Thromboelastometry in Neonates with Respiratory Distress Syndrome: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Data Synthesis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Avery, M.E. Surface Properties in Relation to Atelectasis and Hyaline Membrane Disease. Arch. Pediatr. Adolesc. Med. 1959, 97, 517–523. [Google Scholar] [CrossRef]
- Liszewski, M.C.; Stanescu, A.L.; Phillips, G.S.; Lee, E.Y. Respiratory Distress in Neonates: Underlying Causes and Current Imaging Assessment. Radiol. Clin. N. Am. 2017, 55, 629–644. [Google Scholar] [CrossRef]
- Stoll, B.J.; Hansen, N.I.; Bell, E.F.; Shankaran, S.; Laptook, A.R.; Walsh, M.C.; Hale, E.C.; Newman, N.S.; Schibler, K.; Carlo, W.A.; et al. Neonatal Outcomes of Extremely Preterm Infants From the NICHD Neonatal Research Network. Pediatrics 2010, 126, 443–456. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, N.; Giles, B.L.; Dell, S.D. Full-Term Neonatal Respiratory Distress and Chronic Lung Disease. Pediatr. Ann. 2019, 48, e175–e181. [Google Scholar] [CrossRef]
- Thompson, B.T.; Chambers, R.C.; Liu, K.D. Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2017, 377, 562–572. [Google Scholar] [CrossRef] [PubMed]
- Aronis, S.; Platokouki, H.; Photopoulos, S.; Adamtziki, E.; Xanthou, M. Indications of coagulation and/or fibrinolytic system activation in healthy and sick very-low-birth-weight neonates. Biol. Neonate 1998, 74, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, B.K. Antithrombin III deficiency in neonatal respiratory distress syndrome. Blood Coagul. Fibrinolysis 1994, 5, S13–S18. [Google Scholar] [CrossRef]
- Brus, F.; Van Oeveren, W.; Heikamp, A.; Okken, A.; Oetomo, S.B. Leakage of Protein into Lungs of Preterm Ventilated Rabbits Is Correlated with Activation of Clotting, Complement, and Polymorphonuclear Leukocytes in Plasma. Pediatr. Res. 1996, 39, 958–965. [Google Scholar] [CrossRef] [Green Version]
- Brus, F.; Oetomo, S.B.; Schieving, J.; Groothuis, E.; Okken, A.; van Oeveren, W. Increased Tissue-Type Plasminogen Activator Antigen Release Is Not Accompanied by Increased Systemic Fibrinolytic Activity in Severe Neonatal Respiratory Distress Syndrome. Pediatr. Res. 1999, 45, 588–594. [Google Scholar] [CrossRef] [Green Version]
- Peters, M.; Cate, J.W.T.; Veld, C.B.; De Leeuw, R.; Emeis, J.; Koppe, J. Low Antithrombin III Levels in Neonates with Idiopathic Respiratory Distress Syndrome: Poor Prognosis. Pediatr. Res. 1984, 18, 273–276. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, B.; Vegh, P.; Weitz, J.; Johnston, M.; Caco, C.; Roberts, R. Thrombin/Antithrombin III Complex Formation in the Neonatal Respiratory Distress Syndrome. Am. Rev. Respir. Dis. 1992, 145, 767–770. [Google Scholar] [CrossRef] [PubMed]
- Canpolat, F.E.; Yurdakök, M.; Armangil, D.; Yiğit, Ş. Mean platelet volume in neonatal respiratory distress syndrome. Pediatr. Int. 2009, 51, 314–316. [Google Scholar] [CrossRef]
- Go, H.; Ohto, H.; Nollet, K.E.; Kashiwabara, N.; Ogasawara, K.; Chishiki, M.; Miyazaki, K.; Sato, K.; Sato, M.; Kawasa-ki, Y.; et al. Perinatal Factors Affecting Coagulation Parameters at Birth in Preterm and Term Neo-nates: A Retrospective Cohort Study. Am. J. Perinatol. 2019, 36, 1464–1470. [Google Scholar] [PubMed]
- Rubarth, L.B.; Quinn, J. Respiratory Development and Respiratory Distress Syndrome. Neonatal Netw. 2015, 34, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Halliday, H.L. History of Surfactant from 1980. Neonatology 2005, 87, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Konishi, M.; Chida, S.; Shimada, S.; Kasai, T.; Murakami, Y.; Cho, K.; Fujii, Y.; Maeta, H.; Fujiwara, T. Surfactant Re-placement Therapy in Premature Babies with Respiratory Distress Syndrome: Factors Affecting the Response to Surfactant and Comparison of Outcome from 1982-86 and 1987-91. Acta Paediatr. Jpn. Overseas Ed. 1992, 34, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Nowak-Göttl, U.; Duering, C.; Kempf-Bielack, B.; Sträter, R. Thromboembolic Diseases in Neonates and Children. Pathophysiol. Haemost. Thromb. 2003, 33, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Veldman, A.; Nold, M.F.; Michel-Behnke, I. Thrombosis in the Critically Ill Neonate: Incidence, Diagnosis, and Management. Vasc. Health Risk Manag. 2008, 4, 1337–1348. [Google Scholar] [PubMed] [Green Version]
- Veldman, A.; Fischer, D.; Nold, M.F.; Wong, F.Y. Disseminated Intravascular Coagulation in Term and Preterm Neonates. Semin. Thromb. Hemost. 2010, 36, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidi, A.; Sokou, R.; Parastatidou, S.; Lampropoulou, K.; Katsaras, G.; Boutsikou, T.; Gounaris, A.K.; Tsantes, A.E.; Iacovidou, N. Clinical Application of Thromboelastography/Thromboelastometry (TEG/TEM) in the Neonatal Population: A Narrative Review. Semin. Thromb. Hemost. 2019, 45, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Simurda, T.; Casini, A.; Stasko, J.; Hudecek, J.; Skornova, I.; Vilar, R.; Neerman-Arbez, M.; Kubisz, P. Perioperative management of a severe congenital hypofibrinogenemia with thrombotic phenotype. Thromb. Res. 2020, 188, 1–4. [Google Scholar] [CrossRef]
- Sokou, R.; Piovani, D.; Konstantinidi, A.; Tsantes, A.G.; Parastatidou, S.; Lampridou, M.; Ioakeimidis, G.; Gounaris, A.; Iacovidou, N.; Kriebardis, A.G.; et al. A Risk Score for Predicting the Incidence of Hemorrhage in Critically Ill Neonates: Development and Validation Study. Thromb. Haemost. 2021, 121, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Lampridou, M.; Sokou, R.; Tsantes, A.G.; Theodoraki, M.; Konstantinidi, A.; Ioakeimidis, G.; Bonovas, S.; Politou, M.; Valsami, S.; Iliodromiti, Z.; et al. ROTEM diagnostic capacity for measuring fibrinolysis in neonatal sepsis. Thromb. Res. 2020, 192, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidi, A.; Sokou, R.; Tsantes, A.; Parastatidou, S.; Bonovas, S.; Kouskouni, E.; Gounaris, A.K.; Tsantes, A.E.; Lacovidou, N. Thromboelastometry Variables in Neonates with Perinatal Hypoxia. Semin. Thromb. Hemost. 2020, 46, 428–434. [Google Scholar] [CrossRef]
- Parastatidou, S.; Sokou, R.; Tsantes, A.G.; Konstantinidi, A.; Lampridou, M.; Ioakeimidis, G.; Panagiotounakou, P.; Kyr-iakou, E.; Kokoris, S.; Gialeraki, A.; et al. The Role of ROTEM Variables Based on Clot Elasticity and Platelet Component in Predicting Bleeding Risk in Throm-bocytopenic Critically Ill Neonates. Eur. J. Haematol. 2021, 106, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Sokou, R.; Giallouros, G.; Konstantinidi, A.; Pantavou, K.; Nikolopoulos, G.; Bonovas, S.; Lytras, T.; Kyriakou, E.; Lambadaridis, I.; Gounaris, A.; et al. Thromboelastometry for diagnosis of neonatal sepsis-associated coagulopathy: An observational study. Eur. J. Nucl. Med. Mol. Imaging 2018, 177, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Gomella, T.L.; Eyal, F.G.; Bany-Mohhamed, F. (Eds.) Respiratory Distress Syndrome. In Gomella’s Neonatology; McGraw Hill: New York, NY, USA, 2020; pp. 1043–1050. [Google Scholar]
- Faix, R.G.; Viscardi, R.M.; DiPietro, M.A.; Nicks, J.J. Adult respiratory distress syndrome in full-term newborns. Pediatrics 1989, 83, 971–976. [Google Scholar] [PubMed]
- Bouziri, A.; Slima, S.B.; Hamdi, A.; Menif, K.; Belhadj, S.; Khaldi, A.; Kechaou, W.; Kazdaghli, K.; Jaballah, N.B. Acute respiratory distress syndrome in infants at term and near term about 23 cases. La Tunis. Med. 2007, 85, 874–879. [Google Scholar]
- Liu, J. Respiratory Distress Syndrome in Full-Term Neonates. J. Neonatal Biol. 2012, S1, 36–44. [Google Scholar] [CrossRef]
- Shi, Y.; Dong, J.-Y.; Zheng, T.; Li, J.-Y.; Lu, L.-L.; Liu, J.-J.; Liang, J.; Zhang, H.; Feng, Z.-C. Clinical characteristics, diagnosis and management of respiratory distress syndrome in full-term neonates. Chin. Med. J. 2010, 123, 2640–2644. [Google Scholar]
- Parer, J.T.; Livingston, E.G. What Is Fetal Distress? Am. J. Obstet. Gynecol. 1990, 162, 1421–1427. [Google Scholar] [CrossRef]
- Sokou, R.; Foudoulaki-Paparizos, L.; Lytras, T.; Konstantinidi, A.; Theodoraki, M.; Lambadaridis, I.; Gounaris, A.; Valsami, S.; Politou, M.; Gialeraki, A.; et al. Reference ranges of thromboelastometry in healthy full-term and pre-term neonates. Clin. Chem. Lab. Med. 2017, 55, 1592–1597. [Google Scholar] [CrossRef] [PubMed]
- Buch, P.M.; Makwana, A.M.; Chudasama, R.K. Usefulness of Downe Score as Clinical Assessment Tool and Bubble CPAP as Primary Respiratory Support in Neonatal Respiratory Distress Syndrome. J. Pediatr. Sci. 2013, 5, e176. [Google Scholar]
- Ramirez, M.N.M.; Godoy, L.E.; Barrientos, E.A. SNAP II and SNAPPE II as Predictors of Neonatal Mortality in a Pediatric Intensive Care Unit: Does Postnatal Age Play a Role? Int. J. Pediatr. 2014, 2014, 298198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silveira, R.D.C.; Schlabendorff, M.; Procianoy, R.S. Predictive value of SNAP and SNAP-PE for neonatal mortality. J. Pediatr. 2001, 77, 455–460. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, A.; Batra, P.; Faridi, M.M.A.; Harit, D. PaO2/FiO2 Ratio as Predictor of Mortality in Neonates with Meconium Aspiration Syndrome. Am. J. Perinatol. 2019, 36, 609–614. [Google Scholar] [CrossRef]
- Görlinger, K.; Dirkmann, D.; Hank, A.A. Rotational Thromboelastometry (ROTEM®). In Trauma Induced Coagulopathy; Moore, H.B., Neal, M.D., Moore, E.E., Eds.; Springer: Cham, Switzerland, 2021; pp. 270–271. [Google Scholar]
- Revel-vilk, S. The Conundrum of Neonatal Coagulopathy. Am. Soc. Hematol. Educ. Progr. 2012, 2012, 450–454. [Google Scholar] [CrossRef]
- Andrew, M.; Paes, B.; Milner, R.; Johnston, M.; Mitchell, L.; Tollefsen, D.M.; Castle, V.; Powers, P. Development of the Human Coagulation System in the Healthy Premature Infant. Blood 1988, 72, 1651–1657. [Google Scholar] [CrossRef] [Green Version]
- Katsaras, G.Ν.; Sokou, R.; Tsantes, A.G.; Piovani, D.; Bonovas, S.; Konstantinidi, A.; Ioakeimidis, G.; Parastatidou, S.; Gialamprinou, D.; Makrogianni, A.; et al. The use of thromboelastography (TEG) and rotational thromboelastometry (ROTEM) in neonates: A systematic review. Eur. J. Nucl. Med. Mol. Imaging 2021, 1–16. [Google Scholar] [CrossRef]
- Francis, J.; Armstrong, D. Sialic Acid and Enzymatic Desialation of Cord Blood Fibrinogen. Pathophysiol. Haemost. Thromb. 1982, 11, 223–228. [Google Scholar] [CrossRef]
- Pinacho, A.; Paramo, J.A.; Ezcurdia, M.; Rocha, E. Evaluation of the fibrinolytic system in full-term neonates. Int. J. Clin. Lab. Res. 1995, 25, 149–152. [Google Scholar] [CrossRef]
- Reuter, S.; Moser, C.; Baack, M. Respiratory Distress in the Newborn. Pediatr. Rev. 2014, 35, 417–429. [Google Scholar] [CrossRef] [Green Version]
- Distefano, G.; Romeo, M.G.; Betta, P.; Rodono, A.; Amato, M. Thrombomodulin Serum Levels in Ventilated Preterm Babies with Respiratory Distress Syndrome. Eur. J. Pediatr. 1998, 157, 327–330. [Google Scholar] [CrossRef] [PubMed]
- Boyer, C.; Ménaché, D.; Beaufils, F.; Mathieu, H. Haemostatic Disorders and Respiratory Distress in the Newborn. Intensive Care Med. 1977, 3, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Cheek, D.B.; Malinek, M.; Fraillon, J.M. Plasma adrenaline and noradrenaline in the neonatal period, and infants with respiratory distress syndrome and placental insufficiency. Pediatrics 1963, 31, 374–381. [Google Scholar]
- Ratnoff, O.D. Disseminated Intravascular Coagulation: An Intermediary Mechanism of Disease. JAMA 1965, 192, 175–176. [Google Scholar] [CrossRef]
- Chen, G.Y.; Nuñez, G. Sterile inflammation: Sensing and reacting to damage. Nat. Rev. Immunol. 2010, 10, 826–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, T. PAMPs and DAMPs as triggers for DIC. J. Intensive Care 2014, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Heikinheimo, R. Coagulation Studies with Fetal Blood. Neonatology 1964, 7, 319–327. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, S. Clotting factors in newborn. Biol. Neonatorum 1956, 5, 97–107. [Google Scholar]
- Larrieu, M.J.; Soulier, J.P.; Minkowski, A. Umbilical cord blood; complete study of its coaguability, comparison with maternal blood. Biol. Neonatorum 1952, 1, 39–60. [Google Scholar]
- Markarian, M.; Githens, J.H.; Rosenblüt, E.; Fernandez, F.; Jackson, J.J.; Bannon, A.E.; Lindley, A.; Lubchenco, L.O.; Martorell, R. Hypercoagulability in Premature Infants with Special Reference to the Respiratory Distress Syndrome and Hemorrhage. I. Coagulation Studies. Biol. Neonate 1971, 17, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Yurdakök, M.; Yigit, Ş.; Gürakan, B.; Dündar, S.; Kirazli, Ş. Thrombin-antithrombin III and prothrombin fragment 1.2 levels in early respiratory distress syndrome. Am. J. Hematol. 1996, 51, 247–248. [Google Scholar] [CrossRef]
- Watkins, M.N.; Swan, S.; Caprini, J.A.; Gardner, T.H.; Zuckerman, L.; Vagher, J.P. Coagulation Changes in the New-born with Respiratory Failure. Thromb. Res. 1980, 17, 153–175. [Google Scholar] [CrossRef]
- Brus, F.; van Oeveren, W.; Okken, A.; Oetomo, S.B. Activation of the Plasma Clotting, Fibrinolytic, and Kinin-Kallikrein System in Preterm Infants with Severe Idiopathic Respiratory Distress Syndrome. Pediatr. Res. 1994, 36, 647–653. [Google Scholar] [CrossRef] [Green Version]
- De Vries, J.J.; Veen, C.S.B.; Snoek, C.J.M.; Kruip, M.J.H.A.; de Maat, M.P.M. FIBTEM clot firmness parameters correlate well with the fibrinogen concentration measured by the Clauss assay in patients and healthy subjects. Scand. J. Clin. Lab. Investig. 2020, 80, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Tsantes, A.G.; Papadopoulos, D.V.; Trikoupis, I.G.; Tsante, K.A.; Mavrogenis, A.F.; Koulouvaris, P.; Vaiopoulos, A.G.; Piovani, D.; Nikolopoulos, G.K.; Kokoris, S.I.; et al. The Prognostic Performance of Rotational Thromboelastometry for Excessive Bleeding and Increased Transfusion Requirements in Hip Fracture Surgeries. Thromb. Haemost. 2021. [Google Scholar] [CrossRef]
- Simurda, T.; Vilar, R.; Zolkova, J.; Ceznerova, E.; Kolkova, Z.; Loderer, D.; Neerman-Arbez, M.; Casini, A.; Brunclikova, M.; Skornova, I.; et al. A Novel Nonsense Mutation in FGB (c.1421G>A; p.Trp474Ter) in the Beta Chain of Fibrinogen Causing Hypofibrinogenemia with Bleeding Phenotype. Biomedicines 2020, 8, 605. [Google Scholar] [CrossRef]
- Ballabh, P. Pathogenesis and Prevention of Intraventricular Hemorrhage. Clin. Perinatol. 2014, 41, 47–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egesa, W.I.; Odoch, S.; Odong, R.J.; Nakalema, G.; Asiimwe, D.; Ekuk, E.; Twesigemukama, S.; Turyasiima, M.; Lokengama, R.K.; Waibi, W.M.; et al. Germinal Matrix-Intraventricular Hemorrhage: A Tale of Preterm Infants. Int. J. Pediatr. 2021, 201, 1–14. [Google Scholar] [CrossRef] [PubMed]
Neonates with RDS (n = 48) | Healthy Neonates—Group A (n = 282) | Healthy Neonates—Group B (n = 102) | Neonates with RDS vs. Group A p-Value | Neonates with RDS vs. Group B p-Value | |
---|---|---|---|---|---|
Preterm neonates | |||||
n (%) | 24 (48.98) | 84 (29.79) | 17 (16) | ||
GA in weeks, Median (IQR) | 35 (32.25–35.75) | 34.5 (33–35) | 35 (34–36) | 0.636 * | 0.443 * |
BW in grams, Median (IQR) | 2250 (1847.5–2867.5) | 2.150 (1842.5–2.440) | 2300 (2190–2475) | 0.202 * | 0.968 * |
Delivery mode [CS, n (%)] | 18 (75) | 72 (85.7) | 16 (94.1) | 0.214 ^ | 0.207 ^ |
Gender [male, n (%)] | 19 (79.2) | 44 (52.4) | 13 (76.5) | 0.019 ^ | 1.000 ^ |
Term neonates | |||||
n (%) | 24 (48.98) | 198 (70.21%) | 85 (80.19) | ||
GA in weeks, Median (IQR) | 38 (38–39) | 39 (37–39) | 38 (38–39) | 0.039 * | 0.053 * |
BW in grams, Median (IQR) | 3085 (2800–3415) | 3.245 (2907.5–3492.5) | 3250 (3000–3575) | 0.245 * | 0.077 * |
Delivery mode [CS, n (%)] | 19 (79.2) | 78 (39.4) | 34 (40) | <0.001 ^ | 0.001 ^ |
Gender [male, n (%)] | 19 (79.2) | 89 (44.9) | 40 (47.1) | 0.002 ^ | 0.006 ^ |
Clinical Characteristic | Values |
---|---|
Twin pregnancy, n (%) | 3 (6.3) |
Fetal distress, n (%) | 21 (43.8) |
Gestational diabetes, n (%) | 4 (8.3) |
Preeclampsia, n (%) | 4 (8.3) |
Placental abruption, n (%) | 4 (8.3) |
IUGR, n (%) | 2 (4.2) |
SGA, n (%) | 2 (4.2) |
ELSCS, n (% of all CS) | 33 (89.19) |
Prenatal steroids, n (%) | 9 (18.4) |
CHD, n (%) | 3 (6.2) |
Hour of life on admission, Median (IQR) | 5 (5–6.75) |
Ph on admission, Mean (±SD) | 7.32 (0.07) |
Air leak syndrome, n (%) | 12 (24.6) |
PO2/FiO2 (mmHg), Median (IQR) | 230.4 (155.67–315) |
Downes score, Mean (±SD) | 2.35 (1.72) |
SNAP-PE score, Mean (±SD) | 5.71 (5.54) |
WBC (K/μL), Mean (±SD) | 17.06 (6.09) |
Neu (K/μL), Mean (±SD) | 11 (4.82) |
NRBC (M/μL), Mean (±SD) | 4.48 (0.64) |
Hct (%), Mean (±SD) | 45.8 (6.34) |
PLT (K/μL), Mean (±SD) | 260.57 (70.94) |
CRP (mg/L), Median (IQR) | 1.5 (0.7–2.2) |
ROTEM Variable | EXTEM | INTEM | FIBTEM | ||||||
---|---|---|---|---|---|---|---|---|---|
Healthy Term Neonates (N = 198) | Term Neonates with RDS (N = 24) | p-Value * | Healthy Term Neonates (N = 85) | Term Neonates with RDS (N = 24) | p-Value * | Healthy Term Neonates (N = 85) | Term Neonates with RDS (N = 24) | p-Value * | |
CT (sec) | 41 (36–51) | 63 (55–74) | <0.001 | 202 (184–223.5) | 215 (182–243) | 0.268 | 48 (41.5–56.5) | 59.5 (50.25–70.75) | <0.001 |
CFT (sec) | 58 (53–63) | 122 (97–138) | <0.001 | 75 (63.5–90.5) | 89 (81–108) | <0.001 | 263 (3.77–679) | ||
A10 (mm) | 65 (59.75–69) | 44 (42–47) | <0.001 | 54 (50–57) | 48 (46–50) | <0.001 | 14 (12–17) | 9 (8–11) | <0.001 |
MCF (sec) | 66 (60–71) | 53 (50–55) | <0.001 | 59 (55–62) | 53 (50–55) | <0.001 | 16 (13–19) | 10.5 (9–13) | <0.001 |
LI60 (%) | 97 (95–99) | 94 (92–95) | <0.001 | 93 (90–95) | 93 (92–94) | 0.963 | 100 | 100 (97–100) | 0.189 |
Healthy preterm neonates (N = 84) | Preterm neonates with RDS (N = 24) | Healthy preterm neonates (N = 17) | Preterm neonates with RDS (N = 24) | Healthy preterm neonates (N = 17) | Preterm neonates with RDS (N = 24) | ||||
CT (sec) | 44 (37–51) | 58 (49–64) | <0.001 | 202 (189–218) | 198 (175–237) | 0.980 | 48 (44–53) | 57 (46–84.25) | 0.010 |
CFT (sec) | 57.5 (52–64.75) | 101 (92–130) | <0.001 | 58 (51–76) | 82 (65–103) | <0.001 | 118 (1.86–242) | ||
A10 (mm) | 62 (57.25–68) | 45 (42–52) | <0.001 | 58 (55–63) | 47 (45–52) | <0.001 | 17 (14–20) | 10 (7–13) | <0.001 |
MCF (sec) | 64 (57.25–70.75) | 51 (49–57) | <0.001 | 62 (59–67) | 53 (48–57) | <0.001 | 19 (15–23) | 11 (7.75–14) | <0.001 |
LI60 (%) | 96 (93–100) | 91 (91–94) | <0.001 | 92.5 (90.75–94.25) | 92 (90–94) | 0.382 | 100 (99–100) | 100 (97.5–100) | 0.948 |
ROTEM Parameters | OR | 95% CI | p-Value |
---|---|---|---|
EXTEM CT (sec) | 1.087 | 1.050–1.126 | <0.001 |
EXTEM CFT (sec) | 990.825 | 0.000–2.603 × 10124 | 0.961 |
EXTEM A10 (mm) | 0.778 | 0.716–0.845 | <0.001 |
EXTEM MCF (mm) | 0.866 | 0.818–0.916 | <0.001 |
EXTEM LI60 (%) | 0.846 | 0.774–0.925 | <0.001 |
INTEM CT (sec) | 0.996 | 0.979–1.013 | 0.649 |
INTEM CFT (sec) | 1.012 | 0.994–1.031 | 0.192 |
INTEM A10 (mm) | 0.840 | 0.752–0.939 | 0.002 |
INTEM MCF (mm) | 0.786 | 0.685–0.904 | <0.001 |
INTEM LI60 (%) | 0.869 | 0.764–1.050 | 0.174 |
FIBTEM CT (sec) | 1.002 | 0.995–1.009 | 0.550 |
FIBTEM CFT (sec) | 0.827 | 0.000–1.7396 × 1034 | 0.996 |
FIBTEM A10 (mm) | 0.511 | 0.354–0.739 | <0.001 |
FIBTEM MCF (mm) | 0.594 | 0.448–0.787 | <0.001 |
FIBTEM LI60 (%) | 1.067 | 0.912–1.248 | 0.420 |
CT (sec) | CFT (sec) | A10 (mm) | MCF (mm) | LI60 (%) | |
---|---|---|---|---|---|
EXTEM | |||||
Downes Score | |||||
Correlation coefficient | −0.062 * | −0.163 * | 0.186 * | 0.262 * | 0.226 * |
p-value | 0.688 | 0.29 | 0.227 | 0.086 | 0.14 |
SNAP-PE Score | |||||
Correlation coefficient | −0.055 * | −0.261 * | 0.067 * | 0.036 * | 0.052 * |
p-value | 0.714 | 0.077 | 0.654 | 0.811 | 0.727 |
INTEM | |||||
Downes Score | |||||
Correlation coefficient | −0.024 * | −0.192 * | 0.155 * | 0.163 * | 0.053 ** |
p-value | 0.877 | 0.212 | 0.316 | 0.29 | 0.732 |
SNAP-PE Score | |||||
Correlation coefficient | −0.103 * | −0.245 * | 0.122 * | 0.094 * | −0.153 ** |
p-value | 0.489 | 0.096 | 0.414 | 0.531 | 0.304 |
FIBTEM | |||||
Downes Score | |||||
Correlation coefficient | −0.113 * | 0.483 * | 0.022 * | 0.172 ** | −0.128 ** |
p-value | 0.466 | 0.517 | 0.888 | 0.264 | 0.409 |
SNAP-PE Score | |||||
Correlation coefficient | 0.074 * | −0.392 * | −0.048 * | −0.134 | 0.084 ** |
p-value | 0.623 | 0.442 | 0.749 | 0.376 | 0.575 |
Clinical Outcome | Values |
---|---|
IVH grade I, n (%) | 18 (37.5) |
Oxygenation therapy, days, Median (IQR) | 4 (2–6.62) |
Full enteral nutrition, days, Median (IQR) | 8 (5.75–9.25) |
Hospitalization days, Median (IQR) | 12.5 (8.25–21) |
BPD, n (%) | 2 (4.2) |
Death, n (%) | 1 (2) |
ROTEM Variables | IVH ^ | |||
---|---|---|---|---|
Neonates with IVH (n = 18) | Neonates without IVH (n = 30) | p-Value | ||
EXTEM CT (sec) | Median (IQR) | 58 (49–64.5) | 59.5 (52.75–67) | 0.427 ** |
EXTEM CFT (sec) | Median (IQR) | 107 (95.5–129) | 110.5 (92.5–137) | 1.000 ** |
EXTEM A10 (mm) | Mean (±SD) | 45 (5.969) | 46.04 (7.721) | 0.233 * |
EXTEM MCF (sec) | Median (IQR) | 50 (49–54.5) | 52.5 (49.25–58.75) | 0.388 ** |
EXTEM LI60 (%) | Median (IQR) | 93 (91–95) | 93 (91–95) | 0.894 ** |
INTEM CT (sec) | Mean (±SD) | 211.44 (34.398) | 211.84 (43.066) | 0.403 * |
INTEM CFT (sec) | Median (IQR) | 84 (79.5–98.75) | 96 (67–114.5) | 0.454 ** |
INTEM A10 (mm) | Mean (±SD) | 47.88 (5.807) | 47.88 (7.628) | 0.239 * |
INTEM MCF (sec) | Mean (±SD) | 52.81 (5.063) | 53.12 (6.133) | 0.514 * |
INTEM LI60 (%) | Median (IQR) | 92.5 (90.25–94) | 93 (91–94) | 0.936 ** |
FIBTEM CT (sec) | Median (IQR) | 63 (51.25–82.75) | 56 47.5–80.5) | 0.356 ** |
FIBTEM CFT (sec) | Median (IQR) | 1.45 (1.68–490.22) | 286.34 (1.68–571) | 0.800 ** |
FIBTEM A10 (mm) | Mean (±SD) | 10.06 (4.389) | 10.56 (3.675) | 0.314 * |
FIBTEM MCF (sec) | Median (IQR) | 9.5 (7–16.25) | 11 (8–14) | 0.376 ** |
FIBTEM LI60 (%) | Median (IQR) | 100 (97.25–100) | 100 (98–100) | 0.987 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsaras, G.N.; Sokou, R.; Tsantes, A.G.; Konstantinidi, A.; Gialamprinou, D.; Piovani, D.; Bonovas, S.; Kriebardis, A.G.; Mitsiakos, G.; Kokoris, S.; et al. Thromboelastometry in Neonates with Respiratory Distress Syndrome: A Pilot Study. Diagnostics 2021, 11, 1995. https://doi.org/10.3390/diagnostics11111995
Katsaras GN, Sokou R, Tsantes AG, Konstantinidi A, Gialamprinou D, Piovani D, Bonovas S, Kriebardis AG, Mitsiakos G, Kokoris S, et al. Thromboelastometry in Neonates with Respiratory Distress Syndrome: A Pilot Study. Diagnostics. 2021; 11(11):1995. https://doi.org/10.3390/diagnostics11111995
Chicago/Turabian StyleKatsaras, Georgios N., Rozeta Sokou, Andreas G. Tsantes, Aikaterini Konstantinidi, Dimitra Gialamprinou, Daniele Piovani, Stefanos Bonovas, Anastasios G. Kriebardis, Georgios Mitsiakos, Styliani Kokoris, and et al. 2021. "Thromboelastometry in Neonates with Respiratory Distress Syndrome: A Pilot Study" Diagnostics 11, no. 11: 1995. https://doi.org/10.3390/diagnostics11111995
APA StyleKatsaras, G. N., Sokou, R., Tsantes, A. G., Konstantinidi, A., Gialamprinou, D., Piovani, D., Bonovas, S., Kriebardis, A. G., Mitsiakos, G., Kokoris, S., & Tsantes, A. E. (2021). Thromboelastometry in Neonates with Respiratory Distress Syndrome: A Pilot Study. Diagnostics, 11(11), 1995. https://doi.org/10.3390/diagnostics11111995