A Hybrid Method to Enhance Thick and Thin Vessels for Blood Vessel Segmentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preprocessing
2.1.1. Enhancement of Vasculature Jerman Filter
2.1.2. Enhancement of Vasculature by Curvelet Transform
2.2. Mean-C Thresholding
- Initially, the mean filter with window size N × N is chosen.
- The transformed image achieved through all the processes is convolved with the mean.
- By taking the difference of the convolved image and the transformed image, a new difference image is obtained.
- The difference image is thresholded with the constant value C. Experimentally, the value of C is fixed as 0.039.
- The complement of thresholded image is computed.
2.3. Summary of the Proposed Method
3. Results
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, L.; Rzeszotarski, M.S.; Singerman, L.J.; Chokreff, J.M. The detection and quantification of retinopathy using digital angiograms. IEEE Trans. Med. Imaging 1994, 13, 619–626. [Google Scholar] [CrossRef]
- Teng, T.; Lefley, M.; Claremont, D. Progress towards automated diabetic ocular screening: A review of image analysis and intelligent systems for diabetic retinopathy. Med. Biol. Eng. Comput. 2002, 40, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Jerman, T.; Pernu, F.; Likar, B.; Špiclin, Z. Beyond Frangi: An improved multiscale vesselness filter, in Medical Imaging: Image Processing. Int. Soc. Opt. Photo 2015, 9413, 94132A. [Google Scholar] [CrossRef]
- Jerman, T.; Pernuš, F.; Likar, B.; Špiclin, Z. Enhancement of vascular structures in 3D and 2D angiographic images. IEEE Trans. Med. Imaging 2016, 35, 2107–2118. [Google Scholar] [CrossRef] [PubMed]
- Frangi, A.F.; Niessen, W.J.; Vincken, K.L.; Viergever, M.A. Multiscale vessel enhancement filtering. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Cambridge, MA, USA, 11–13 October 1998; Springer: Berlin/Heidelberg, Germany, 2006; Volume 1496, pp. 130–137. [Google Scholar] [CrossRef] [Green Version]
- Liew, G.; Wang, J.J. Retinal vascular signs: A window to the heart? Rev. Esp. Cardiol. 2011, 64, 515–521. [Google Scholar] [CrossRef]
- Li, Q.; Sone, S.; Doi, K. Selective enhancement filters for nodules, vessels, and airway walls in two- and three- dimensional CT scans. Med. Phys. 2003, 30, 2040–2051. [Google Scholar] [CrossRef] [PubMed]
- Donoho, D.L.; Duncan, M.R. Digital curvelet transform: Strategy, implementation, and experiments. In Proceedings of the Wavelet Applications VII, Orlando, FL, USA, 5 April 2000; Volume 4056, pp. 12–30. [Google Scholar] [CrossRef]
- Esmaeili, M.; Rabbani, H.; Mehri, A.; Dehghani, A. Extraction of retinal blood vessels by curvelet transform. In Proceedings of the 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10 November 2009; pp. 3353–3356. [Google Scholar] [CrossRef]
- Miri, M.S.; Mahloojifar, A. Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction. IEEE Trans. Biomed. Eng. 2011, 58, 1183–1192. [Google Scholar] [CrossRef]
- Aghamohamadian-Sharbaf, M.; Pourreza, H.R.; Banaee, T. A novel curvature-based algorithm for automatic grading of retinal blood vessel tortuosity. IEEE J. Biomed. Health Inform. 2015, 20, 586–595. [Google Scholar] [CrossRef]
- Kar, S.S.; Maity, S.P. Blood vessel extraction and optic disc removal using curvelet transform and kernel fuzzy c-means. Comput. Biol. Med. 2016, 70, 174–189. [Google Scholar] [CrossRef]
- Kar, S.S.; Maity, S.P.; Delpha, C. Retinal blood vessel extraction using curvelet transform and conditional fuzzy entropy. In Proceedings of the 22nd European Signal Processing Conference (EUSIPCO), Lisbon, Portugal, 1–5 September 2014; pp. 1821–1825. [Google Scholar]
- Fraz, M.M.; Remagnino, P.; Hoppe, A.; Uyyanonvara, B.; Rudnicka, A.R.; Owen, C.G.; Barman, S.A. Blood vessel segmentation methodologies in retinal images–a survey. Comput. Methods Programs Biomed. 2012, 108, 407–433. [Google Scholar] [CrossRef] [PubMed]
- Sinthanayothin, C.; Boyce, J.F.; Cook, H.L.; Williamson, T.H. Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br. J. Ophthalmol. 1999, 83, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Marín, D.; Aquino, A.; Gegúndez-Arias, M.E.; Bravo, J.M. A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging 2010, 30, 146–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staal, J.; Abràmoff, M.D.; Niemeijer, M.; Viergever, M.A.; Van Ginneken, B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 2014, 23, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Ricci, E.; Perfetti, R. Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Med. Imaging 2007, 26, 1357–1365. [Google Scholar] [CrossRef] [PubMed]
- Kande, G.B.; Subbaiah, P.V.; Savithri, T.S. Unsupervised fuzzy based vessel segmentation in pathological digital fundus images. J. Med. Sys. 2010, 34, 849–858. [Google Scholar] [CrossRef]
- Salem, S.A.; Salem, N.M.; Nandi, A.K. Segmentation of retinal blood vessels using a novel clustering algorithm (RACAL) with a partial supervision strategy. Med. Biol. Eng. Comput. 2007, 45, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Ng, J.; Clay, S.T.; Barman, S.A.; Fielder, A.R.; Moseley, M.J.; Parker, K.H.; Paterson, C. Maximum likelihood estimation of vessel parameters from scale space analysis. Image Vis. Comput. 2010, 28, 55–63. [Google Scholar] [CrossRef]
- Soares, J.V.; Leandro, J.J.; Cesar, R.M.; Jelinek, H.F.; Cree, M.J. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 2006, 25, 1214–1222. [Google Scholar] [CrossRef] [Green Version]
- Lupascu, C.A.; Tegolo, D.; Trucco, E. FABC: Retinal vessel segmentation using AdaBoost. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 1267–1274. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Chatterjee, S.; Katz, N.; Nelson, M.; Goldbaum, M. Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imaging 1989, 8, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Kovács, G.; Hajdu, A. A self-calibrating approach for the segmentation of retinal vessels by template matching and contour reconstruction. Med. Image Anal. 2016, 29, 24–46. [Google Scholar] [CrossRef] [Green Version]
- Annunziata, R.; Garzelli, A.; Ballerini, L.; Mecocci, A.; Trucco, E. Leveraging multiscale hessian-based enhancement with a novel exudate inpainting technique for retinal vessel segmentation. IEEE J. Biomed. Health Inform. 2016, 20, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
- Zamperini, A.; Giachetti, A.; Trucco, E.; Chin, K.S. Effective features for artery-vein classification in digital fundus images. In Proceedings of the 25th IEEE International Symposium on Computer-Based Medical Systems (CBMS), Rome, Italy, 20–22 June 2012; pp. 1–6. [Google Scholar]
- Relan, D.; MacGillivray, T.; Ballerini, L.; Trucco, E. Retinal vessel classification: Sorting arteries and veins. In Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 7396–7399. [Google Scholar]
- Dashtbozorg, B.; Mendonça, A.M.; Campilho, A. An automatic graph-based approach for artery/vein classification in retinal images. IEEE Trans. Image Process. 2014, 23, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Estrada, R.; Allingham, M.J.; Mettu, P.S.; Cousins, S.W.; Tomasi, C.; Farsiu, S. Retinal artery-vein classification via topology estimation. IEEE Trans. Med. Imaging 2015, 34, 2518–2534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Relan, D.; MacGillivray, T.; Ballerini, L.; Trucco, E. Automatic retinal vessel classification using a least square-support vector machine in VAMPIRE. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 142–145. [Google Scholar]
- Hart, W.E.; Goldbaum, M.; Côté, B.; Kube, P.; Nelson, M.R. Measurement and classification of retinal vascular tortuosity. Int. J. Med. Inform. 1999, 53, 239–252. [Google Scholar] [CrossRef]
- Grisan, E.; Foracchia, M.; Ruggeri, A. A novel method for the automatic grading of retinal vessel tortuosity. IEEE Trans. Med. Imaging 2008, 27, 310–319. [Google Scholar] [CrossRef]
- Lotmar, W.; Freiburghaus, A.; Bracher, D. Measurement of vessel tortuosity on fundus photographs. Albrecht Graefes Arch. Klin. Ophthalmol. 1979, 211, 49–57. [Google Scholar] [CrossRef]
- Poletti, E.; Grisan, E.; Ruggeri, A. Image-level tortuosity estimation in wide-field retinal images from infants with retinopathy of prematurity. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 4958–4961. [Google Scholar]
- Oloumi, F.; Rangayyan, R.M.; Ells, A.L. Assessment of vessel tortuosity in retinal images of preterm infants. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 5410–5413. [Google Scholar]
- Lisowska, A.; Annunziat, R.; Loh, G.K.; Karl, D.; Trucco, E. An experimental assessment of five indices of retinal vessel tortuosity with the RET-TORT public dataset. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 5414–5417. [Google Scholar]
- Perez-Rovira, A.; MacGillivray, T.; Trucco, E.; Chin, K.S.; Zutis, K.; Lupascu, C.; Tegolo, D.; Giachetti, A.; Wilson, P.J.; Doney, A.; et al. VAMPIRE: Vessel assessment and measurement platform for images of the Retina. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 3391–3394. [Google Scholar]
- Trucco, E.; Azegrouz, H.; Dhillon, B. Modeling the tortuosity of retinal vessels: Does caliber play a role? IEEE Trans. Biomed. Eng. 2010, 57, 2239–2247. [Google Scholar] [CrossRef]
- Azzopardi, G.; Strisciuglio, N.; Vento, M.; Petkov, N. Trainable COSFIRE filters for vessel delineation with application to retinal images. Med. Image Anal. 2015, 19, 46–57. [Google Scholar] [CrossRef] [Green Version]
- Mapayi, T.; Viriri, S.; Tapamo, J.R. Adaptive thresholding technique for retinal vessel segmentation based on GLCM-energy information. Comput. Math Methods Med. 2015, 597475. [Google Scholar] [CrossRef]
- Zhao, Y.; Rada, L.; Chen, K.; Harding, S.P.; Zheng, Y. Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans. Med. Imaging 2015, 34, 1797–1807. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Dashtbozorg, B.; Bekkers, E.; Pluim, J.P.; Duits, R.; ter Haar Romeny, B.M. Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores. IEEE Trans. Med. Imaging 2016, 35, 2631–2644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, J.H.; Acharya, U.R.; Chua, K.C.; Cheng, C.; Laude, A. Automated extraction of retinal vasculature. Med. Phys. 2016, 43, 2311–2322. [Google Scholar] [CrossRef] [PubMed]
- Farokhian, F.; Yang, C.; Demirel, H.; Wu, S.; Beheshti, I. Automatic parameters selection of Gabor filters with the imperialism competitive algorithm with application to retinal vessel segmentation. Biocybern. Biomed. Eng. 2017, 37, 246–254. [Google Scholar] [CrossRef]
- Orlando, J.I.; Prokofyeva, E.; Blaschko, M.B. A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images. IEEE Trans. Biomed. Eng. 2016, 64, 16–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, L.C.; Marengoni, M. Segmentation of optic disc and blood vessels in retinal images using wavelets, mathematical morphology and Hessian-based multi-scale filtering. Biomed. Signal Process. Control 2017, 36, 39–49. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, H.; Wang, Y.; Ko, S.B. Retinal blood vessel segmentation using fully convolutional network with transfer learning. Comput. Med. Imaging Graph. 2018, 68, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Khomri, B.; Christodoulidis, A.; Djerou, L.; Babahenini, M.C.; Cheriet, F. Retinal blood vessel segmentation using the elite-guided multi-objective artificial bee colony algorithm. IET Image Process. 2018, 12, 2163–2171. [Google Scholar] [CrossRef]
- Memari, N.; Saripan, M.I.; Mashohor, S.; Moghbel, M. Retinal blood vessel segmentation by using matched filtering and fuzzy c-means clustering with integrated level set method for diabetic retinopathy assessment. J. Med. Biol. Eng. 2019, 39, 713–731. [Google Scholar] [CrossRef] [Green Version]
- Sundaram, R.; Ravichandran, K.S.; Jayaraman, P.; Venketaraman, B. Extraction of blood vessels in fundus images of retina through hybrid segmentation approach. Mathematics 2019, 7, 169. [Google Scholar] [CrossRef] [Green Version]
- Dash, S.; Senapati, M.R. Enhancing detection of retinal blood vessels by combined approach of DWT, Tyler Coye and Gamma correction. Biomed. Signal Process. Control 2020, 57, 101740. [Google Scholar] [CrossRef]
- Dash, S.; Senapati, M.R.; Sahu, P.K.; Chowdary, P.S.R. Illumination normalized based technique for retinal blood vessel segmentation. Int. J. Imaging Syst. Technol. 2020, 31, 351–363. [Google Scholar] [CrossRef]
- Rani, G.; Oza, M.G.; Dhaka, V.S.; Pradhan, N.; Verma, S.; Joel, J.P.C. Applying deep learning-based multi-modal for detection of coronavirus. Multimedia Syst. 2021, 18, 1–24. [Google Scholar]
- Sharma, T.; Verma, S. Kavita, Prediction of heart disease using Cleveland dataset: A machine learning approach. Int. J. Rec. Res. Asp. 2017, 4, 17–21. [Google Scholar]
- Sharma, T.; Srinivasu, P.N.; Ahmed, S.; Alhumam, A.; Kumar, A.B.; Ijaz, M.F. An AW-HARIS Based Automated Segmentation of Human Liver Using CT Images. CMC-Comput. Mater. Contin. 2021, 69, 3303–3319. [Google Scholar]
- Singh, A.P.; Pradhan, N.R.; Luhach, A.K.; Agnihotri, S.; Jhanjhi, N.Z.; Verma, S.; Kavita; Ghosh, U.; Roy, D.S. A novel patient-centric architectural frame work for blockchain-enabled health care applications. IEEE Trans. Ind. Inform. 2021, 17, 5779–5789. [Google Scholar] [CrossRef]
- Li, W.; Chai, Y.; Khan, F.; Jan, S.R.U.; Verma, S.; Menon, V.G.; Kavita; Li, X. A comprehensive survey on machine learning-based big data analytics for IOT-enabled healthcare system. Mob. Netw. Appl. 2021, 26, 234–252. [Google Scholar] [CrossRef]
- Dash, J.; Bhoi, N. A thresholding based technique to extract retinal blood vessels from fundus images. Future Comput. Inform. J. 2017, 2, 103–109. [Google Scholar] [CrossRef]
- Ijaz, M.F.; Attique, M.; Son, Y. Data-Driven Cervical Cancer Prediction Model with Outlier Detection and Over-Sampling Methods. Sensors 2020, 20, 2809. [Google Scholar] [CrossRef]
- Srinivasu, P.N.; SivaSai, J.G.; Ijaz, M.F.; Bhoi, A.K.; Kim, W.; Kang, J.J. Classification of Skin Disease Using Deep Learning Neural Networks with MobileNet V2 and LSTM. Sensors 2021, 21, 2852. [Google Scholar] [CrossRef]
- Mandal, M.; Singh, P.K.; Ijaz, M.F.; Shafi, J.; Sarkar, R. A Tri-Stage Wrapper-Filter Feature Selection Framework for Disease Classification. Sensors 2021, 21, 5571. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, M.F.; Alfian, G.; Syafrudin, M.; Rhee, J. Hybrid Prediction Model for Type 2 Diabetes and Hypertension Using DBSCAN-Based Outlier Detection. Synthetic Minority over Sampling Technique (SMOTE), and Random Forest. Appl. Sci. 2018, 8, 1325. [Google Scholar] [CrossRef] [Green Version]
- Gandam, A.; Sidhu, J.S.; Verma, S.; Jhanjhi, N.Z.; Nayyar, A.; Abouhawwash, M.; Nam, Y. An efficient post-processing adaptive filtering technique to rectifying the flickering effects. PLoS ONE. 2021, 16, e0250959. [Google Scholar] [CrossRef] [PubMed]
- Almaroa, A.; Burman, R.; Raahemifar, K.; Lakshminarayanan, V. Optic disc and optic cup segmentation methodologies for glaucoma image detection: A survey. J. Opthalmol. 2015, 2015, 180972. [Google Scholar]
- Wang, B.; Wang, S.; Qiu, S.; Wei, W.; Wag, H.; He, H. CSU-Net: A context Spatial U-Net for accurate blood vessel segmentation in fundus images. IEEE J. Biomed. Health Inform. 2021, 25, 1128–1138. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Westin, C.F.; Bhalerao, A.; Nakajima, S.; Shiraga, N.; Tamura, S.; Kikinis, R. Tissue classification based on 3D local intensity structures for volume rendering. IEEE Trans. Visual. Comp. Graphcs. 2000, 6, 160–180. [Google Scholar] [CrossRef] [Green Version]
Image | Sensitivity | Specificity | Accuracy | Precision |
---|---|---|---|---|
Retina 1 | 0.689029 | 0.983848 | 0.957543 | 0.806914 |
Retina 2 | 0.681326 | 0.98826 | 0.956828 | 0.868788 |
Retina 3 | 0.662299 | 0.982472 | 0.950555 | 0.807091 |
Retina 4 | 0.612176 | 0.994229 | 0.959083 | 0.914874 |
Retina 5 | 0.625776 | 0.99155 | 0.957283 | 0.884459 |
Retina 6 | 0.619286 | 0.98656 | 0.950812 | 0.832454 |
Retina 7 | 0.645363 | 0.982846 | 0.952006 | 0.790952 |
Retina 8 | 0.646095 | 0.981693 | 0.952819 | 0.768638 |
Retina 9 | 0.64762 | 0.985057 | 0.95771 | 0.792622 |
Retina 10 | 0.619679 | 0.989112 | 0.958707 | 0.836174 |
Retina 11 | 0.663699 | 0.98082 | 0.952431 | 0.772854 |
Retina 12 | 0.690874 | 0.979726 | 0.954785 | 0.763055 |
Retina 13 | 0.560464 | 0.990786 | 0.948715 | 0.868271 |
Retina 14 | 0.751659 | 0.969751 | 0.952118 | 0.686101 |
Retina 15 | 0.714534 | 0.973168 | 0.954658 | 0.672419 |
Retina 16 | 0.680373 | 0.984199 | 0.956767 | 0.810371 |
Retina 17 | 0.665984 | 0.977015 | 0.950761 | 0.727612 |
Retina 18 | 0.703259 | 0.97927 | 0.957401 | 0.744855 |
Retina 19 | 0.804903 | 0.986169 | 0.971133 | 0.840365 |
Retina 20 | 0.69116 | 0.983526 | 0.962026 | 0.769065 |
Image | Sensitivity | Specificity | Accuracy | Precision |
---|---|---|---|---|
Retina 1 | 0.605098 | 0.969179 | 0.943788 | 0.595448 |
Retina 2 | 0.588396 | 0.957322 | 0.923329 | 0.526972 |
Retina 3 | 0.670129 | 0.969808 | 0.946311 | 0.653783 |
Retina 4 | 0.622163 | 0.978558 | 0.947489 | 0.697793 |
Retina 5 | 0.632404 | 0.971317 | 0.943688 | 0.651083 |
Retina 6 | 0.582326 | 0.978046 | 0.944288 | 0.66521 |
Retina 7 | 0.609928 | 0.968976 | 0.94101 | 0.624149 |
Retina 8 | 0.613154 | 0.972105 | 0.947597 | 0.595198 |
Retina 9 | 0.600965 | 0.970603 | 0.951395 | 0.567225 |
Retina 10 | 0.597453 | 0.963862 | 0.937151 | 0.588464 |
Retina 11 | 0.619103 | 0.961833 | 0.940899 | 0.556381 |
Retina 12 | 0.592585 | 0.965196 | 0.937655 | 0.564901 |
Retina 13 | 0.597962 | 0.973663 | 0.947481 | 0.576893 |
Retina 14 | 0.692803 | 0.972191 | 0.95296 | 0.648084 |
Approach | Year | Sensitivity | Specificity | Accuracy | |||
---|---|---|---|---|---|---|---|
DRIVE | CHASE_ DB1 | DRIVE | CHASE_DB1 | DRIVE | CHASE_DB1 | ||
Kar et al. [12] | 2016 | 0.7548 | -- | 0.9792 | -- | 0.9616 | -- |
Azzopardi et al. [40] | 2015 | 0.7655 | 0.7585 | 0.9704 | 0.9587 | 0.9442 | 0.9387 |
Mapayi et al. [41] | 2015 | 0.7650 | -- | 0.9724 | -- | 0.9511 | -- |
Zhao et al. [42] | 2015 | 0.742 | -- | 0.982 | -- | 0.954 | -- |
Zhang et al. [43] | 2016 | 0.7473 0.7743 | 0.7626 0.7277 | 0.9764 0.9725 | 0.9661 0.9712 | 0.9474 0.9476 | 0.945 -- |
Tan et al. [44] | 2016 | 0.7743 | 0.7626 | 0.9725 | 0.9661 | 0.9476 | 0.9452 |
Farokhain et al. [45] | 2017 | 0.693 | -- | 0.979 | -- | 0.939 | -- |
Orlando et al. [46] | 2017 | 0.7897 | 0.7277 | 0.9684 | 0.9712 | -- | -- |
Rodrigues and Marengoni [47] | 2017 | 0.7223 | -- | 0.9636 | -- | 0.9472 | -- |
Jiang et al. [48] | 2018 | 0.7121 | 0.7217 | 0.9832 | 0.9770 | 0.9593 | 0.9591 |
Khomri et al. [49] | 2018 | 0.739 | -- | 0.974 | -- | 0.945 | -- |
Memari et al. [50] | 2019 | 0.761 | 0.738 | 0.981 | 0.968 | 0.961 | 0.939 |
Sundaram et al. [51] | 2019 | 0.69 | 0.71 | 0.94 | 0.96 | 0.93 | 0.95 |
Dash and Senapati [52] | 2020 | 0.7403 | -- | 0.9905 | -- | 0.9661 | -- |
Dash et al. [53] | 2020 | 0.7203 | 0.6454 | 0.9871 | 0.9799 | 0.9581 | 0.9609 |
Original Curvelet Transform | 0.6687 | 0.6160 | 0.9835 | 0.9647 | 0.9557 | 0.9432 | |
Suggested approach (Jerman filter integrated with Curvelet transform) | 0.7528 | 0.7078 | 0.9933 | 0.9850 | 0.9600 | 0.9559 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dash, S.; Verma, S.; Kavita; Khan, M.S.; Wozniak, M.; Shafi, J.; Ijaz, M.F. A Hybrid Method to Enhance Thick and Thin Vessels for Blood Vessel Segmentation. Diagnostics 2021, 11, 2017. https://doi.org/10.3390/diagnostics11112017
Dash S, Verma S, Kavita, Khan MS, Wozniak M, Shafi J, Ijaz MF. A Hybrid Method to Enhance Thick and Thin Vessels for Blood Vessel Segmentation. Diagnostics. 2021; 11(11):2017. https://doi.org/10.3390/diagnostics11112017
Chicago/Turabian StyleDash, Sonali, Sahil Verma, Kavita, Md. Sameeruddin Khan, Marcin Wozniak, Jana Shafi, and Muhammad Fazal Ijaz. 2021. "A Hybrid Method to Enhance Thick and Thin Vessels for Blood Vessel Segmentation" Diagnostics 11, no. 11: 2017. https://doi.org/10.3390/diagnostics11112017
APA StyleDash, S., Verma, S., Kavita, Khan, M. S., Wozniak, M., Shafi, J., & Ijaz, M. F. (2021). A Hybrid Method to Enhance Thick and Thin Vessels for Blood Vessel Segmentation. Diagnostics, 11(11), 2017. https://doi.org/10.3390/diagnostics11112017