circulation: Translation of Basic Science Results to Clinical Practice. Front. Pharmacol. 2020, 11, 569914. [Google Scholar] [CrossRef]
- Yeo, J.; Lee, Y.M.; Lee, J.; Park, D.; Kim, K.; Kim, J.; Park, J.; Kim, W.J. Nitric Oxide-Scavenging Nanogel for Treating Rheumatoid Arthritis. Nano Lett. 2019, 19, 6716–6724. [Google Scholar] [CrossRef]
- Pan, L.; Yang, S.; Wang, J.; Xu, M.; Wang, S.; Yi, H. Inducible nitric oxide synthase and systemic lupus erythematosus: A systematic review and meta-analysis. BMC Immunol. 2020, 21, 10. [Google Scholar] [CrossRef] [Green Version]
- İşcan, Y.; Yiğit, U.; Tuğcu, B.; Erdoğan, M.; Erdoğan, D.A.; Öner, V.; Taş, M.; Özyazgan, Y. Tear nitric oxide levels in Behçet’s disease. Medicina 2012, 48, 559–562. [Google Scholar] [CrossRef] [Green Version]
- da Silva, R.F.; Trapé, Á.A.; Reia, T.A.; Lacchini, R.; Oliveira-Paula, G.H.; Pinheiro, L.C.; Tanus-Santos, J.E.; Jacomini, A.M.; Bueno Júnior, C.R.; Zago, A.S. Association of endothelial nitric oxide synthase (eNOS) gene polymorphisms and physical fitness levels with plasma nitrite concentrations and arterial blood pressure values in older adults. PLoS ONE 2018, 13, e0206254. [Google Scholar] [CrossRef]
- Lee, B.J.; Lin, Y.C.; Huang, Y.C.; Ko, Y.W.; Hsia, S.; Lin, P.T. The relationship between coenzyme Q10, oxidative stress, and antioxidant enzymes activities and coronary artery disease. Sci. World J. 2012, 2012, 792756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, L.L.; Selman, C.; Blount, J.D.; Pilkington, J.G.; Watt, K.A.; Pemberton, J.M.; Reid, J.M.; Nussey, D.H. Plasma markers of oxidative stress are uncorrelated in a wild mammal. Ecol. Evol. 2015, 5, 5096–5108. [Google Scholar] [CrossRef] [PubMed]
- Peluso, I.; Palmery, M.; Drummen, G. Biomarkers of Oxidative Stress in Experimental Models and Human Studies with Nutraceuticals: Measurement, Interpretation, and Significance 2017. Oxid. Med. Cell Longev. 2017, 2017, 3457917. [Google Scholar] [CrossRef] [PubMed]
- Arslan, C.; Altan, H.; Besirli, K.; Aydemir, B.; Kiziler, A.R.; Denli, S. The role of oxidative stress and antioxidant defenses in Buerger disease and atherosclerotic peripheral arterial occlusive disease. Ann. Vasc. Surg. 2010, 24, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Shruthi, S.; Thabah, M.M.; Zachariah, B.; Negi, V.S. Association of Oxidative Stress with Disease Activity and Damage in Systemic Lupus Erythematosus: A Cross Sectional Study from a Tertiary Care Centre in Southern India. Indian J. Clin. Biochem. 2021, 36, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Sam, N.B.; Li, B.Z.; Leng, R.X.; Pan, H.F.; Ye, D.Q. Circulating antioxidant levels in systemic lupus erythematosus patients: A systematic review and meta-analysis. Biomark. Med. 2019, 13, 1137–1152. [Google Scholar] [CrossRef]
- Song, Y.R.; Kim, J.K.; Lee, H.S.; Kim, S.G.; Choi, E.K. Serum levels of protein carbonyl, a marker of oxidative stress, are associated with overhydration, sarcopenia and mortality in hemodialysis patients. BMC Nephrol. 2020, 21, 1–11. [Google Scholar] [CrossRef]
- Shah, D.; Mahajan, N.; Sah, S.; Nath, S.K.; Paudyal, B. Oxidative stress and its biomarkers in systemic lupus erythematosus. J Biomed Sci. 2014, 21, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuzak, E.; Horecka, A.; Kiełczykowska, M.; Dudek, A.; Musik, I.; Kurzepa, J.; Kurzepa, J. Glutathione level and glutathione reductase activity in serum of coronary heart disease patients. J. Preclin. Clin. Res. 2017, 11, 103–105. [Google Scholar] [CrossRef]
- Shah, D.; Sah, S.; Nath, S.K. Interaction between glutathione and apoptosis in systemic lupus erythematosus. Autoimmun. Rev. 2013, 12, 741–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senders, M.L.; Mulder, W.J.M. Targeting myeloperoxidase in inflammatory atherosclerosis. Eur Heart J 2018, 39, 3311–3313. [Google Scholar] [CrossRef] [PubMed]
- Emmi, G.; Becatti, M.; Bettiol, A.; Hatemi, G.; Prisco, D.; Fiorillo, C. Behçet’s Syndrome as a Model of Thrombo-Inflammation: The Role of Neutrophils. Front. Immunol. 2019, 10, 1085. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Rivero, J.M.; Pastor-Maldonado, C.J.; de la Mata, M.; Villanueva-Paz, M.; Povea-Cabello, S.; Álvarez-Córdoba, M.; Villalón-García, I.; Suárez-Carrillo, A.; Talaverón-Rey, M.; Munuera, M.; et al. Atherosclerosis and Coenzyme Q (10). Int. J. Mol. Sci. 2019, 20, 5195. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.J.; Cheng, T.T.; Chen, C.J.; Chiu, W.C.; Chang, W.N.; Tsai, N.W.; Kung, C.T.; Lin, W.C.; Huang, C.C.; Chang, Y.T.; et al. The association among antioxidant enzymes, autoantibodies, and disease severity score in systemic lupus erythematosus: Comparison of neuropsychiatric and nonneuropsychiatric groups. BioMed Res. Int. 2014, 2014, 137231. [Google Scholar] [CrossRef]
- Cerne, D.; Kaplan-Pavlovcic, S.; Kranjec, I.; Jurgens, G. Mildly elevated serum creatinine concentration correlates with the extent of coronary atherosclerosis. Ren. Fail. 2000, 22, 799–808. [Google Scholar] [CrossRef] [Green Version]
- Yun, H.J.; Kim, D.I.; Lee, K.H.; Lim, S.J.; Hwang, W.M.; Yun, S.R.; Yoon, S.H. End stage renal disease caused by Thromboangiitis obliterans: A case report. J. Med. Case Rep. 2015, 9, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Shen, Q.; Chen, X.M.; Du, X.G. Clinical characteristics and outcomes in microscopic polyangiitis patients with renal involvement: A study of 124 Chinese patients. BMC Nephrol. 2019, 20, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Roncon-Albuquerque, R.; Serrão, P.; Vale-Pereira, R.; Costa-Lima, J.; Roncon-Albuquerque, R., Jr. Plasma catecholamines in Buerger’s disease: Effects of cigarette smoking and surgical sympathectomy. Eur. J. Vasc. Endovasc. Surg. 2002, 24, 338–343. [Google Scholar] [CrossRef] [Green Version]
- Bauch, H.J.; Grünwald, J.; Vischer, P.; Gerlach, U.; Hauss, W.H. A possible role of catecholamines in atherogenesis and subsequent complications of atherosclerosis. Exp. Pathol. 1987, 31, 193–204. [Google Scholar] [CrossRef]
- Sarathi, V.; Lila, A.R.; Bandgar, T.R.; Shah, N.S. Aortoarteritis: Could it be a form of catecholamine-induced vasculitis? Indian J. Endocrinol. Metab. 2013, 17, 163–166. [Google Scholar] [CrossRef]
- Toutai, C.; Berrajaa, M.; Aissaoui, H.; Elouafi, N.; Jabi, R.; Bouziane, M.; Latrech, H.; Housni, B.; Ismaili, N. Rare association of aortoarteritis and pheochromocytoma: A case report. Int. J. Surg. Case Rep. 2020, 77, 91–95. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef] [Green Version]
- Patwa, J.; Flora, S.J.S. Heavy Metal-Induced Cerebral Small Vessel Disease: Insights into Molecular Mechanisms and Possible Reversal Strategies. Int. J. Mol. Sci. 2020, 21, 3862. [Google Scholar] [CrossRef] [PubMed]
- Mousazadeh, B.; Sharebiani, H.; Taheri, H.; Valizedeh, N.; Fazeli, B. Unexpected inflammation in the sympathetic ganglia in Thromboangiitis obliterans: More likely sterile or infectious induced inflammation? Clin. Mol. Allergy 2019, 17, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harari, F.; Barregard, L.; Östling, G.; Sallsten, G.; Hedblad, B.; Forsgard, N.; Borné, Y.; Fagerberg, B.; Engström, G. Blood Lead Levels and Risk of Atherosclerosis in the Carotid Artery: Results from a Swedish Cohort. Environ. Health Perspect. 2019, 127, 127002. [Google Scholar] [CrossRef]
- Tinkov, A.A.; Filippini, T.; Ajsuvakova, O.P.; Skalnaya, M.G.; Aaseth, J.; Bjørklund, G.; Gatiatulina, E.R.; Popova, E.V.; Nemereshina, O.N.; Huang, P.T.; et al. cadmium and atherosclerosis: A review of toxicological mechanisms and a meta-analysis of epidemiologic studies. Environ. Res. 2018, 162, 240–260. [Google Scholar] [CrossRef] [PubMed]
- Alba, M.A.; Jennette, J.C.; Falk, R.J. Pathogenesis of ANCA-Associated Pulmonary Vasculitis. Semin. Respir. Crit. Care Med. 2018, 39, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Albert, D.; Clarkin, C.; Komoroski, J.; Brensinger, C.M.; Berlin, J.A. Wegener’s granulomatosis: Possible role of environmental agents in its pathogenesis. Arthritis Rheum. 2004, 51, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Metryka, E.; Chibowska, K.; Gutowska, I.; Falkowska, A.; Kupnicka, P.; Barczak, K.; Chlubek, D.; Baranowska-Bosiacka, I. Lead (Pb) Exposure Enhances Expression of Factors Associated with Inflammation. Int. J. Mol. Sci. 2018, 19, 1813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulmer, A.C.; Bakrania, B.; Du Toit, E.F.; Boon, A.C.; Clark, P.J.; Powell, L.W.; Wagner, K.H.; Headrick, J.P. Bilirubin acts as a multipotent guardian of cardiovascular integrity: More than just a radical idea. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H429–H447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwertner, H.A.; Jackson, W.G.; Tolan, G. Association of low serum concentration of bilirubin with increased risk of coronary artery disease. Clin. Chem. 1994, 40, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Suh, S.; Cho, Y.R.; Park, M.K.; Kim, D.K.; Cho, N.H.; Lee, M.K. Relationship between serum bilirubin levels and cardiovascular disease. PLoS ONE 2018, 13, e0193041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.Q.; Dai, X.N.; Yu, Y.; Wang, Q.; Liang, J.Y.; Ke, Y.N.; Yi, C.H.; Lin, J. Analysis of clinical features and prognosis in patients with primary Sjögren’s syndrome and autoimmune liver disease. J. Peking Univ. Health Sci. 2020, 52, 886–891. [Google Scholar]
- Jäger, U.; Barcellini, W.; Broome, C.M.; Gertz, M.A.; Hill, A.; Hill, Q.A.; Jilma, B.; Kuter, D.J.; Michel, M.; Montillo, M.; et al. Diagnosis and treatment of autoimmune hemolytic anemia in adults: Recommendations from the First International Consensus Meeting. Blood Rev. 2020, 41, 100648. [Google Scholar] [CrossRef] [PubMed]
- Tovoli, F.; Vannini, A.; Fusconi, M.; Frisoni, M.; Zauli, D. Autoimmune liver disorders and small-vessel vasculitis: Four case reports and review of the literature. Ann Hepatol. 2013, 13, 136–141. [Google Scholar] [CrossRef]
- Koca, T.T. Clinical Significance of Serum Bilirubin in Behçet’s Disease. J. Transl. Int. Med. 2018, 6, 185–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goh, G.B.; Pagadala, M.R.; Dasarathy, J.; Unalp-Arida, A.; Pai, R.K.; Yerian, L.; Khiyami, A.; Sourianarayanane, A.; Sargent, R.; Hawkins, C.; et al. Age impacts ability of aspartate-alanine aminotransferase ratio to predict advanced fibrosis in nonalcoholic Fatty liver disease. Dig. Dis. Sci. 2015, 60, 1825–1831. [Google Scholar] [CrossRef]
- Lonardo, A.; Ballestri, S.; Guaraldi, G.; Nascimbeni, F.; Romagnoli, D.; Zona, S.; Targher, G. Fatty liver is associated with an increased risk of diabetes and cardiovascular disease—Evidence from three different disease models: NAFLD, HCV and HIV. World J. Gastroenterol. 2016, 22, 9674–9693. [Google Scholar] [CrossRef]
- Olin, J.W. Thromboangiitis obliterans (Buerger’s disease). New Engl. J. Med. 2000, 343, 864–869. [Google Scholar] [CrossRef]
- Vijayakumar, A.; Tiwari, R.; Kumar Prabhuswamy, V. Thromboangiitis obliterans (Buerger’s disease)-Current Practices. Int. J. Inflam. 2013, 2013, 156905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dellalibera-Joviliano, R.; Joviliano, E.E.; Silva, J.S.; Evora, P.R. Activation of cytokines corroborate with development of inflammation and autoimmunity in Thromboangiitis obliterans patients. Clin. Exp. Immunol. 2012, 170, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Sun, X.; Wu, W.; Shi, D.; Jiang, T. Effect of revascularization on IL-6 and TNF-α in patients with Thromboangiitis obliterans. Exp. Ther. Med. 2018, 15, 3947–3951. [Google Scholar] [CrossRef] [PubMed]
- Joras, M.; Poredos, P.; Fras, Z. Endothelial dysfunction in Buerger’s disease and its relation to markers of inflammation. Eur. J. Clin. Invest. 2006, 36, 376–382. [Google Scholar] [CrossRef]
- Slavov, E.S.; Stanilova, S.A.; Petkov, D.P.; Dobreva, Z.G. Cytokine production in Thromboangiitis obliterans patients: New evidence for an immune-mediated inflammatory disorder. Clin. Exp. Rheumatol. 2005, 23, 219–226. [Google Scholar]
- Sharebiani, H.; Mohareri, M.; Mirhosseini, A.; Fazeli, B. The IL-33/sST2 Axis in Thromboangiitis obliterans. J. Inflamm. Res. 2020, 13, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Shapouri-Moghaddam, A.; Mohammadi, M.; Rahimi, H.R.; Esmaeili, H.; Mahmoudi, M.; Saeed Modaghegh, M.H.; Tavakol Afshari, J. The Association of HLA-A, B and DRB1 with Buerger’s disease. Rep. Biochem. Mol. Biol. 2019, 8, 153–160. [Google Scholar] [PubMed]
- Fehérvári, M.; Krepuska, M.; Széplaki, G.; Apor, A.; Sótonyi, P.; Prohászka, Z.; Acsády, G.; Szeberin, Z. The level of complement C3 is associated with the severity of atherosclerosis but not with arterial calcification in peripheral artery disease. Int. Angiol. 2014, 33, 35–41. [Google Scholar]
- Omoyinmi, E.; Mohamoud, I.; Gilmour, K.; Brogan, P.A.; Eleftheriou, D. Cutaneous Vasculitis and Digital Ischaemia Caused by Heterozygous Gain-of-Function Mutation in C3. Front. Immunol. 2018, 9, 2524. [Google Scholar] [CrossRef] [Green Version]
- Augusto, J.F.; Langs, V.; Demiselle, J.; Lavigne, C.; Brilland, B.; Duveau, A.; Poli, C.; Chevailler, A.; Croue, A.; Tollis, F.; et al. Low Serum Complement C3 Levels at Diagnosis of Renal ANCA-Associated Vasculitis Is Associated with Poor Prognosis. PLoS ONE 2016, 11, e0158871. [Google Scholar]
- Mohareri, M.; Mirhosseini, A.; Mehraban, S.; Fazeli, B. Thromboangiitis obliterans episode: Autoimmune flare-up or reinfection? Vasc. Health Risk Manag. 2018, 14, 247–251. [Google Scholar] [CrossRef] [Green Version]
- De Caridi, G.; Bitto, A.; Massara, M.; Pallio, G.; Pizzino, G.; Serra, R.; Altavilla, D.; Squadrito, F.; Spinelli, F. Increased Serum HMGB-1, ICAM-1 and Metalloproteinase-9 Levels in Buerger’s Patients. Curr. Vasc. Pharmacol. 2016, 14, 382–387. [Google Scholar] [CrossRef]
- Fazeli, B.; Rafatpanah, H.; Ravari, H.; Farid Hosseini, R.; Tavakol Afshari, J.; Hamidi Alamdari, D.; Valizadeh, N.; Moheghi, N.; Rezaee, S.A. Sera of patients with Thromboangiitis obliterans activated cultured human umbilical vein endothelial cells (HUVECs) and changed their adhesive properties. Int. J. Rheum. Dis. 2014, 17, 106–112. [Google Scholar] [CrossRef]
- Wei, Z.; Jiang, W.; Wang, H.; Li, H.; Tang, B.; Liu, B.; Jiang, H.; Sun, X. The IL-6/STAT3 pathway regulates adhesion molecules and cytoskeleton of endothelial cells in Thromboangiitis obliterans. Cell. Signal. 2018, 44, 118–126. [Google Scholar] [CrossRef]
- Olejarz, W.; Łacheta, D.; Kubiak-Tomaszewska, G. Matrix Metalloproteinases as Biomarkers of Atherosclerotic Plaque Instability. Int. J. Mol. Sci. 2020, 21, 3946. [Google Scholar] [CrossRef]
- Pay, S.; Abbasov, T.; Erdem, H.; Musabak, U.; Simsek, I.; Pekel, A.; Akdogan, A.; Sengul, A.; Dinc, A. Serum MMP-2 and MMP-9 in patients with Behçet’s disease: Do their higher levels correlate to vasculo-Behçet’s disease associated with aneurysm formation? Clin. Exp. Rheumatol. 2007, 25, S70–S75. [Google Scholar]
- Monach, P.A.; Warner, R.L.; Tomasson, G.; Specks, U.; Stone, J.H.; Ding, L.; Fervenza, F.C.; Fessler, B.J.; Hoffman, G.S.; Iklé, D.; et al. Serum proteins reflecting inflammation, injury and repair as biomarkers of disease activity in ANCA-associated vasculitis. Ann. Rheum. Dis. 2013, 72, 1342–1350. [Google Scholar] [CrossRef]
- Piazza, G.; Creager, M.A. Thromboangiitis obliterans. Circulation 2010, 121, 1858–1861. [Google Scholar] [CrossRef] [Green Version]
- Shapouri-Moghaddam, A.; Saeed Modaghegh, M.H.; Rahimi, H.R.; Ehteshamfar, S.M.; Tavakol Afshari, J. Molecular mechanisms regulating immune responses in Thromboangiitis obliterans: A comprehensive review. Iran J. Basic Med. Sci 2019, 22, 215–224. [Google Scholar] [PubMed]
- Ketha, S.S.; Cooper, L.T. The role of autoimmunity in Thromboangiitis obliterans (Buerger’s disease). Ann. N. Y. Acad. Sci. 2013, 1285, 15–25. [Google Scholar] [CrossRef]
- Berlit, P.; Kessler, C.; Reuther, R.; Krause, K.H. New aspects of Thromboangiitis obliterans (von Winiwarter-Buerger’s disease). Eur. Neurol. 1984, 23, 394–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halacheva, K.S.; Manolova, I.M.; Petkov, D.P.; Andreev, A.P. Study of anti-neutrophil cytoplasmic antibodies in patients with Thromboangiitis obliterans (Buerger’s disease). Scand. J. Immunol. 1998, 48, 544–550. [Google Scholar]
- Guo, Y.; Dai, Y.; Lai, J.; Fan, Y. Study about correlation of anti-neutrophil cytoplasmic antibodies and anticardiolipin antibodies with Thromboangiitis obliterans. Vascular 2013, 21, 363–368. [Google Scholar] [CrossRef]
- Iwai, T.; Umeda, M.; Inoue, Y.; Dental University Buerger Disease Research Group. Pathogenic Mechanism of the Artery and the Vein in Buerger Disease: Our Hypothesis. Angiology 2014, 2, 1–4. [Google Scholar]
- Chavoshan, A.; Sharebiani, H.; Taheri, H.; Fazeli, B. Antiphospholipid antibodies in Buerger’s disease. Thromb. Res. 2019, 181, 64–66. [Google Scholar] [CrossRef]
- Zhao, X.; Wen, Q.; Qiu, Y.; Huang, F. Clinical and pathological characteristics of ANA/anti-dsDNA positive patients with antineutrophil cytoplasmic autoantibody-associated vasculitis. Rheumatol. Int. 2021, 41, 455–462. [Google Scholar] [CrossRef]
- Dinckal, M.H.; Ozkaynak, B.; Mert, B.; Sahin, I.; Sigirci, S.; Gulsen, K.; Ayca, B.; Okuyan, E. The relationship between antibeta 2 glycoprotein antibodies and SYNTAX score in patients undergoing coronary artery bypass graft surgery. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 2556–2561. [Google Scholar] [PubMed]
- Legendre, P.; Régent, A.; Thiebault, M.; Mouthon, L. Anti-endothelial cell antibodies in vasculitis: A systematic review. Autoimmun. Rev. 2017, 16, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Loeffen, R.; Spronk, H.M.; ten Cate, H. The impact of blood coagulability on atherosclerosis and cardiovascular disease. J. Thromb. Haemost. 2012, 10, 1207–1216. [Google Scholar] [CrossRef]
- Undas, A.; Nowakowski, T.; Cieśla-Dul, M.; Sadowski, J. Abnormal plasma fibrin clot characteristics are associated with worse clinical outcome in patients with peripheral arterial disease and Thromboangiitis obliterans. Atherosclerosis 2011, 215, 481–486. [Google Scholar] [CrossRef]
- Rivera-Chavarría, I.J.; Brenes-Gutiérrez, J.D. Thromboangiitis obliterans (Buerger’s disease). Ann. Med. Surg. 2016, 7, 79–82. [Google Scholar] [CrossRef]
- Raymackers, J.M.; Bosschaert, P. Cerebral venous thrombosis and Buerger’s disease. Acta Neurol. Belg. 2014, 114, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Tamai, H.; Kobayashi, M.; Yamamoto, K.; Komori, K. Immunohistochemical properties in the patients with Buerger’s disease–possible role of plasminogen activator inhibitor-1 for preservation of vessel wall architecture. Cardiovasc. Pathol. 2011, 20, 266–271. [Google Scholar] [CrossRef]
- Emmanuel, A.; Selvaraj, D.; Sen, I.; Agarwal, S.; Stephen, E.; Kota, A.; Nair, S.C.; Antoniswamy, B. D-dimer levels in patients with Thromboangiitis obliterans. Natl. Med. J. India 2019, 32, 134–136. [Google Scholar] [CrossRef] [PubMed]
- Mensa, M.; Dobbs, T.; Jessop, Z.M.; Whitaker, I.S. Homozygous Factor V Leiden Thrombophilia in a Patient with Histologically Confirmed Thromboangiitis obliterans. Clin. Med. Insights Case Rep. 2019, 12, 1179547619828719. [Google Scholar] [CrossRef]
- Avcu, F.; Akar, E.; Demirkiliç, U.; Yilmaz, E.; Akar, N.; Yalçin, A. The role of prothrombotic mutations in patients with Buerger’s disease. Thromb. Res. 2000, 100, 143–147. [Google Scholar] [CrossRef]
- Beigi, A.A.; Hoghoughi, M.A.; Eshaghian, A.; Zade, A.H.; Masoudpour, H. The role of folic acid on the hyperhomocysteinemia in the Buerger’s disease (Thromboangiitis obliterans). J. Res. Med. Sci. 2014, 19, 1034–1037. [Google Scholar]
- Barroso, M.; Handy, D.E.; Castro, R. The Link Between Hyperhomocysteinemia and Hypomethylation: Implications for Cardiovascular Disease. J. Inborn Errors Metab. Screen. 2017, 5, 2326409817698994. [Google Scholar] [CrossRef] [Green Version]
- Stammler, F.; Diehm, C.; Hsu, E.; Stockinger, K.; Amendt, K. The prevalence of hyperhomocysteinemia in Thromboangiitis obliterans. Does homocysteine play a role pathogenetically? Dtsch. Med. Wochenschr. 1996, 121, 1417–1423. [Google Scholar] [CrossRef]
- Birch, C.A. Buerger’s disease. Leo Buerger (1879–1943). Practitioner 1973, 211, 823–824. [Google Scholar]
- Gantcheva, M. The Significance of Anticardiolipin Antibodies in Patients with Vasculitis. Acta Morphol. et Anthropol. 2018, 25, 38–43. [Google Scholar]
- Batu, E.D. Neutrophil-mediated Thrombosis and NETosis in Behçet’s Disease: A Hypothesis. J. Korean Med. Sci. 2020, 35, e213. [Google Scholar] [CrossRef] [PubMed]
- Borowiec, A.; Dąbrowski, R.; Kowalik, I.; Rusinowicz, T.; Hadzik-Błaszczyk, M.; Krupa, R.; Życińska, K. Elevated levels of d-dimer are associated with inflammation and disease activity rather than risk of venous thromboembolism in patients with granulomatosis with polyangiitis in long term observation. Adv. Med. Sci. 2020, 65, 97–101. [Google Scholar] [CrossRef]
- Piazzolla, G.; Candigliota, M.; Fanelli, M.; Castrovilli, A.; Berardi, E.; Antonica, G.; Battaglia, S.; Solfrizzi, V.; Sabbà, C.; Tortorella, C. Hyperhomocysteinemia is an independent risk factor of atherosclerosis in patients with metabolic syndrome. Diabetol. Metab. Syndr. 2019, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hamzaoui, A.; Harzallah, O.; Klii, R.; Mahjoub, S. Hyperhomocysteinaemia in Behçet’s Disease. Biochem. Res. Int. 2010, 2010, 361387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buerger, L. Is thromboangiitis an infectious disease? Surg. Gynecol. Obstet. 1914, 19, 582–588. [Google Scholar]
- Iwai, T.; Inoue, Y.; Umeda, M.; Huang, Y.; Kurihara, N.; Koike, M.; Ishikawa, I. Oral bacteria in the occluded arteries of patients with Buerger disease. J. Vasc. Surg. 2005, 42, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Fazeli, B.; Mirhosseini, A.; Hashemi, Z.; Taheri, H. Detection of Rickettsia Endosymbiont Bemisia Tabaci in the Amputated Limbs of Three Buerger’s disease Patients. Int. Med. Case Rep. J. 2020, 13, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Xia, Y.; Hu, B. Infection and atherosclerosis: TLR-dependent pathways. Cell. Mol. Life. Sci. 2020, 77, 2751–2769. [Google Scholar] [CrossRef] [Green Version]
- C, B.R. Sample size considerations in genetic polymorphism studies. Hum. Hered. 2001, 52, 191–200. [Google Scholar]
- McLoughlin, G.A.; Helsby, C.R.; Evans, C.C.; Chapman, D.M. Association of HLA-A9 and HLA-B5 with Buerger’s disease. Br. Med. J. 1976, 2, 1165–1166. [Google Scholar] [CrossRef] [Green Version]
- Aerbajinai, W.; Tsuchiya, T.; Kimura, A.; Yasukochi, Y.; Numano, F. HLA class II DNA typing in Buerger’s disease. Int. J. Cardiol. 1996, 54, S197–S202. [Google Scholar] [CrossRef]
- Tiwari, J.L.; Terasaki, P.I. HLA-DR and disease associations. Prog. Clin. Biol. Res. 1981, 58, 151–163. [Google Scholar]
- Jaini, R.; Mandal, S.; Khazanchi, R.K.; Mehra, N.K. Immunogenetic analysis of Buerger’s disease in India. Int. J. Cardiol. 1998, 66 (Suppl. S1), S283–S285. [Google Scholar] [CrossRef]
- Numano, F.; Sasazuki, T.; Koyama, T.; Shimokado, K.; Takeda, Y.; Nishimura, Y.; Mutoh, M. HLA in Buerger’s disease. Exp. Clin. Immunogenet. 1986, 3, 195–200. [Google Scholar]
- Cao, Y.; Schmitz, J.L.; Yang, J.; Hogan, S.L.; Bunch, D.; Hu, Y.; Jennette, C.E.; Berg, E.A.; Arnett, F.C., Jr.; Jennette, J.C.; et al. DRB1*15 allele is a risk factor for PR3-ANCA disease in African Americans. J. Am. Soc. Nephrol. 2011, 22, 1161–1167. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Gay, M.A.; Garcia-Porrua, C.; Hajeer, A.H.; Dababneh, A.; Ollier, W.E. HLA-DRB1*04 may be a marker of severity in giant cell arteritis. Ann. Rheum. Dis. 2000, 59, 574–575. [Google Scholar] [CrossRef] [Green Version]
- Voskuyl, A.E.; Hazes, J.M.; Schreuder, G.M.; Schipper, R.F.; de Vries, R.R.; Breedveld, F.C. HLA-DRB1, DQA1, and DQB1 genotypes and risk of vasculitis in patients with rheumatoid arthritis. J. Rheumatol. 1997, 24, 852–855. [Google Scholar]
- Gorman, J.D.; David-Vaudey, E.; Pai, M.; Lum, R.F.; Criswell, L.A. Particular HLA-DRB1 shared epitope genotypes are strongly associated with rheumatoid vasculitis. Arthritis Rheum. 2004, 50, 3476–3484. [Google Scholar] [CrossRef]
- Boechat Nde, O.; Ogusku, M.M.; Boechat, A.L.; Sadahiro, A. Interaction between smoking and HLA-DRB1*04 gene is associated with a high cardiovascular risk in Brazilian Amazon patients with rheumatoid arthritis. PLoS ONE 2012, 7, e41588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glueck, C.J.; Haque, M.; Winarska, M.; Dharashivkar, S.; Fontaine, R.N.; Zhu, B.; Wang, P. Stromelysin-1 5A/6A and eNOS T-786C polymorphisms, MTHFR C677T and A1298C mutations, and cigarette-cannabis smoking: A pilot, hypothesis-generating study of gene-environment pathophysiological associations with Buerger’s disease. Clin. Appl. Thromb. Hemost. 2006, 12, 427–439. [Google Scholar] [CrossRef]
- Cheng, Y.; Xiong, M.; Liu, Y.; Tang, B. Lack of association between endothelial nitric oxide synthase gene polymorphisms with vasculitis: A meta-analysis. Clin. Exp. Rheumatol. 2015, 33, S107–S112. [Google Scholar]
- Barbosa, A.M.; Silva, K.S.F.; Lagares, M.H.; Rodrigues, D.A.; da Costa, I.R.; Morais, M.P.; Martins, J.V.M.; Mascarenhas, R.S.; Campedelli, F.L.; Moura, K. Atherosclerosis: Analysis of the eNOS (T786C) gene polymorphism. Genet. Mol. Res. 2017, 16, gmr16039708. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.J.; Bae, J.; Lim, S.W.; Cha, D.H.; Cho, H.J.; Kim, S.; Yang, D.H.; Hwang, S.G.; Oh, D.; Kim, N.K. Influence of endothelial nitric oxide synthase gene polymorphisms (-786T>C, 4a4b, 894G>T) in Korean patients with coronary artery disease. Thromb. Res. 2007, 119, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, D.; Sprovieri, E.; Mazza, R.; Randall, D.J.; Tota, B. Nitric oxide-cGMP-mediated vasoconstriction and effects of acetylcholine in the branchial circulation of the eel. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2002, 132, 447–457. [Google Scholar] [CrossRef]
- Cicchese, J.M.; Evans, S.; Hult, C.; Joslyn, L.R.; Wessler, T.; Millar, J.A.; Marino, S.; Cilfone, N.A.; Mattila, J.T.; Linderman, J.J.; et al. Dynamic balance of pro- and anti-inflammatory signals controls disease and limits pathology. Immunol. Rev. 2018, 285, 147–167. [Google Scholar] [CrossRef]
- Fillatreau, S. B cells and their cytokine activities implications in human diseases. Clin Immunol 2018, 186, 26–31. [Google Scholar] [CrossRef]
- Lee, T.; Seo, J.W.; Sumpio, B.E.; Kim, S.J. Immunobiologic analysis of arterial tissue in Buerger’s disease. Eur. J. Vasc. Endovasc. Surg. 2003, 25, 451–457. [Google Scholar] [CrossRef] [Green Version]
- Junuzovic, D.; Zunic, L.; Dervisefendic, M.; Skopljak, A.; Pasagic, A.; Masic, I. The toxic effect on leukocyte lineage of antimicrobial therapy in urinary and respiratory infections. Med. Arh. 2014, 68, 167–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarnak, M.J.; Tighiouart, H.; Manjunath, G.; MacLeod, B.; Griffith, J.; Salem, D.; Levey, A.S. Anemia as a risk factor for cardiovascular disease in The Atherosclerosis Risk in Communities (ARIC) study. J. Am. Coll. Cardiol. 2002, 40, 27–33. [Google Scholar] [CrossRef]
- Kawamura, T.; Usui, J.; Kaneko, S.; Tsunoda, R.; Imai, E.; Kai, H.; Morito, N.; Saito, C.; Nagata, M.; Yamagata, K. Anaemia is an essential complication of ANCA-associated renal vasculitis: A single center cohort study. BMC Nephrol. 2017, 18, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegg, R.; Lee, A.G.; Tagg, N.T.; Zimmerman, M.B. Statin or nonsteroidal anti-inflammatory drug use is associated with lower erythrocyte sedimentation rate in patients with giant cell arteritis. J. Neuroophthalmol. 2011, 31, 135–138. [Google Scholar] [CrossRef] [PubMed]
CBC | TAO | Atherosclerosis | Vasculitis |
---|---|---|---|
Anaemia | Has been reported | Independent factor | Common |
Platelet count | Mostly normal; rarely high in patients with major amputation or low due to consumption in thrombosis formation | Normal | Thrombocytopenia is common |
Leukocyte count | Leukocytosis with neutrophilia has been reported | Mostly high and considered as a risk factor | Leukopenia is common |
MPV | Mostly low | Mostly high due to hyperactivation | Mostly normal |
Biochemical Markers | TAO | Atherosclerosis | Vasculitis |
---|---|---|---|
Fast Blood Sugar | Normal to slightly high (< 120 mg/dL) | Normal to high | Normal |
Cholesterol | Normal to slightly high | High | Normal |
LDL | Normal to slightly high | High | Normal |
HDL | Low to normal | Low | Normal |
Total oxidative stress | High with intact antioxidant capacity | High with impaired antioxidant capacity | High in several autoimmune vasculitis |
MDA | Normal | High | High |
NO | Low with eNOS polymorphism | High | Low with eNOS polymorphism High in SLE and RA with iNOS high expression |
Creatinine | High | Normal to slightly high | Slightly high in Anca-Associated Vasculitis (AAV) and normal in Behcet’s disease |
Heavy metals | High level of lead, cadmium, arsenic | High level of lead, cadmium | High level of lead and is related to mercury in Wegener’s granulomatosis |
Catecholamine concentration | High level of adrenalin and noradrenalin | High level of epinephrine and norepinephrine | High especially in catecholamine-induced vasculitis |
Bilirubin | Normal | Low to High High levels associated with good prognosis | High in AILD with small vessel vasculitisLow in Behcet’s disease |
Hepatic function test (AST and ALT) | High AST with normal ALT | Mostly high level is related to fatty liver | High in liver involvement related to AAV and Rheumatoid Arthritis |
Inflammatory Biomarkers | TAO | Atherosclerosis | Vasculitis |
---|---|---|---|
ESR | Controversial | High (usually >18 and <30 mm/h) | Extremely high (even >100 mm/h) |
CRP | Controversial | High (usually >12 mg/L) | High (usually 5 to 15 mg/L) More than 25 mg/L as a marker of infection in vasculitis |
Pro-inflammatory | High level of TNF-α, IL-1,IL-6 | High level of IL-1, IL-6, IL-18 | High level of TNF-α, IL-1,IL-6 |
Th1-related | High level of IL-12 IFN-γ | High level of IL-12 | High level of IFN-γ, IL-12, |
Th2-related | High level of IL-4, IL-5, IL-13 | High level of IL-4, IL-5 | High level of IL-4, IL-5, IL-13 |
Th17-related | High level of IL-17, IL-22, IL-23, IL-21 | High level of IL-21, IL-22, IL-23 | High level of IL-23, IL-17, IL-21 |
Anti-inflammatory | Low level of IL-10 | Low levels of TGF-β, IL-10 | High level of IL-10 |
Others | High level of IL-33 (without increasing levels of Soluble suppression of tumorigenicity-2, sST2) | High level of IL-35, IL-33, IL-15 | High level of IL-33 (with increased sST2 level) |
HMGB1 | High | High | High |
Neopterin | High in the acute phase | High | High |
TLRs | Low level of TLR4 | High level of TLR4 and TLR2 | High level of TLR4 and TLR5 |
Matrix Metalloproteinases (MMPs) | High MMP-9 | High MMP-1, MMP-2, MMP-9, MMP-3, MMP-12, MMP-13 | High MMP-2, MMP-9, MMP-3 |
ICAM1 | High | High | High in AAV, SLE, WG |
Complement component | High level of C4 in patients with severe form of TAO | High serum level of C3, C4 | High C3, C4 levels in immune complex-mediated vasculitis are reported while in SLE, C3 and C4 were decreased |
Autoantibodies | TAO | Atherosclerosis | Vasculitis |
---|---|---|---|
Anti-Cardiolipin | positive (IgM class) | Negative | positive (mostly IgG class) |
Anti-dsDNA, ANA | Negative | Negative | Positive in vasculitis such as SLE |
Anti-beta2 | positive (IgM class) | positive (IgM class) | Not reported |
AECA | positive | Negative | positive |
ANCA | negative | Negative | Positive in AAV |
Lupus anticoagulant | negative | Negative | positive |
Thrombotic Factors | TAO | Atherosclerosis | Vasculitis |
---|---|---|---|
Hypercoagulation activity | Mostly considered as normal, but with increased risk with Factor V Leiden mutation | Normal activity | Hypercoagulable states mostly reported in Behçet syndrome and AAV |
d-dimer | It has been reported D-dimer levels are considerably elevated in patients with TAO | High in thrombotic event | High levels in AAV, SLE, Granulomatosis with polyangiitis (GPA) Henoch-Schönlein purpura, Kawasaki disease |
Fibrinogen level | High level | High | High in systemic vasculitis |
Protein C, Protein s | Mostly considered as normal | Protein C and Protein S deficiency has been reported as a risk factor for aggravation of atherosclerosis | Normal |
Hyperhomocysteinemia | Has been reported | Has been reported | Has been reported |
TAO | Atherosclerosis | Vasculitis | |
---|---|---|---|
Infection | Oral bacteria and rickettsial infection. | Chlamydophila pneumoniae, Helicobacter pylori, CMV (Cytomegalovirus) and oral bacteria | Viral infection (e.g., Human Immunodeficiency Virus and CMV), Streptococcus pneumoniae, rickettsia, Mycobacterium, Staphylococcus aureus, Chlamydia, Neisseria |
Disease | TAO | Atherosclerosis |
---|---|---|
Biomarker | ||
Cholesterol | Normal to slightly high | High |
LDL | Normal to slightly high | High |
HDL | Low to Normal | Low |
FBS | Normal to slightly high | Normal to high (in diabetic patients) |
Anti-Cardiolipin | Positive (IgM class) | Negative |
Protc, prots | Normal | Prot c and prot s deficiency |
MPV | mostly Low | mostly High |
oxLDL | Normal | High |
Oral bacteria and rickettsial infection. | Positive | Negative for rickettsial infection |
TLR-2 and -4 | Low level of TLR4 | High level of TLR4 and TLR2 |
Disease | TAO | Vasculitis |
---|---|---|
Biomarker | ||
ESR | Controversial | High |
CRP | Controversial | High |
Anti-dsDNA, ANA | Negative | Positive |
Lupus anticoagulant | Negative | Positive |
Anti-Cardiolipin | Positive | Positive |
Anti-beta2 | Positive | Not reported |
ANCA | Negative | Positive |
Oral bacteria and rickettsial infection. | Positive | Positive for rickettsial infection |
Hypercoagulation activity | Mostly considered as normal but with increased risk with Factor V Leiden mutation | hypercoagulable states mostly reported in Behçet syndrome and AAV |
Platelet count | Mostly normal; (rarely high or low in specific conditions) | thrombocytopenia |
Leukocyte count | Leukocytosis with neutrophilia | Leukopenia |
TLR | Low level of TLR4 | High level of TLR4 and TLR5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fazeli, B.; Ligi, D.; Keramat, S.; Maniscalco, R.; Sharebiani, H.; Mannello, F. Recent Updates and Advances in Winiwarter-Buerger Disease (Thromboangiitis Obliterans): Biomolecular Mechanisms, Diagnostics and Clinical Consequences. Diagnostics 2021, 11, 1736. https://doi.org/10.3390/diagnostics11101736
Fazeli B, Ligi D, Keramat S, Maniscalco R, Sharebiani H, Mannello F. Recent Updates and Advances in Winiwarter-Buerger Disease (Thromboangiitis Obliterans): Biomolecular Mechanisms, Diagnostics and Clinical Consequences. Diagnostics. 2021; 11(10):1736. https://doi.org/10.3390/diagnostics11101736
Chicago/Turabian StyleFazeli, Bahare, Daniela Ligi, Shayan Keramat, Rosanna Maniscalco, Hiva Sharebiani, and Ferdinando Mannello. 2021. "Recent Updates and Advances in Winiwarter-Buerger Disease (Thromboangiitis Obliterans): Biomolecular Mechanisms, Diagnostics and Clinical Consequences" Diagnostics 11, no. 10: 1736. https://doi.org/10.3390/diagnostics11101736
APA StyleFazeli, B., Ligi, D., Keramat, S., Maniscalco, R., Sharebiani, H., & Mannello, F. (2021). Recent Updates and Advances in Winiwarter-Buerger Disease (Thromboangiitis Obliterans): Biomolecular Mechanisms, Diagnostics and Clinical Consequences. Diagnostics, 11(10), 1736. https://doi.org/10.3390/diagnostics11101736