Advances in Diagnostic Bronchoscopy
Abstract
:1. Introduction
2. Endobronchial Ultrasound (EBUS) and a Guide Sheath (GS) (1992–1996, 2004)
3. Ultrathin Bronchoscopy (UTB) (1996)
4. Virtual Bronchoscopic Navigation (VBN, VNB) (2002)
5. Electromagnetic Navigation Bronchoscopy (ENB) (2005)
6. SuperDimensionTM System
7. SPiN Thoracic Navigation SystemTM
8. LungCare Navigation System
9. Robotic Bronchoscopy
10. The Monarch™ Platform
11. Intuitive Ion™ Robotic Platform
12. Cone-Beam Computed Tomography (CBCT)
13. Augmented Fluoroscopy (AF)
14. LungVisonTM System
15. Combination Study
15.1. EBUS+VNB
15.2. EBUS+ENB
15.3. EBUS+Robotic+Fluoro
15.4. ENB+CBCT+AF
15.5. ULTRATHIN+EMN+RP-EBUS+CBCT+AF
15.6. EMN+RP-EBUS+CBCT+AF
16. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- de Koning, H.J.; Meza, R.; Plevritis, S.K.; Ten Haaf, K.; Munshi, V.N.; Jeon, J.; Erdogan, S.A.; Kong, C.Y.; Han, S.S.; van Rosmalen, J.; et al. Benefits and harms of computed tomography lung cancer screening strategies: A comparative modeling study for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2014, 160, 311–320. [Google Scholar] [CrossRef]
- Park, C.H.; Han, K.; Hur, J.; Lee, S.M.; Lee, J.W.; Hwang, S.H.; Seo, J.S.; Lee, K.H.; Kwon, W.; Kim, T.H.; et al. Comparative Effectiveness and Safety of Preoperative Lung Localization for Pulmonary Nodules: A Systematic Review and Meta-analysis. Chest 2017, 151, 316–328. [Google Scholar] [CrossRef] [PubMed]
- National Lung Screening Trial Research Team. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 2011, 365, 395–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, P.M.; VanderMeer, R. Delays in the diagnosis of lung cancer. J. Thorac. Dis. 2011, 3, 183–188. [Google Scholar] [CrossRef]
- Yousaf-Khan, U.; Van Der Aalst, C.; De Jong, P.A.; Heuvelmans, M.; Scholten, E.; Lammers, J.-W.; van Ooijen, P.; Nackaerts, K.; Weenink, C.; Groen, H.; et al. Final screening round of the NELSON lung cancer screening trial: The effect of a 2.5-year screening interval. Thorax 2017, 72, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Silvestri, G.A.; Gonzalez, A.V.; Jantz, M.A.; Margolis, M.L.; Gould, M.K.; Tanoue, L.T.; Harris, L.J.; Detterbeck, F.C. Methods for staging non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013, 143 (Suppl. 5), e211S–e250S. [Google Scholar] [CrossRef] [Green Version]
- Sachdeva, M.; Ronaghi, R.; Mills, P.K.; Peterson, M.W. Complications and Yield of Computed Tomography-Guided Transthoracic Core Needle Biopsy of Lung Nodules at a High-Volume Academic Center in an Endemic Coccidioidomycosis Area. Lung 2016, 194, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Gould, M.K.; Fletcher, J.; Iannettoni, M.D.; Lynch, W.R.; Midthun, D.E.; Naidich, D.P.; Ost, D.E. Evidence for the treatment of patients with pulmonary nodules: When is it lung cancer?: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 2007, 132 (Suppl. 3), 94s–107s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, T.-Y.; Lie, C.-H.; Chung, Y.-H.; Wang, J.-L.; Wang, Y.-H.; Lin, M.-C. Differentiating Peripheral Pulmonary Lesions Based on Images of Endobronchial Ultrasonography. Chest 2006, 130, 1191–1197. [Google Scholar] [CrossRef]
- Khan, K.A.; Nardelli, P.; Jaeger, A.; O’Shea, C.; Cantillon-Murphy, P.; Kennedy, M.P. Navigational Bronchoscopy for Early Lung Cancer: A Road to Therapy. Adv. Ther. 2016, 33, 580–596. [Google Scholar] [CrossRef] [Green Version]
- Gould, M.K.; Fletcher, J.; Iannettoni, M.D.; Lynch, W.R.; Midthun, D.E.; Naidich, D.; Ost, D. Evaluation of Patients With Pulmonary Nodules: When Is It Lung Cancer?: ACCP Evidence-Based Clinical Practice Guidelines (2nd Edition). Chest 2007, 132 (Suppl. 3), 108S–130S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rzyman, W.; Szurowska, E.; Adamek, M. Implementation of lung cancer screening at the national level: Polish example. Transl. Lung Cancer Res. 2019, 8 (Suppl. 1), S95–S105. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, J.H.; Sørensen, J.B.; Saghir, Z.; Fløtten, Ø.; Brustugun, O.T.; Ashraf, H.; Strand, T.-E.; Friesland, S.; Koyi, H.; Ek, L.; et al. Implementation of lung cancer CT screening in the Nordic countries. Acta Oncol. 2017, 56, 1249–1257. [Google Scholar] [CrossRef]
- Pastorino, U.; Sverzellati, N.; Sestini, S.; Silva, M.; Sabia, F.; Boeri, M.; Cantarutti, A.; Sozzi, G.; Corrao, G.; Marchianò, A. Ten-year results of the Multicentric Italian Lung Detection trial demonstrate the safety and efficacy of biennial lung cancer screening. Eur. J. Cancer 2019, 118, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Oudkerk, M.; Devaraj, A.; Vliegenthart, R.; Henzler, T.; Prosch, H.; Heussel, C.P.; Bastarrika, G.; Sverzellati, N.; Mascalchi, M.; Delorme, S.; et al. European position statement on lung cancer screening. Lancet Oncol. 2017, 18, e754–e766. [Google Scholar] [CrossRef]
- Casal, R.F. Cone Beam CT-Guided Bronchoscopy: Here to Stay? J. Bronchol. Interv. Pulmonol. 2018, 25, 255–256. [Google Scholar] [CrossRef] [PubMed]
- Steinfort, D.P.; Vrjlic, I.; Irving, L.B. Augmented Fluoroscopy for Guidance of Bronchoscopic Biopsy of Pulmonary Nodules: Best of Both Worlds? J. Bronchol. Interv. Pulmonol. 2019, 26, e27–e29. [Google Scholar] [CrossRef]
- Jiang, S.; Xie, F.; Mao, X.; Ma, H.; Sun, J. The value of navigation bronchoscopy in the diagnosis of peripheral pulmonary lesions: A meta-analysis. Thorac. Cancer 2020, 11, 1191–1201. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, M.; Sukoh, N.; Yamazaki, K.; Kanazawa, K.; Fukumoto, S.-I.; Harada, M.; Kikuchi, E.; Munakata, M.; Nishimura, M.; Isobe, H. Diagnostic Value of Endobronchial Ultrasonography With a Guide Sheath for Peripheral Pulmonary Lesions without X-ray Fluoroscopy. Chest 2007, 131, 1788–1793. [Google Scholar] [CrossRef]
- Kato, A.; Yasuo, M.; Tokoro, Y.; Kobayashi, T.; Ichiyama, T.; Tateishi, K.; Ushiki, A.; Urushihata, K.; Yamamoto, H.; Hanaoka, M. Virtual bronchoscopic navigation as an aid to CT-guided transbronchial biopsy improves the diagnostic yield for small peripheral pulmonary lesions. Respirology 2018, 23, 1049–1054. [Google Scholar] [CrossRef] [Green Version]
- Yamada, N.; Yamazaki, K.; Kurimoto, N.; Asahina, H.; Kikuchi, E.; Shinagawa, N.; Oizumi, S.; Nishimura, M. Factors Related to Diagnostic Yield of Transbronchial Biopsy Using Endobronchial Ultrasonography With a Guide Sheath in Small Peripheral Pulmonary Lesions. Chest 2007, 132, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.M.; Choe, J.; Jeong, B.-H.; Um, S.-W.; Kim, H.; Kwon, O.J.; Lee, K. Diagnostic Performance of Radial Probe Endobronchial Ultrasound without a Guide-Sheath and the Feasibility of Molecular Analysis. Tuberc. Respir. Dis. 2019, 82, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.-L.; Tsai, T.-H.; Ho, C.-C.; Liao, W.-Y.; Lin, C.-K.; Hsu, C.-L.; Shih, J.-Y. The value of radial endobronchial ultrasound-guided bronchial brushing in peripheral non-squamous non-small cell lung cancer. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Good, W.R.; Christensen, P.M.; Herath, S.; Dawkins, P.; Yap, E. Radial-probe endobronchial ultrasound outcomes in the investigation of peripheral pulmonary lesions: A New Zealand perspective. Intern. Med. J. 2018, 48, 1481–1487. [Google Scholar] [CrossRef] [PubMed]
- Mondoni, M.; Sotgiu, G.; Bonifazi, M.; Dore, S.; Parazzini, E.M.; Carlucci, P.; Gasparini, S.; Centanni, S. Transbronchial needle aspiration in peripheral pulmonary lesions: A systematic review and meta-analysis. Eur. Respir. J. 2016, 48, 196–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalanjeri, S.; Holladay, R.C.; Gildea, T.R. State-of-the-Art Modalities for Peripheral Lung Nodule Biopsy. Clin. Chest Med. 2018, 39, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Memoli, J.S.W.; Nietert, P.; Silvestri, G.A. Meta-analysis of Guided Bronchoscopy for the Evaluation of the Pulmonary Nodule. Chest 2012, 142, 385–393. [Google Scholar] [CrossRef] [Green Version]
- Bowling, M.R.; Kohan, M.W.; Walker, P.; Efird, J.; Ben Or, S. The Effect of General Anesthesia Versus Intravenous Sedation on Diagnostic Yield and Success in Electromagnetic Navigation Bronchoscopy. J. Bronchol. Interv. Pulmonol. 2015, 22, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Lamprecht, B.; Porsch, P.; Wegleitner, B.; Strasser, G.; Kaiser, B.; Studnicka, M. Electromagnetic navigation bronchoscopy (ENB): Increasing diagnostic yield. Respir. Med. 2012, 106, 710–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherian, S.V.; Kaur, S.; Karanth, S.; Xian, J.Z.; Estrada-Y-Martin, R.M. Diagnostic yield of electromagnetic navigational bronchoscopy: A safety net community-based hospital experience in the United States. Ann. Thorac. Med. 2021, 16, 102–109. [Google Scholar] [CrossRef]
- Oh, J.H.; Choi, C.; Kim, S.; Kim, W.S.; Hwang, H.S.; Jang, S.J.; Oh, S.Y.; Kim, M.Y.; Lee, J.C.; Ji, W. Diagnostic yield and safety of biopsy guided by electromagnetic navigation bronchoscopy for high-risk pulmonary nodules. Thorac. Cancer 2021, 12, 1503–1510. [Google Scholar] [CrossRef]
- Steinfort, D.P.; Khor, Y.H.; Manser, R.L.; Irving, L.B. Radial probe endobronchial ultrasound for the diagnosis of peripheral lung cancer: Systematic review and meta-analysis. Eur. Respir. J. 2010, 37, 902–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seijo, L.M.; de Torres, J.P.; Lozano, M.D.; Bastarrika, G.; Alcaide, A.B.; Lacunza, M.M.; Zulueta, J.J. Diagnostic yield of electromagnetic navigation bronchoscopy is highly dependent on the presence of a Bronchus sign on CT imaging: Results from a prospective study. Chest 2010, 138, 1316–1321. [Google Scholar] [CrossRef] [Green Version]
- Folch, E.E.; Pritchett, M.A.; Nead, M.A.; Bowling, M.R.; Murgu, S.D.; Krimsky, W.S.; Murillo, B.A.; LeMense, G.P.; Minnich, D.J.; Bansal, S.; et al. Electromagnetic Navigation Bronchoscopy for Peripheral Pulmonary Lesions: One-Year Results of the Prospective, Multicenter NAVIGATE Study. J. Thorac. Oncol. 2019, 14, 445–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chavez, C.; Sasada, S.; Izumo, T.; Watanabe, J.; Katsurada, M.; Matsumoto, Y.; Tsuchida, T. Endobronchial ultrasound with a guide sheath for small malignant pulmonary nodules: A retrospective comparison between central and peripheral locations. J. Thorac. Dis. 2015, 7, 596–602. [Google Scholar] [CrossRef]
- Rivera, M.P.; Mehta, A.C.; Wahidi, M.M. Establishing the diagnosis of lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013, 143 (Suppl. 5), e142S–e165S. [Google Scholar] [CrossRef]
- Tsuboi, E.; Ikeda, S.; Tajima, M.; Shimosato, Y.; Ishikawa, S. Transbronchial biopsy smear for diagnosis of peripheral pulmonary carcinomas. Cancer 1967, 20, 687–698. [Google Scholar] [CrossRef]
- Bellinger, C.; Poon, R.; Dotson, T.; Sharma, D. Lesion characteristics affecting yield of electromagnetic navigational bronchoscopy. Respir. Med. 2021, 180, 106357. [Google Scholar] [CrossRef]
- Ost, D.E.; Ernst, A.; Lei, X.; Kovitz, K.L.; Benzaquen, S.; Diaz-Mendoza, J.; Greenhill, S.; Toth, J.; Feller-Kopman, D.; Puchalski, J.; et al. Diagnostic Yield and Complications of Bronchoscopy for Peripheral Lung Lesions. Results of the AQuIRE Registry. Am. J. Respir. Crit. Care Med. 2016, 193, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.H.; Kim, M.J.; Jeon, S.-H.; Park, M.H.; Kim, W.Y.; Lee, M.; Kim, J.H.; Kim, J.S.; Kim, Y.S.; Kim, L.; et al. The optimal sequence of bronchial brushing and washing for diagnosing peripheral lung cancer using non-guided flexible bronchoscopy. Sci. Rep. 2020, 10, 1036–1037. [Google Scholar] [CrossRef]
- Casal, R.F.; Sarkiss, M.; Jones, A.K.; Stewart, J.; Tam, A.; Grosu, H.B.; Ost, D.E.; Jimenez, C.A.; Eapen, G.A. Cone beam computed tomography-guided thin/ultrathin bronchoscopy for diagnosis of peripheral lung nodules: A prospective pilot study. J. Thorac. Dis. 2018, 10, 6950–6959. [Google Scholar] [CrossRef]
- Chen, A.; Pastis, N.; Furukawa, B.; Silvestri, G.A. The Effect of Respiratory Motion on Pulmonary Nodule Location during Electromagnetic Navigation Bronchoscopy. Chest 2015, 147, 1275–1281. [Google Scholar] [CrossRef] [PubMed]
- Panchabhai, T.S.; Mehta, A.C. Historical Perspectives of Bronchoscopy. Connecting the Dots. Ann. Am. Thorac. Soc. 2015, 12, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Becker, H.D. Endobronchial ultrasound—A new perspective in bronchology. Ultraschall. Med. 1996, 17, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Hurter, T.; Hanrath, P. Endobronchial sonography: Feasibility and preliminary results. Thorax 1992, 47, 565–567. [Google Scholar] [CrossRef] [Green Version]
- Spiro, S.G.; Gould, M.K.; Colice, G.L. Initial evaluation of the patient with lung cancer: Symptoms, signs, laboratory tests, and paraneoplastic syndromes: ACCP evidenced-based clinical practice guidelines (2nd edition). Chest 2007, 132 (Suppl. 3), 149s–160s. [Google Scholar] [CrossRef]
- Kurimoto, N.; Miyazawa, T.; Okimasa, S.; Maeda, A.; Oiwa, H.; Miyazu, Y.; Murayama, M. Endobronchial Ultrasonography Using a Guide Sheath Increases the Ability To Diagnose Peripheral Pulmonary Lesions Endoscopically. Chest 2004, 126, 959–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamiya, M.; Okamoto, N.; Sasada, S.; Shiroyama, T.; Morishita, N.; Suzuki, H.; Yoshida, E.; Hirashima, T.; Kawahara, K.; Kawase, I. Diagnostic yield of combined bronchoscopy and endobronchial ultrasonography, under LungPoint guidance for small peripheral pulmonary lesions. Respirology 2013, 18, 834–839. [Google Scholar] [CrossRef]
- Xu, C.; Wang, Y.; Li, L.; Yuan, Q.; Wang, Y.; Hu, H.; Zhang, X. Diagnostic Value of Virtual Bronchoscopic Navigation Combined With Endobronchial Ultrasound Guided Transbronchial Lung Biopsy for Peripheral Pulmonary Lesions. Technol. Cancer Res. Treat. 2021, 20. [Google Scholar] [CrossRef]
- Kikuchi, E.; Yamazaki, K.; Sukoh, N.; Asahina, H.; Imura, M.; Onodera, Y.; Kurimoto, N.; Kinoshita, I.; Nishimura, M. Endobronchial ultrasonography with guide-sheath for peripheral pulmonary lesions. Eur. Respir. J. 2004, 24, 533–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Facciolongo, N.; Patelli, M.; Gasparini, S.; Agli, L.L.; Salio, M.; Simonassi, C.; Del Prato, B.; Zanoni, P. Incidence of complications in bronchoscopy. Multicentre prospective study of 20,986 bronchoscopies. Monaldi Arch. Chest Dis. 2009, 71, 8–14. [Google Scholar] [CrossRef]
- Hayama, M.; Izumo, T.; Matsumoto, Y.; Chavez, C.; Tsuchida, T.; Sasada, S. Complications with Endobronchial Ultrasound with a Guide Sheath for the Diagnosis of Peripheral Pulmonary Lesions. Respiration 2015, 90, 129–135. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, L.; Wu, H. Endobronchial ultrasonography using a guide sheath technique for diagnosis of peripheral pulmonary lesions. Endosc. Ultrasound 2017, 6, 292–299. [Google Scholar] [CrossRef]
- Ali, M.S.; Trick, W.; Mba, B.I.; Mohananey, D.; Sethi, J.; Musani, A.I. Radial endobronchial ultrasound for the diagnosis of peripheral pulmonary lesions: A systematic review and meta-analysis. Respirology 2017, 22, 443–453. [Google Scholar] [CrossRef] [Green Version]
- Prakash, U.B. The use of the pediatric fiberoptic bronchoscope in adults. Am. Rev. Respir. Dis. 1985, 132, 715–717. [Google Scholar] [CrossRef]
- Hasegawa, S.; Hitomi, S.; Murakawa, M.; Mori, K. Development of an Ultrathin Fiberscope with a Built-in Channel for Bronchoscopy in Infants. Chest 1996, 110, 1543–1546. [Google Scholar] [CrossRef] [Green Version]
- Franzen, D.; Diacon, A.H.; Freitag, L.; Schubert, P.T.; Wright, C.A.; Schuurmans, M.M. Ultrathin bronchoscopy for solitary pulmonary lesions in a region endemic for tuberculosis: A randomised pilot trial. BMC Pulm. Med. 2016, 16, 62. [Google Scholar] [CrossRef] [Green Version]
- Oki, M.; Saka, H.; Ando, M.; Asano, F.; Kurimoto, N.; Morita, K.; Kitagawa, C.; Kogure, Y.; Miyazawa, T. Ultrathin Bronchoscopy with Multimodal Devices for Peripheral Pulmonary Lesions. A Randomized Trial. Am. J. Respir. Crit. Care Med. 2015, 192, 468–476. [Google Scholar] [CrossRef] [Green Version]
- Sumi, T.; Ikeda, T.; Sawai, T.; Shijubou, N.; Kure, K.; Yamada, Y.; Nakata, H.; Mori, Y.; Takahashi, H. Comparison of ultrathin bronchoscopy with conventional bronchoscopy for the diagnosis of peripheral lung lesions without virtual bronchial navigation. Respir. Investig. 2020, 58, 376–380. [Google Scholar] [CrossRef]
- Giri, M.; Puri, A.; Wang, T.; Huang, G.; Guo, S. Virtual bronchoscopic navigation versus non-virtual bronchoscopic navigation assisted bronchoscopy for the diagnosis of peripheral pulmonary lesions: A systematic review and meta-analysis. Ther. Adv. Respir. Dis. 2021, 15. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Zhang, Q.-C.; Tong, Z.-H. Value of virtual bronchoscopic navigation and transbronchial ultrasound-guided sheath-guided exploration in diagnosis of peripheral lung cancer. World J. Clin. Cases 2020, 8, 3450–3457. [Google Scholar] [CrossRef]
- Kitamura, A.; Okafuji, K.; Imai, R.; Murakami, M.; Ro, S.; Tomishima, Y.; Jinta, T.; Nishimura, N.; Tamura, T. Reproducibility of peripheral branches in virtual bronchoscopic navigation using VINCENT and LungPoint software for peripheral lung lesions. Respir. Investig. 2021. [Google Scholar] [CrossRef]
- Schwarz, Y.; Greif, J.; Becker, H.D.; Ernst, A.; Mehta, A. Real-time electromagnetic navigation bronchoscopy to peripheral lung lesions using overlaid CT images: The first human study. Chest 2006, 129, 988–994. [Google Scholar] [CrossRef]
- Leong, S.; Ju, H.; Marshall, H.; Bowman, R.; Yang, I.; Ree, A.-M.; Saxon, C.; Fong, K.M. Electromagnetic navigation bronchoscopy: A descriptive analysis. J. Thorac. Dis. 2012, 4, 173–185. [Google Scholar] [CrossRef]
- Gould, M.K.; Donington, J.; Lynch, W.R.; Mazzone, P.J.; Midthun, D.E.; Naidich, D.P.; Wiener, R.S. Evaluation of individuals with pulmonary nodules: When is it lung cancer? Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013, 143 (Suppl. 5), e93S–e120S. [Google Scholar] [CrossRef] [Green Version]
- Ettinger, D.S.; Wood, D.E.; Aisner, D.L.; Akerley, W.; Bauman, J.; Chirieac, L.R.; D’Amico, T.A.; DeCamp, M.M.; Dilling, T.J.; Dobelbower, M.; et al. Non–Small Cell Lung Cancer, Version 5.2017, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2017, 15, 504–535. [Google Scholar] [CrossRef]
- Burks, A.C.; Akulian, J. Bronchoscopic Diagnostic Procedures Available to the Pulmonologist. Clin. Chest Med. 2020, 41, 129–144. [Google Scholar] [CrossRef]
- Cicenia, J.; Avasarala, S.K.; Gildea, T.R. Navigational bronchoscopy: A guide through history, current use, and developing technology. J. Thorac. Dis. 2020, 12, 3263–3271. [Google Scholar] [CrossRef]
- Mallow, C.; Lee, H.; Oberg, C.; Thiboutot, J.; Akulian, J.; Burks, A.C.; Luna, B.; Benzaquen, S.; Batra, H.; Cardenas-Garcia, J.; et al. Safety and diagnostic performance of pulmonologists performing electromagnetic guided percutaneous lung biopsy (SPiNperc). Respirology 2019, 24, 453–458. [Google Scholar] [CrossRef]
- Yarmus, L.B.; Arias, S.; Feller-Kopman, D.; Semaan, R.; Wang, K.P.; Frimpong, B.; Burgess, K.O.; Thompson, R.; Chen, A.; Ortiz, R.; et al. Electromagnetic navigation transthoracic needle aspiration for the diagnosis of pulmonary nodules: A safety and feasibility pilot study. J. Thorac. Dis. 2016, 8, 186–194. [Google Scholar] [CrossRef]
- Thiboutot, J.; Lee, H.J.; Silvestri, G.A.; Chen, A.; Wahidi, M.M.; Gilbert, C.R.; Pastis, N.J.; Los, J.; Barriere, A.M.; Mallow, C.; et al. Study Design and Rationale: A Multicenter, Prospective Trial of Electromagnetic Bronchoscopic and Electromagnetic Transthoracic Navigational Approaches for the Biopsy of Peripheral Pulmonary Nodules (ALL IN ONE Trial). Contemp. Clin. Trials 2018, 71, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Largacha, J.A.; Batra, H.; Wei, B. Navigational Bronchoscopy with Interventional Pulmonologists and Thoracic Surgeons. Innov. Technol. Tech. Cardiothorac. Vasc. Surg. 2021, 16, 117–122. [Google Scholar] [CrossRef]
- Sun, J.; Yi, X.; Zhang, X. Diagnostic value of electromagnetic navigation bronchoscopy with a guide sheath for peripheral pulmonary lesions: A randomized controlled trial. In Proceedings of the 16th World Conference on Lung Cancer, Denver, CO, USA, 6–9 September 2015. [Google Scholar]
- Zheng, X.; Cao, L.; Zhang, Y. A Novel Electromagnetic Navigation Bronchoscopy System Combined with Endobronchial Ultrasound for the Diagnosis of Peripheral Pulmonary Lesions: A Prospective Multicenter Randomized Controlled Clinical Trial. In Proceedings of the 2020 the World Congress of Bronchology and Interventional Pulmonology, Shanghai, China, 19–22 November 2020. [Google Scholar]
- Geraci, T.C.; Ferrari-Light, D.; Kent, A.; Michaud, G.; Zervos, M.; Pass, H.; Cerfolio, R. Technique, Outcomes With Navigational Bronchoscopy Using Indocyanine Green for Robotic Segmentectomy. Ann. Thorac. Surg. 2019, 108, 363–369. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Z.; Huang, W.; Zhuang, J.; Lin, D.; Zhong, W.; Lan, B. Electromagnetic navigation bronchoscopic localization versus percutaneous CT-guided localization for thoracoscopic resection of small pulmonary nodules. Thorac. Cancer 2021, 12, 468–474. [Google Scholar] [CrossRef]
- Patrucco, F.; Gavelli, F.; Daverio, M.; Antonini, C.; Boldorini, R.; Casadio, C.; Balbo, P.E. Electromagnetic Navigation Bronchoscopy: Where Are We Now? Five Years of a Single-Center Experience. Lung 2018, 196, 721–727. [Google Scholar] [CrossRef]
- Sun, J.; Xie, F.; Zheng, X.; Jiang, Y.; Zhu, L.; Mao, X.; Han, B. Learning curve of electromagnetic navigation bronchoscopy for diagnosing peripheral pulmonary nodules in a single institution. Transl. Cancer Res. 2017, 6, 541–551. [Google Scholar] [CrossRef]
- Gex, G.; Pralong, J.A.; Combescure, C.; Seijo, L.; Rochat, T.; Soccal, P.M. Diagnostic Yield and Safety of Electromagnetic Navigation Bronchoscopy for Lung Nodules: A Systematic Review and Meta-Analysis. Respiration 2014, 87, 165–176. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, S.; Dong, X.; Lei, P. Meta-analysis of the diagnostic yield and safety of electromagnetic navigation bronchoscopy for lung nodules. J. Thorac. Dis. 2015, 7, 799–809. [Google Scholar] [CrossRef]
- Folch, E.E.; Labarca, G.; Ospina-Delgado, D.; Kheir, F.; Majid, A.; Khandhar, S.J.; Mehta, H.J.; Jantz, M.A.; Fernandez-Bussy, S. Sensitivity and Safety of Electromagnetic Navigation Bronchoscopy for Lung Cancer Diagnosis. Chest 2020, 158, 1753–1769. [Google Scholar] [CrossRef] [PubMed]
- Becker, H.D.; Herth, F.; Ernst, A.; Schwarz, Y. Bronchoscopic Biopsy of Peripheral Lung Lesions under Electromagnetic Guidance: A Pilot Study. J. Bronchol. Interv. Pulmonol. 2005, 12, 9–13. [Google Scholar] [CrossRef]
- Mohanasundaram, U.; Ho, L.A.; Kuschner, W.G.; Chitkara, R.K.; Canfield, J.; Canfield, L.M.; Krishna, G. The Diagnostic Yield of Navigational Bronchoscopy Performed with Propofol Deep Sedation. ISRN Endosc. 2013, 2013, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Khandhar, S.J.; for the NAVIGATE Study Investigators; Bowling, M.R.; Flandes, J.; Gildea, T.R.; Hood, K.L.; Krimsky, W.S.; Minnich, D.J.; Murgu, S.D.; Pritchett, M.; et al. Electromagnetic navigation bronchoscopy to access lung lesions in 1000 subjects: First results of the prospective, multicenter NAVIGATE study. BMC Pulm. Med. 2017, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rickets, W.; Lau, K.K.W.; Pollit, V.; Mealing, S.; Leonard, C.; Mallender, P.; Chaudhari, N.; Shah, P.; Naidu, U.B. Exploratory cost-effectiveness model of electromagnetic navigation bronchoscopy (ENB) compared with CT-guided biopsy (TTNA) for diagnosis of malignant indeterminate peripheral pulmonary nodules. BMJ Open Respir. Res. 2020, 7, e000595. [Google Scholar] [CrossRef]
- Rojas-Solano, J.R.; Ugalde-Gamboa, L.; Machuzak, M. Robotic Bronchoscopy for Diagnosis of Suspected Lung Cancer: A Feasibility Study. J. Bronchol. Interv. Pulmonol. 2018, 25, 168–175. [Google Scholar] [CrossRef]
- Fielding, D.I.; Bashirzadeh, F.; Son, J.H.; Todman, M.; Chin, A.; Tan, L.; Steinke, K.; Windsor, M.N.; Sung, A.W. First Human Use of a New Robotic-Assisted Fiber Optic Sensing Navigation System for Small Peripheral Pulmonary Nodules. Respiration 2019, 98, 142–150. [Google Scholar] [CrossRef]
- Agrawal, A.; Hogarth, D.K.; Murgu, S. Robotic bronchoscopy for pulmonary lesions: A review of existing technologies and clinical data. J. Thorac. Dis. 2020, 12, 3279–3286. [Google Scholar] [CrossRef]
- Chen, A.C.; Gillespie, C.T. Robotic Endoscopic Airway Challenge: REACH Assessment. Ann. Thorac. Surg. 2018, 106, 293–297. [Google Scholar] [CrossRef] [Green Version]
- Murgu, S.D. Robotic assisted-bronchoscopy: Technical tips and lessons learned from the initial experience with sampling peripheral lung lesions. BMC Pulm. Med. 2019, 19, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chaddha, U.; Kovacs, S.P.; Manley, C.; Hogarth, D.K.; Cumbo-Nacheli, G.; Bhavani, S.V.; Kumar, R.; Shende, M.; Egan, J.P.; Murgu, S. Robot-assisted bronchoscopy for pulmonary lesion diagnosis: Results from the initial multicenter experience. BMC Pulm. Med. 2019, 19, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.C.; Pastis, N.J., Jr.; Mahajan, A.K.; Khandhar, S.J.; Simoff, M.J.; Machuzak, M.S.; Cicenia, J.; Gildea, T.R.; Silvestri, G.A. Robotic Bronchoscopy for Peripheral Pulmonary Lesions: A Multicenter Pilot and Feasibility Study (BENEFIT). Chest 2021, 159, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Transbronchial Biopsy Assisted by Robot Guidance in the Evaluation of Tumors of the Lung (TARGET). Available online: https://clinicaltrials.gov/ct2/show/NCT04182815 (accessed on 21 July 2021).
- How IonWorks: A Comprehensive Look at Intuitive’s Robotic-Assisted Minimally Invasive Biopsy Platform. Available online: https://www.intuitive.com/en-us/products-and-services/ion/how-ion-works (accessed on 23 July 2021).
- PRECIsE: A Prospective Evaluation of the Clinical Utility for the Ion Endoluminal System. Available online: https://clinicaltrials.gov/ct2/show/NCT03893539 (accessed on 28 August 2021).
- Chaddha, U.; Hogarth, D.K.; Murgu, S. Bronchoscopic Ablative Therapies for Malignant Central Airway Obstruction and Peripheral Lung Tumors. Ann. Am. Thorac. Soc. 2019, 16, 1220–1229. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Chenna, P.; Loiselle, A.; Massoni, J.; Mayse, M.; Misselhorn, D. Radial Probe Endobronchial Ultrasound for Peripheral Pulmonary Lesions. A 5-Year Institutional Experience. Ann. Am. Thorac. Soc. 2014, 11, 578–582. [Google Scholar] [CrossRef]
- Mehta, A.C.; Hood, K.L.; Schwarz, Y.; Solomon, S.B. The Evolutional History of Electromagnetic Navigation Bronchoscopy: State of the Art. Chest 2018, 154, 935–947. [Google Scholar] [CrossRef]
- Silvestri, G.A.; Bevill, B.T.; Huang, J.; Brooks, M.; Choi, Y.; Kennedy, G.; Lofaro, L.; Chen, A.; Rivera, M.P.; Tanner, N.T.; et al. An Evaluation of Diagnostic Yield from Bronchoscopy: The Impact of Clinical/Radiographic Factors, Procedure Type, and Degree of Suspicion for Cancer. Chest 2020, 157, 1656–1664. [Google Scholar] [CrossRef]
- Tanner, N.T.; Yarmus, L.; Chen, A.; Memoli, J.W.; Mehta, H.J.; Pastis, N.J.; Lee, H.; Jantz, M.A.; Nietert, P.J.; Silvestri, G.A.; et al. Standard Bronchoscopy with Fluoroscopy vs. Thin Bronchoscopy and Radial Endobronchial Ultrasound for Biopsy of Pulmonary Lesions: A Multicenter, Prospective, Randomized Trial. Chest 2018, 154, 1035–1043. [Google Scholar] [CrossRef]
- Zuñiga, P.V.S.; Vakil, E.; Molina, S.; Bassett, R.L., Jr.; Ost, D.E. Sensitivity of Radial Endobronchial Ultrasound-Guided Bronchoscopy for Lung Cancer in Patients With Peripheral Pulmonary Lesions: An Updated Meta-analysis. Chest 2020, 157, 994–1011. [Google Scholar] [CrossRef] [PubMed]
- Hohenforst-Schmidt, W.; Zarogoulidis, P.; Vogl, T.; Turner, J.F.; Browning, R.; Linsmeier, B.; Huang, H.; Li, Q.; Darwiche, K.; Freitag, L.; et al. Cone Beam Computertomography (CBCT) in Interventional Chest Medicine—High Feasibility for Endobronchial Realtime Navigation. J. Cancer 2014, 5, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Bowling, M.R.; Brown, C.; Anciano, C.J. Feasibility and Safety of the Transbronchial Access Tool for Peripheral Pulmonary Nodule and Mass. Ann. Thorac. Surg. 2017, 104, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Ng, C.S.; Yu, S.C.; Lau, R.W.; Yim, A.P. Hybrid DynaCT-guided electromagnetic navigational bronchoscopic biopsy †. Eur. J. Cardiothorac. Surg. 2016, 49 (Suppl. 1), i87–i88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.C.; Kim, C.J.; Han, C.H.; Lee, S.M. Factors associated with the diagnostic yield of computed tomography-guided transbronchial lung biopsy. Thorac. Cancer 2017, 8, 153–158. [Google Scholar] [CrossRef]
- Pritchett, M.A.; Schampaert, S.; De Groot, J.A.; Schirmer, C.C.; Van Der Bom, I. Cone-Beam CT with Augmented Fluoroscopy Combined with Electromagnetic Navigation Bronchoscopy for Biopsy of Pulmonary Nodules. J. Bronchol. Interv. Pulmonol. 2018, 25, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Orth, R.; Wallace, M.J.; Kuo, M.D. C-arm Cone-beam CT: General Principles and Technical Considerations for Use in Interventional Radiology. J. Vasc. Interv. Radiol. 2009, 20 (Suppl. 7), S538–S544. [Google Scholar] [CrossRef] [PubMed]
- Glatz, A.C.; Zhu, X.; Gillespie, M.J.; Hanna, B.; Rome, J.J. Use of Angiographic CT Imaging in the Cardiac Catheterization Laboratory for Congenital Heart Disease. JACC Cardiovasc. Imaging 2010, 3, 1149–1157. [Google Scholar] [CrossRef]
- Gill, R.R.; Zheng, Y.; Barlow, J.S.; Jayender, J.; Girard, E.E.; Hartigan, P.M.; Chirieac, L.R.; Belle-King, C.J.; Murray, K.; Sears, C.; et al. Image-guided video assisted thoracoscopic surgery (iVATS)—Phase I-II clinical trial. J. Surg. Oncol. 2015, 112, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.S.; Kwok, M.W.T.; Yim, A.P.C.; Wong, R.H.L. Hybrid DynaCT scan-guided localization single-port lobectomy. [Corrected]. Chest 2015, 147, e76–e78. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-M.; Yu, K.-L.; Lin, J.-H.; Lin, K.-H.; Liu, Y.-L.; Sun, S.-E.; Meng, L.-H.; Ko, H.-J. Cumulative experience of preoperative real-time augmented fluoroscopy-guided endobronchial dye marking for small pulmonary nodules: An analysis of 30 initial patients. J. Formos. Med. Assoc. 2019, 118, 1232–1238. [Google Scholar] [CrossRef]
- Setser, R.; Chintalapani, G.; Bhadra, K.; Casal, R.F. Cone beam CT imaging for bronchoscopy: A technical review. J. Thorac. Dis. 2020, 12, 7416–7428. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-M.; Yu, K.-L.; Lin, K.-H.; Liu, Y.-L.; Sun, S.-E.; Meng, L.-H.; Ko, H.-J. Localization of Small Pulmonary Nodules Using Augmented Fluoroscopic Bronchoscopy: Experience from 100 Consecutive Cases. World J. Surg. 2020, 44, 2418–2425. [Google Scholar] [CrossRef] [PubMed]
- Sabath, B.F.; Casal, R.F. Bronchoscopic ablation of peripheral lung tumors. J. Thorac. Dis. 2019, 11, 2628–2638. [Google Scholar] [CrossRef]
- Abi-Jaoudeh, N.; Fisher, T.; Jacobus, J.; Skopec, M.; Radaelli, A.; Van Der Bom, I.M.; Wesley, R.; Wood, B. Prospective Randomized Trial for Image-Guided Biopsy Using Cone-Beam CT Navigation Compared with Conventional CT. J. Vasc. Interv. Radiol. 2016, 27, 1342–1349. [Google Scholar] [CrossRef] [PubMed]
- Shure, D. Transbronchial Biopsy and Needle Aspiration. Chest 1989, 95, 1130–1138. [Google Scholar] [CrossRef]
- Verhoeven, R.L.; Fütterer, J.J.; Hoefsloot, W.; Van Der Heijden, E.H. Cone-Beam CT Image Guidance with and without Electromagnetic Navigation Bronchoscopy for Biopsy of Peripheral Pulmonary Lesions. J. Bronchol. Interv. Pulmonol. 2021, 28, 60–69. [Google Scholar] [CrossRef]
- Pritchett, M. Feasibility of the Lungvision Augmented Endobronchial Fluoroscopic Navigation and Localization System: Comparison With Cone Beam CT for Nodule Localization. Chest 2017, 152, A863. [Google Scholar] [CrossRef]
- Pritchett, M.A. Prospective Analysis of a Novel Endobronchial Augmented Fluoroscopic Navigation System for Diagnosis of Peripheral Pulmonary Lesions. J. Bronchol. Interv. Pulmonol. 2021, 28, 107–115. [Google Scholar] [CrossRef]
- Rusca, M.; Proietti, S.; Schnyder, P.; Frascarolo, P.; Hedenstierna, G.; Spahn, D.R.; Magnusson, L. Prevention of Atelectasis Formation During Induction of General Anesthesia. Anesth. Analg. 2003, 97, 1835–1839. [Google Scholar] [CrossRef] [PubMed]
- Pritchett, M.A.; Bhadra, K.; Calcutt, M.; Folch, E. Virtual or reality: Divergence between preprocedural computed tomography scans and lung anatomy during guided bronchoscopy. J. Thorac. Dis. 2020, 12, 1595–1611. [Google Scholar] [CrossRef]
- Gildea, T.R. Lung Lesion Localization and the Diagnostic Drop. Ann. Am. Thorac. Soc. 2016, 13, 1450–1452. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.C.; Loiselle, A.; Zhou, L.; Baty, J.; Misselhorn, D. Localization of Peripheral Pulmonary Lesions Using a Method of Computed Tomography–Anatomic Correlation and Radial Probe Endobronchial Ultrasound Confirmation. Ann. Am. Thorac. Soc. 2016, 13, 1586–1592. [Google Scholar] [CrossRef] [PubMed]
- Hohenforst-Schmidt, W.; Banckwitz, R.; Zarogoulidis, P.; Vogl, T.; Darwiche, K.; Goldberg, E.; Huang, H.; Simoff, M.; Li, Q.; Browning, R.; et al. Radiation Exposure of Patients by Cone Beam CT during Endobronchial Navigation—A Phantom Study. J. Cancer 2014, 5, 192–202. [Google Scholar] [CrossRef] [Green Version]
- Hogarth, D.K. Use of augmented fluoroscopic imaging during diagnostic bronchoscopy. Future Oncol. 2018, 14, 2247–2252. [Google Scholar] [CrossRef]
- Pertzov, B.; Gershman, E.; Kassirer, M.; Heching, M.; Rosengarten, D.; Kramer, M. Use of Lungvision Navigational System to Improve Diagnostic Yield of Peripheral Lung Nodule Biopsy. Chest 2019, 156, A385. [Google Scholar] [CrossRef]
- Pertzov, B.; Unterman, A.; Heching, M.; Gershman, E.; Rosengarten, D.; Kramer, M.R. Use of augmented fluoroscopic navigation and guidance technology with transbronchial cryo biopsy to acquire tissue from peripheral lung nodules. In C110. Interventional Pulmonology: The Swiss Army Knife For Thoracic Oncology; American Thoracic Society: San Diego, CA, USA, 2018; p. A6154. [Google Scholar]
- Bhadra, K. Artificial Intelligence Improves Patient Outcomes for Diagnostics of Pulmonary Nodules During Navigational Bronchoscopy. In A72. Advances in Interventional Pulmonary; American Thoracic Society: Dallas, TX, USA, 2019; p. A2360. [Google Scholar]
- Pertzov, B.; Gershman, E.; Izhakian, S.; Heching, M.; Amor, S.M.; Rosengarten, D.; Kramer, M.R. The LungVision navigational platform for peripheral lung nodule biopsy and the added value of cryobiopsy. Thorac. Cancer 2021, 12, 2007–2012. [Google Scholar] [CrossRef] [PubMed]
- Cicenia, J.; Bhadra, K.; Sethi, S.; Nader, D.A.; Whitten, P.; Hogarth, D.K. Augmented Fluoroscopy: A New and Novel Navigation Platform for Peripheral Bronchoscopy. J. Bronchol. Interv. Pulmonol. 2021, 28, 116–123. [Google Scholar] [CrossRef]
- Eberhardt, R.; Anantham, D.; Ernst, A.; Feller-Kopman, D.; Herth, F. Multimodality bronchoscopic diagnosis of peripheral lung lesions: A randomized controlled trial. Am. J. Respir. Crit. Care Med. 2007, 176, 36–41. [Google Scholar] [CrossRef]
- Wang, N.; Ma, H.; Huang, H.; Feng, Y. Electromagnetic Navigation Bronchoscopy Combined Endobronchial Ultrasound in the Diagnosis of Lung Nodules. Medicine 2021, 100, e23979. [Google Scholar] [CrossRef] [PubMed]
- Kalchiem-Dekel, O.; Fuentes, P.; Bott, M.J.; Beattie, J.A.; Lee, R.P.; Chawla, M.; Husta, B.C. Multiplanar 3D fluoroscopy redefines tool–lesion relationship during robotic-assisted bronchoscopy. Radiology 2021, 26, 120–123. [Google Scholar] [CrossRef]
- Sobieszczyk, M.J.; Yuan, Z.; Li, W.; Krimsky, W. Biopsy of peripheral lung nodules utilizing cone beam computer tomography with and without trans bronchial access tool: A retrospective analysis. J. Thorac. Dis. 2018, 10, 5953–5959. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, C.; Yue, W.; Lu, M.; Tian, H. Comparison of computed tomographic imaging-guided hook wire localization and electromagnetic navigation bronchoscope localization in the resection of pulmonary nodules: A retrospective cohort study. Sci. Rep. 2020, 10, 1–7. [Google Scholar] [CrossRef]
- Bhatt, K.M.; Tandon, Y.K.; Graham, R.; Lau, C.T.; Lempel, J.K.; Azok, J.T.; Mazzone, P.J.; Schneider, E.; Obuchowski, N.A.; Bolen, M.A. Electromagnetic Navigational Bronchoscopy versus CT-guided Percutaneous Sampling of Peripheral Indeterminate Pulmonary Nodules: A Cohort Study. Radiology 2018, 286, 1052–1061. [Google Scholar] [CrossRef] [PubMed]
- Belanger, A.R.; Burks, A.C.; Chambers, D.M.; Ghosh, S.; MacRosty, C.R.; Conterato, A.J.; Rivera, M.P.; Akulian, J.A. Peripheral Lung Nodule Diagnosis and Fiducial Marker Placement Using a Novel Tip-Tracked Electromagnetic Navigation Bronchoscopy System. J. Bronchol. Interv. Pulmonol. 2019, 26, 41–48. [Google Scholar] [CrossRef]
- Milman, N.; Faurschou, P.; Munch, E.; Grode, G. Transbronchial lung biopsy through the fibre optic bronchoscope. Results and complications in 452 examinations. Respir. Med. 1994, 88, 749–753. [Google Scholar] [CrossRef]
- Chen, C.H.; Cheng, W.C.; Wu, B.R.; Chen, C.Y.; Chen, W.C.; Hsia, T.C.; Liao, W.-C.; Tu, C.-Y.; Shih, C.-M.; Hsu, W.-H.; et al. Improved diagnostic yield of bronchoscopy in peripheral pulmonary lesions: Combination of radial probe endobronchial ultrasound and rapid on-site evaluation. J. Thorac. Dis. 2015, 7 (Suppl. 4), S418–S425. [Google Scholar] [PubMed]
First Author [Ref.] | Year | N | Study Design | Diagnostic Yield % | Complication Rate% | Additional Technique(s) | |
---|---|---|---|---|---|---|---|
Ultrathin | |||||||
Oki et al. [58] | 2015 | 310 | Randomized trial | 74% | 3% | EBUS, Fluoroscopy, VBN | |
Sumi et al. [59] | 2020 | 168 | Retrospective study | 74.5% | 3.9% | EBUS | |
VBN | |||||||
Giri et al. [60] | 2021 | 1626 | Systematic review and meta-analysis | 74.17% | - | EBUS-TBLB | |
TAMIYA et al. [48] | 2013 | 68 | Retrospective study | Thin bronchoscopy with EBUS-GS under LungPoint guidance for small (≤30 mm) PPLs was 77.9% | - | LungPoint system + EBUS-GS Fluoroscopy | |
Xu et al. [49] | 2020 | 105 (50 VBN + 55 EBUS) | RCT | 76.0% VBN+EBUS 65.5% EBUS | 8.0% (4/50) VBN+EBUS 21.8% (12/55) EBUS | EBUS | |
Liu et al. [61] | 2020 | 202 | Retrospective study | 84.2% | - | EBUS-GS | |
Kitamura et al. [62] | 2021 | 131 | Retrospective study | 76.8% | No serious complications | EBUS-GS | |
ENB | |||||||
Yang et al. [76] | 2021 | 47 (35 percutaneous injection 12 ENB) | Prospective study | Location success rate 94.3% (33/35) vs. 100% (12/12) | Percutaneous marking group; 14% (5/35) pneumothorax | Fluoroscopy | |
SuperDimension™ | |||||||
Tian et al. [135] | 2020 | 157 (105 CT-guided hook wire 52 ENB) | Retrospective study | Location success rate 94.3% (99/105) vs. 100% (52/52) | CT-guided localization group; 7.6% (8/105) aymptomatic hemopneumothorax, 3.8% (4/105) symptomactic hemopneumothorax, 0.9% (1/105) hemotysis, 0.9% (1/105) decoupling | ||
Schwarz et al. [63] | 2006 | 13 | Prospective, controlled clinical study | 69.2% | No device-related adverse events | ||
Folch et al. [34] | 2019 | 1215 | Prospective multicenter cohort study | 73% | 4.3% pneumothorax, 2.5% hemorrhage | 91% Fluoroscopy 57% EBUS | |
Patrucco et al. [77] | 2018 | 113 | Retrospective observational study | 69% | No procedural complications | Fluoroscopy-guided, ROSE | |
Sun et al. [78] | 2017 | 40 | Prospective study | 82.5% | No complications | EBUS and Fluoroscopy | |
Gex et al. [79] | 2014 | 1033 | Systematic review and meta-analysis | 55.7–87.5% Pooled 64.9% | 3.1% pneumothorax, 1.6% tube thoracostomy | EBUS, Fluoroscopy, ROSE | |
Zhang et al. [80] | 2015 | 1106 | Meta-analysis | 60.0–94.0% | No procedural complications | EBUS, Fluoroscopy, ROSE | |
Folch et al. [81] | 2020 | 3342 | Systematic review and meta-analysis | Overall sensitivity 78% | 2.0% pneumothorax | 95% superDimension EBUS, Fluoroscopy, ROSE | |
Ost et al. [39] | 2016 | 581 15 centers | Registry | EMN 38.5% EBUS 57.0% No EMN and no EBUS 63.7% EMN+REBUS 47.1% | 1.7% pneumothorax, 0.2% bleeding, 0.2% refractory hypoxemia, 0.2% respiratory failure | 80.8% (252/312) superDimension | |
Becker et al. [82] | 2005 | 29 | Prospectively | 69% | 3.4% pneumothorax, 10.3% minor, self-limiting bleeding | EBUS | |
Lamprecht et al. [29] | 2012 | 112 | Single-center, prospective, observational study | Overall 83.9%; The first 30 procedures 80%; The last 30 procedures 87.5%; Lesions ≤ 20 mm 75.6% Lesions > 20 mm 89.6% | 1.8% pneumothorax | PET/CT and ROSE | |
Mohanasundaram et al. [83] | 2013 | 47 | Retrospective analysis | 89.4% | 13% (6/47) pneumothorax | ROSE | |
Khandhar et al. [84] | 2017 | 1129 | Prospective, multicenter study | Navigation success 91.8% (1036/1129) | 3.2% (32/1000) CTCAE Grade ≥ 2 pneumothorax, 4.9% (49/1000) any-grade pneumothorax, 1.0% (10/1000) CTCAE grade ≥ 2, and 2.3% (23/ 1000) overall bronchopulmonary hemorrhage, 0.6% (6/ 1000) CTCAE Grade ≥ 4 respiratory failure | 54.3% (543/1000) EBUS 90.1% (1017/1129) fluoroscopy ROSE | |
Cherian et al. [30] | 2021 | 76 | Retrospective chart review | 80.2% | 1.3% (1/76) pneumothorax requiring tube thoracostomy | Fluoroscopy | |
Bhatt et al. [136] | 2018 | 285 (150 ENB, 150 TTB) | Retrospective cohort study | ENB 66.0% TTB 86.0% | Pneumothorax (tube) ENB 4.0% (2.7%, 4/150 requiring chest tube), TTB 28.7% (1.3%, 2/150 requiring chest tube), bleeding (symptomatic), ENB 3.3% (2%, 3/150, symptomatic), TTB 16.7% (1.3%, 2/150 symptomatic) | ROSE | |
Eberhardt et al. [131] | 2007 | 118 (39 EBUS only, 39 ENB only, 40 combined) | Prospective randomized controlled trial | 69% EBUS only, 59% ENB only, 88% a combined | 6% overall pneumothorax, 5% 2/39EBUS only, 5% 2/39ENB only, 8% 3/40 a combined | EBUS | |
Wang et al. [132] | 2021 | 37 (23 in the solid nodule group and 14 in the subsolid pulmonary nodule group) | 91.8% (34 /37) diagnostic accuracy, 91.3% (21/23) solid, 92.8% (13/14) subsolid, 75% (27/36) diagnostic yield, 90.9% (20/22) solid, 50% (7/14) subsolid | 2.7% (1/36) complications | EBUS | ||
SPiN Thoracic | |||||||
Navigation System™ | Oh et al. [31] | 2021 | 100 | Single-center retrospective study | 53% upward trend after 60 cases, from 45–65% | 16% (16/100) complications, 3% (3/100) pneumothorax, 4% (4/100) moderate bleeding | No use of additional equipment |
Belanger et al. [137] | 2019 | 102 (56 ENB biopsy+FM placement, 37 biopsy, 9 FM placement) | Retrospective review | 78% | 2.9% (3/102) pneumothorax, 0.98% (1/102) hemorrhage, no complications occurred with FM placement using the EMN platform. | 93 p’t under ENB +/− EMTTNA 65 p’t FM EBUS-TBNA ROSE | |
SPiN Perc™ | MALLOW et al. [69] | 2019 | 129 | Retrospective, multicenter study | 73.7% | 17.8% | |
Yarmus et al. [70] | 2016 | 24 | Prospective single arm pilot study | The diagnostic yield for ETTNA alone was 83%, and increased to 87% (p = 0.0016) when ETTNA was combined with ENB. When ETTNA and NB were used with EBUS for complete staging, the diagnostic yield further increased to 92% | No bleeding events occurred. There were five pneumothorax (21%), of which only two (8%) subjects required drainage. | EBUS + ENB + ETTNA | |
Robotic | |||||||
Monarch™ | Chaddha et al. [91] | 2019 | 167 | Retrospective multicenter study | 69.1–77% navigation successful 88.6% | 3.6% (6/167) pneumothorax, 2.4% (4/167) requiring chest tube, 2.4% (4/167) bleeding | EMN EBUS |
Chen et al. [92] | 2021 | 54 | Prospective multicenter pilot and feasibility study | 74.1% localization success rate 96.2% | 3.7% (2/54) pneumothorax, 1.9% (1/54) requiring chest tube | EBUS ROSE | |
Intuitive Ion™ | Fielding et al. [87] | 2019 | 29 | Single-center | 79.3% localization success rate 96.6% | No device-related adverse events | EBUS |
AF | |||||||
LungVision™ | Pritchett et al. [119] | 2021 | 54 | Prospective, single-center, single-arm | 78.4% localization success rate 96.1% | No pneumothorax, respiratory failure, or bleeding events | ROSE Confirmed by CBCT |
Pertzov et al. [129] | 2021 | 63 | Prospective single-center | 81.8% | 1.6% (1/63) pneumothorax, requiring chest tube | 50 p’t Cryobiopsy EBUS ROSE | |
Cicenia et al. [130] | 2021 | 57 | Prospective multicenter study | 75.4% localization success rate 93% | EBUS ROSE |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.-C.; Chen, C.-H.; Tu, C.-Y. Advances in Diagnostic Bronchoscopy. Diagnostics 2021, 11, 1984. https://doi.org/10.3390/diagnostics11111984
Shen Y-C, Chen C-H, Tu C-Y. Advances in Diagnostic Bronchoscopy. Diagnostics. 2021; 11(11):1984. https://doi.org/10.3390/diagnostics11111984
Chicago/Turabian StyleShen, Yi-Cheng, Chia-Hung Chen, and Chih-Yen Tu. 2021. "Advances in Diagnostic Bronchoscopy" Diagnostics 11, no. 11: 1984. https://doi.org/10.3390/diagnostics11111984
APA StyleShen, Y. -C., Chen, C. -H., & Tu, C. -Y. (2021). Advances in Diagnostic Bronchoscopy. Diagnostics, 11(11), 1984. https://doi.org/10.3390/diagnostics11111984