Magnetic Resonance Imaging of Patellofemoral Morphometry Reveals Age and Gender Variations in the Knees of Children and Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Radiographic Measurement
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dewan, V.; Webb, M.S.L.; Prakash, D.; Malik, A.; Gella, S.; Kipps, C. Patella dislocation: An online systematic video analysis of the mechanism of injury. Knee Surg. Relat. Res. 2020, 32, 24. [Google Scholar] [CrossRef]
- Pope, T.L., Jr. MR imaging of patellar dislocation and relocation. In Semin. Ultrasound CT MR; WB Saunders: Philadelphia, PA, USA, 2001; Volume 22, pp. 371–382. [Google Scholar] [CrossRef]
- Rund, J.M.; Hinckel, B.B.; Sherman, S.L. Acute patellofemoral dislocation: Controversial decision-making. Curr. Rev. Musculoskelet. Med. 2021, 14, 82–87. [Google Scholar] [CrossRef]
- Sillanpää, P.; Mattila, V.M.; Iivonen, T.; Visuri, T.; Pihlajamäki, H. Incidence and risk factors of acute traumatic primary patellar dislocation. Med. Sci. Sports Exerc. 2008, 40, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Fithian, D.C.; Paxton, E.W.; Stone, M.L.; Silva, P.; Davis, D.K.; Elias, D.A.; White, L.M. Epidemiology and natural history of acute patellar dislocation. Am. J. Sports Med. 2004, 32, 1114–1121. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, M.; Owens, B.D.; Burks, R.; Sturdivant, R.X.; Cameron, K.L. Incidence of acute traumatic patellar dislocation among active-duty united states military service members. Am. J. Sports Med. 2010, 38, 1997–2004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanders, T.L.; Pareek, A.; Hewett, T.E.; Stuart, M.J.; Dahm, D.L.; Krych, A.J. Incidence of first-time lateral patellar dislocation: A 21-year population-based study. Sports Health 2018, 10, 146–151. [Google Scholar] [CrossRef]
- Wolfe, S.; Varacallo, M.; Thomas, J.D.; Carroll, J.J.; Kahwaji, C.I. Patellar instability. In Statpearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Carstensen, S.E.; Menzer, H.M.; Diduch, D.R. Patellar instability: When is trochleoplasty necessary? Sports Med. Arthrosc. Rev. 2017, 25, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.; Metcalfe, A.; Wogan, C.; Mandalia, V.; Eldridge, J. Adolescent patellar instability: Current concepts review. Bone Joint J. 2017, 99, 159–170. [Google Scholar] [CrossRef]
- Hasler, C.C.; Studer, D. Patella instability in children and adolescents. EFORT Open Rev. 2016, 1, 160–166. [Google Scholar] [CrossRef]
- Atkin, D.M.; Fithian, D.C.; Marangi, K.S.; Stone, M.L.; Dobson, B.E.; Mendelsohn, C. Characteristics of patients with primary acute lateral patellar dislocation and their recovery within the first 6 months of injury. Am. J. Sports Med. 2000, 28, 472–479. [Google Scholar] [CrossRef]
- Balcarek, P.; Walde, T.A.; Frosch, S.; Schüttrumpf, J.P.; Wachowski, M.M.; Stürmer, K.M.; Frosch, K.H. Patellar dislocations in children, adolescents and adults: A comparative mri study of medial patellofemoral ligament injury patterns and trochlear groove anatomy. Eur. J. Radiol. 2011, 79, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Düppe, K.; Gustavsson, N.; Edmonds, E.W. Developmental morphology in childhood patellar instability: Age-dependent differences on magnetic resonance imaging. J. Pediatr. Orthop. 2016, 36, 870–876. [Google Scholar] [CrossRef] [PubMed]
- Mehl, J.; Feucht, M.J.; Bode, G.; Dovi-Akue, D.; Südkamp, N.P.; Niemeyer, P. Association between patellar cartilage defects and patellofemoral geometry: A matched-pair mri comparison of patients with and without isolated patellar cartilage defects. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 838–846. [Google Scholar] [CrossRef]
- Askenberger, M.; Janarv, P.M.; Finnbogason, T.; Arendt, E.A. Morphology and anatomic patellar instability risk factors in first-time traumatic lateral patellar dislocations: A prospective magnetic resonance imaging study in skeletally immature children. Am. J. Sports Med. 2017, 45, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Pennock, A.T.; Chang, A.; Doan, J.; Bomar, J.D.; Edmonds, E.W. 3d knee trochlear morphology assessment by magnetic resonance imaging in patients with normal and dysplastic trochleae. J. Pediatr. Orthop. 2020, 40, 114–119. [Google Scholar] [CrossRef]
- Trivellas, M.; Kelley, B.; West, N.; Jackson, N.J.; Beck, J.J. Trochlear morphology development: Study of normal pediatric knee mris. J. Pediatr. Orthop. 2021, 41, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, E.W.; Bathen, M.; Bastrom, T.P. Normal parameters of the skeletally immature knee: Developmental changes on magnetic resonance imaging. J. Pediatr. Orthop. 2015, 35, 712–720. [Google Scholar] [CrossRef] [PubMed]
- Parikh, S.N.; Rajdev, N.; Sun, Q. The growth of trochlear dysplasia during adolescence. J. Pediatr. Orthop. 2018, 38, e318–e324. [Google Scholar] [CrossRef]
- Richmond, C.G.; Shea, K.G.; Burlile, J.F.; Heyer, A.M.; Ellis, H.B.; Wilson, P.L.; Arendt, E.A.; Tompkins, M.A. Patellar-trochlear morphology in pediatric patients from 2 to 11 years of age: A descriptive analysis based on computed tomography scanning. J. Pediatr. Orthop. 2020, 40, e96–e102. [Google Scholar] [CrossRef]
- Elias, D.A.; White, L.M. Imaging of patellofemoral disorders. Clin. Radiol. 2004, 59, 543–557. [Google Scholar] [CrossRef]
- Köhlitz, T.; Scheffler, S.; Jung, T.; Hoburg, A.; Vollnberg, B.; Wiener, E.; Diederichs, G. Prevalence and patterns of anatomical risk factors in patients after patellar dislocation: A case control study using mri. Eur. Radiol. 2013, 23, 1067–1074. [Google Scholar] [CrossRef]
- Prakash, J.; Seon, J.K.; Woo, S.H.; Jin, C.; Song, E.K. Comparison of radiological parameters between normal and patellar dislocation groups in korean population: A rotational profile ct-based study. Knee Surg. Relat. Res. 2016, 28, 302–311. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.W.; Lee, C.R.; Huh, T.Y. The effect of patellar facet angle on patellofemoral alignment and arthritis progression in posterior-stabilized total knee arthroplasty without patellar resurfacing. Knee Surg. Relat. Res. 2020, 32, 29. [Google Scholar] [CrossRef]
- Shu, L.; Ni, Q.; Yang, X.; Chen, B.; Wang, H.; Chen, L. Comparative study of the tibial tubercle-trochlear groove distance measured in two ways and tibial tubercle-posterior cruciate ligament distance in patients with patellofemoral instability. J. Orthop. Surg. Res. 2020, 15, 209. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Chen, D.; Xu, Z.; Shi, D.; Dai, J.; Jiang, Q. Evaluation of the effect of the sulcus angle and lateral to medial facet ratio of the patellar groove on patella tracking in aging subjects with stable knee joint. Biomed. Res. Int. 2018, 2018, 4396139. [Google Scholar] [CrossRef] [PubMed]
- Lewallen, L.W.; McIntosh, A.L.; Dahm, D.L. Predictors of recurrent instability after acute patellofemoral dislocation in pediatric and adolescent patients. Am. J. Sports Med. 2013, 41, 575–581. [Google Scholar] [CrossRef]
- Dejour, H.; Walch, G.; Nove-Josserand, L.; Guier, C. Factors of patellar instability: An anatomic radiographic study. Knee Surg. Sports Traumatol. Arthrosc. 1994, 2, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.E.; Nathani, A.; Dines, J.S.; Allen, A.A.; Shubin-Stein, B.E.; Arendt, E.A.; Bedi, A. An algorithmic approach to the management of recurrent lateral patellar dislocation. J. Bone Jt. Surg. Am. 2016, 98, 417–427. [Google Scholar] [CrossRef] [Green Version]
- Toms, A.P.; Cahir, J.; Swift, L.; Donell, S.T. Imaging the femoral sulcus with ultrasound, ct, and mri: Reliability and generalizability in patients with patellar instability. Skeletal Radiol. 2009, 38, 329–338. [Google Scholar] [CrossRef]
- Glard, Y.; Jouve, J.L.; Garron, E.; Adalian, P.; Tardieu, C.; Bollini, G. Anatomic study of femoral patellar groove in fetus. J. Pediatr. Orthop. 2005, 25, 305–308. [Google Scholar] [CrossRef]
- Palermi, S.; Massa, B.; Vecchiato, M.; Mazza, F.; De Blasiis, P.; Romano, A.M.; Di Salvatore, M.G.; Della Valle, E.; Tarantino, D.; Ruosi, C.; et al. Indirect Structural Muscle Injuries of Lower Limb: Rehabilitation and Therapeutic Exercise. J. Funct. Morphol. Kinesiol. 2021, 6, 75. [Google Scholar] [CrossRef] [PubMed]
- Sirico, F.; Palermi, S.; Massa, B.; Corrado, B. Tendinopathies of the hip and pelvis in athletes: A narrative review. J. Hum. Sports Exerc. 2020, 15, S748–S762. [Google Scholar] [CrossRef]
Number (Percentage) | Total | ||
---|---|---|---|
Age group (Male/Female) | 4–6 years | 25 (3.8%)/18 (2.7%) | 43 (6.5%) |
7–9 years | 35 (5.3%)/21 (3.2%) | 56 (8.4%) | |
10–12 years | 80 (12.1%)/38 (5.7%) | 118 (17.8%) | |
13–15 years | 117 (17.6%)/59 (8.9%) | 176 (26.5%) | |
16–18 years | 213 (32.1%)/57 (8.6%) | 270 (40.7%) | |
Total | 470 (70.9%)/193 (29.1%) | 663 (100%) |
Age Group (Mean ± SD and 95% Confidence Interval) | |||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Overall | |||||
TT-TG distance (mm) | 4.3 ± 2.7 (3.49–5.11) | 5.5 ± 3.1 (4.69–6.31) | 5.9 ± 3.2 (5.32–6.48) | 7.9 ± 3.9 (7.32–8.48) | 7.1 ± 4.3 (6.59–7.61) |
Sulcus angle (degree) | 144.9 ± 7.9 (143–147) | 143.7 ± 8.2 (142–146) | 137.7 ± 7.6 (136–139) | 136.2 ± 9.9 (135–138) | 133.2 ± 10.5 (132–134) |
Percent sulcus location (%) | 43.9 ± 6.6 (41.9–45.9) | 44.8 ± 6.6 (43.1–46.5) | 42.2 ± 5.0 (41.3–43.1) | 42.3 ± 5.5 (41.5–43.1) | 43.8 ± 10.5 (42.5–45) |
Percent Tibia tuberosity location (%) | 33.8 ± 6.9 (31.7–35.9) | 30.4 ± 6.4 (28.7–32.1) | 26.6 ± 7.1 (25.3–27.9) | 28.3 ± 6.0 (27.4–29.2) | 30.4 ± 4.8 (29.8–31) |
Lateral trochlear inclination (degree) | 20.8 ± 6.3 (18.9–22.7) | 21.2 ± 4.8 (19.9–22.5) | 21.2 ± 4.5 (20.4–22) | 21.8 ± 5.4 (21–22.6) | 22.5 ± 5.1 (21.9–23.1) |
Trochlear facet symmetry (ratio) | 0.9 ± 0.3 (0.81–0.99) | 0.8 ± 0.3 (0.72–0.88) | 0.8 ± 0.1 (0.782–0.818) | 0.7 ± 0.1 (0.685–0.715) | 0.7 ± 0.1 (0.69–0.71) |
Femoral depth (mm) | 4.0 ± 1.8 (3.46–4.54) | 4.9 ± 1.9 (4.4–5.4) | 6.6 ± 1.3 (6.36–6.83) | 7.0 ± 2.2 (6.67–7.33) | 8.0 ± 3.6 (7.57–8.43) |
Male | |||||
TT-TG distance (mm) | 4.5 ± 2.8 (3.4–5.6) | 6.2 ± 3.0 (5.21–7.19) | 6.4 ± 2.8 (5.79–7.01) | 8.3 ± 3.8 (7.61–8.99) | 7.4 ± 4.3 (6.82–7.98) |
Sulcus angle (degree) | 143.4 ± 7.9 (140–147) | 146.3 ± 7.4 (144–149) | 140.0 ± 6.4 (139–141) | 136.0 ± 10.0 (134–138) | 130.4 ± 9.1 (129–132) |
Percent sulcus location (%) | 42.8 ± 6.1 (40.4–45.2) | 44.0 ± 5.8 (42.1–45.9) | 42.4 ± 4.2 (41.5–43.3) | 42.0 ± 4.3 (41.2–42.8) | 43.4 ± 9.7 (42.1–44.7) |
Percent Tibia tuberosity location (%) | 32.4 ± 6.5 (29.8–34.9) | 29.0 ± 6.3 (26.9–31.1) | 24.5 ± 6.4 (23.1–25.9) | 26.6 ± 5.3 (25.6–27.6) | 29.8 ± 4.3 (29.2–30.4) |
Lateral trochlear inclination (degree) | 20.6 ± 7.2 (17.8–23.4) | 20.1 ± 4.5 (18.6–21.6) | 20.1 ± 3.8 (19.3–20.9) | 21.6 ± 5.8 (20.6–22.7) | 22.1 ± 4.3 (21.5–22.7) |
Trochlear facet symmetry (ratio) | 0.9 ± 0.4 (0.743–1.06) | 0.9 ± 0.4 (0.767–1.03) | 0.8 ± 0.1 (0.778–0.822) | 0.7 ± 0.1 (0.682–0.718) | 0.7 ± 0.1 (0.687–0.713) |
Femoral depth (mm) | 4.2 ± 2.2 (3.34–5.06) | 4.5 ± 2.0 (3.84–5.16) | 6.4 ± 1.2 (6.14–6.66) | 7.3 ± 2.5 (6.85–7.75) | 8.7 ± 3.7 (8.2–9.2) |
Female | |||||
TT-TG distance (mm) | 4.1 ± 2.7 (2.85–5.35) | 4.3 ± 3.0 (3.02–5.58) | 4.9 ± 3.6 (3.76–6.04) | 7.2 ± 4.0 (6.18–8.22) | 6.3 ± 3.9 (5.29–7.31) |
Sulcus angle (degree) | 147.1 ± 7.7 (144–151) | 139.5 ± 8.0 (136–143) | 133.0 ± 8.1 (130–136) | 136.7 ± 9.5 (134–139) | 143.7 ± 8.6 (141–146) |
Percent sulcus location (%) | 45.4 ± 7.0 (42.2–48.6) | 46.1 ± 7.7 (42.8–49.4) | 41.8 ± 6.2 (39.8–43.8) | 42.9 ± 7.4 (41–44.8) | 45.1 ± 13.0 (41.7–48.5) |
Percent Tibia tuberosity location (%) | 35.5 ± 7.2 (32.2–38.8) | 33.0 ± 5.9 (30.5–35.5) | 30.7 ± 6.7 (28.6–32.8) | 31.3 ± 6.6 (29.6–33) | 32.7 ± 5.6 (31.3–34.2) |
Lateral trochlear inclination (degree) | 21.2 ± 4.9 (18.9–23.5) | 22.9 ± 4.8 (20.8–24.9) | 23.8 ± 5.0 (22.2–25.4) | 22.0 ± 4.4 (20.9–23.1) | 23.9 ± 7.3 (22–25.8) |
Trochlear facet symmetry (ratio) | 0.9 ± 0.2 (0.808–0.992) | 0.7 ± 0.2 (0.614–0.785) | 0.8 ± 0.1 (0.768–0.832) | 0.7 ± 0.2 (0.649–0.751) | 0.7 ± 0.3 (0.622–0.778) |
Femoral depth (mm) | 3.6 ± 1.2 (3.05–4.15) | 5.7 ± 1.3 (5.14–6.26) | 6.9 ± 1.4 (6.46–7.35) | 6.5 ± 1.4 (6.14–6.86) | 5.5 ± 1.6 (5.08–5.92) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, W.; Lee, S.-J.; Oh, J.; Baek, H.; Yang, J.; Shin, J.; Jung, B.; Lee, S. Magnetic Resonance Imaging of Patellofemoral Morphometry Reveals Age and Gender Variations in the Knees of Children and Adolescents. Diagnostics 2021, 11, 1985. https://doi.org/10.3390/diagnostics11111985
Choi W, Lee S-J, Oh J, Baek H, Yang J, Shin J, Jung B, Lee S. Magnetic Resonance Imaging of Patellofemoral Morphometry Reveals Age and Gender Variations in the Knees of Children and Adolescents. Diagnostics. 2021; 11(11):1985. https://doi.org/10.3390/diagnostics11111985
Chicago/Turabian StyleChoi, Wonchul, Sang-June Lee, Jongbeom Oh, Hongseok Baek, Jinhyuk Yang, Jaeyeon Shin, Bosung Jung, and Soonchul Lee. 2021. "Magnetic Resonance Imaging of Patellofemoral Morphometry Reveals Age and Gender Variations in the Knees of Children and Adolescents" Diagnostics 11, no. 11: 1985. https://doi.org/10.3390/diagnostics11111985
APA StyleChoi, W., Lee, S. -J., Oh, J., Baek, H., Yang, J., Shin, J., Jung, B., & Lee, S. (2021). Magnetic Resonance Imaging of Patellofemoral Morphometry Reveals Age and Gender Variations in the Knees of Children and Adolescents. Diagnostics, 11(11), 1985. https://doi.org/10.3390/diagnostics11111985