A Step Closer to the “Fourth 90”: A Practical Narrative Review of Diagnosis and Management of Nutritional Issues of People Living with HIV
Abstract
:1. Introduction
2. Nutritional Suggestions According to Different Comorbidities
2.1. Cardiovascular Diseases
2.2. Type II Diabetes
2.3. Chronic Kidney Disease
- (i)
- to adjust potassium (for patients with stage 3–5 of CKD, independently from hyperkalemia) and phosphorus intake in order to maintain serum levels within normal range;
- (ii)
- to adjust sodium intake to <2.3 g per day in subjects with stage 3–5 of CKD;
- (iii)
- a total elemental calcium intake of 800–1000 mg/d (including dietary calcium, calcium supplementation and calcium-based phosphate binders) in adults with CKD 3–4 not taking active vitamin D analogues; and a tailored adjustment for CKD stage 5.
2.4. Liver Disease
3. Nutritional Suggestions for Low- and Middle-Income Countries
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Joint United Nations Programme on HIV/AIDS. 90-90-90 an Ambitious Treatment Target to Help end the AIDS Epidemic. 2014. Available online: http://www.unaids.org/en/resources/documents/2017/90-90-90 (accessed on 16 September 2021).
- Harris, T.G.; Rabkin, M.; El-Sadr, W.M. Achieving the fourth 90: Healthy aging for people living with HIV. AIDS 2018, 32, 1563–1569. [Google Scholar] [CrossRef]
- Lazarus, J.V.; Safreed-Harmon, K.; Barton, S.E.; Costagliola, D.; Dedes, N.; Del Amo Valero, J.; Gatell, J.M.; Baptista-Leite, R.; Mendão, L.; Porter, K. Beyond viral suppression of HIV—the new quality of life frontier. BMC Med. 2016, 14, 94. [Google Scholar] [CrossRef] [PubMed]
- Poliseno, M.; Bavaro, D.F.; Di Gennaro, F.; De Vita, G.; Girardi, E.; Saracino, A.; Monno, L.; Angarano, G.; Lo Caputo, S. Lost to follow-up: A challenge over 10 years. AIDS Care 2020, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Willig, A.L.; Overton, E.T. Metabolic Complications and Glucose Metabolism in HIV Infection: A Review of the Evidence. Curr. HIV/AIDS Rep. 2016, 13, 289–296. [Google Scholar] [CrossRef]
- D’Arminio Monforte, A.; Diaz-Cuervo, H.; De Luca, A.; Maggiolo, F.; Cingolani, A.; Bonora, S.; Castagna, A.; Girardi, E.; Antinori, A.; Lo Caputo, S.; et al. ICONA Foundation Study Group. Evolution of major non-HIV-related comorbidities in HIV-infected patients in the Italian Cohort of Individuals, Naïve for Antiretrovirals (ICONA) Foundation Study cohort in the period 2004–2014. HIV Med. 2019, 20, 99–109. [Google Scholar] [CrossRef]
- Deeks, S.G. HIV infection, inflammation, immunosenescence, and aging. Annu. Rev. Med. 2011, 62, 141–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forman, D.; Bulwer, B.E. Cardiovascular disease: Optimal approaches to risk factor modification of diet and lifestyle. Curr. Treat Options Cardiovasc. Med. 2006, 8, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Waśkiewicz, A.; Szcześniewska, D.; Szostak-Węgierek, D.; Kwaśniewska, M.; Pająk, A.; Stepaniak, U.; Kozakiewicz, K.; Tykarski, A.; Zdrojewski, T.; Zujko, M.E.; et al. Are dietary habits of the Polish population consistent with the recommendations for prevention of cardiovascular disease?—WOBASZ II project. Kardiol. Pol. 2016, 74, 969–977. [Google Scholar] [CrossRef] [Green Version]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. ESC Scientific Document Group, 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [PubMed]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.; Coats, A.J.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Kardiol. Pol. 2016, 74, 1037–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shivappa, N. Diet and Chronic Diseases: Is There a Mediating Effect of Inflammation? Nutrients 2019, 11, 1639. [Google Scholar] [CrossRef] [Green Version]
- Ávila-Escalante, M.L.; Coop-Gamas, F.; Cervantes-Rodríguez, M.; Méndez-Iturbide, D.; Aranda-González, I.I. The effect of diet on oxidative stress and metabolic diseases-Clinically controlled trials. J. Food Biochem. 2020, 44, e13191. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhou, Y.; Tang, W. Maintaining HIV care during the COVID-19 pandemic. Lancet HIV 2020, 7, e308–e309. [Google Scholar] [CrossRef]
- Guaraldi, G.; Milic, J.; Martinez, E.; Kamarulzaman, A.; Mussini, C.; Waters, L.; Pozniak, A.; Mallon, P.; Rockstroh, J.; Lazarus, J.V. HIV care models during the COVID-19 era. Clin. Infect. Dis. 2020, 19, ciaa1864. [Google Scholar]
- Waterfield, K.C.; Shah, G.H.; Etheredge, G.D.; Ikhile, O. Consequences of COVID-19 crisis for persons with HIV: The impact of social determinants of health. BMC Public Health 2021, 21, 299. [Google Scholar] [CrossRef] [PubMed]
- Armocida, B.; Formenti, B.; Ussai, S.; Palestra, F.; Missoni, E. The Italian health system and the COVID-19 challenge. Lancet Public Health 2020, 5, e253. [Google Scholar] [CrossRef]
- Senthilingam, M. Covid-19 has made the obesity epidemic worse, but failed to ignite enough action. BMJ 2021, 4, 372. [Google Scholar]
- Kaplan, R.C.; Hanna, D.B.; Kizer, J.R. Recent Insights into Cardiovascular Disease (CVD) Risk Among HIV-Infected Adults. Curr. HIV/AIDS Rep. 2016, 13, 44–52. [Google Scholar] [CrossRef] [PubMed]
- So-Armah, K.; Freiberg, M.S. HIV and Cardiovascular Disease: Update on Clinical Events, Special Populations, and Novel Biomarkers. Curr. HIV/AIDS Rep. 2018, 15, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.; Barnes, A.E.; Guest, J.L.; Shah, A.; Shao, I.Y.; Marconi, V. HIV Infection and Incidence of Cardiovascular Diseases: An Analysis of a Large Healthcare Database. J. Am. Heart Assoc. 2019, 8, e012241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, S.; Mary-Krause, M.; Simon, A.; Partisani, M.; Gilquin, J.; Cotte, L.; Boccara, F.; Costagliola, D. French Hospital Database on HIV (FHDH)–ANRS CO4. HIV replication and immune status are independent predictors of the risk of myocardial infarction in HIV-infected individuals. Clin. Infect. Dis. 2012, 55, 600–607. [Google Scholar] [CrossRef]
- D’Ascenzo, F.; Cerrato, E.; Appleton, D.; Moretti, C.; Calcagno, A.; Abouzaki, N.; Vetrovec, G.; Lhermusier, T.; Carrie, D.; Das Neves, B.; et al. Percutaneous coronary intervention and surgical revascularization in HIV Database (PHD) Study Investigators. Prognostic indicators for recurrent thrombotic events in HIV-infected patients with acute coronary syndromes: Use of registry data from 12 sites in Europe, South Africa and the United States. Thromb. Res. 2014, 134, 558–564. [Google Scholar]
- Chomont, N.; El-Far, M.; Ancuta, P.; Trautmann, L.; Procopio, F.A.; Yassine-Diab, B.; Boucher, G.; Boulassel, M.R.; Ghattas, G.; Brenchley, J.M.; et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat. Med. 2009, 15, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Chun, T.W.; Nickle, D.C.; Justement, J.S.; Meyers, J.H.; Roby, G.; Hallahan, C.W.; Kottilil, S.; Moir, S.; Mican, J.M.; Mullins, J.I.; et al. Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy. J. Infect. Dis. 2008, 197, 714–720. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo-Redondo, R.; Fryer, H.R.; Bedford, T.; Kim, E.Y.; Archer, J.; Pond, S.L.K.; Chung, Y.S.; Penugonda, S.; Chipman, J.; Fletcher, C.V.; et al. Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature 2016, 530, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Angelovich, T.A.; Hearps, A.C.; Maisa, A.; Martin, G.E.; Lichtfuss, G.F.; Cheng, W.-J.; Palmer, C.S.; Landay, A.L.; Crowe, S.M.; Jaworowski, A. Viremic and Virologically Suppressed HIV Infection Increases Age-Related Changes to Monocyte Activation Equivalent to 12 and 4 Years of Aging, Respectively. JAIDS J. Acquir. Immune Defic. Syndr. 2015, 69, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Karim, R.; Mack, W.J.; Kono, N.; Tien, P.C.; Anastos, K.; Lazar, J.; Young, M.; Desai, S.; Golub, E.T.; Kaplan, R.C.; et al. T-cell activation, both pre- and post-HAART levels, correlates with carotid artery stiffness over 6.5 years among HIV-infected women in the WIHS. J. Acquir. Immune Defic. Syndr. 2014, 67, 349–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordell, A.D.; McKenna, M.; Borges, Á.H.; Duprez, D.; Neuhaus, J.; Neaton, J.D. INSIGHT SMART, ESPRIT Study Groups; SILCAAT Scientific Committee. Severity of cardiovascular disease outcomes among patients with HIV is related to markers of inflammation and coagulation. J. Am. Heart Assoc. 2014, 3, e000844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zidar, D.A.; Juchnowski, S.; Ferrari, B.; Clagett, B.; Pilch-Cooper, H.A.; Rose, S.; Rodriguez, B.; McComsey, G.A.; Sieg, S.F.; Mehta, N.N.; et al. Oxidized LDL Levels Are Increased in HIV Infection and May Drive Monocyte Activation. J. Acquir. Immune Defic. Syndr. 2015, 69, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, M.M.; Ratcliff, A.N.; Bhat, M.; Alwarawrah, Y.; Hughes, P.; Arcos, J.; Loiselle, D.; Torrelles, J.B.; Funderburg, N.T.; Haystead, T.A.; et al. Cellular fatty acid synthase is required for late stages of HIV-1 replication. Retrovirology 2017, 14, 45. [Google Scholar] [CrossRef] [Green Version]
- Biava, P.M.; Norbiato, G. Getting an Insight into the Complexity of Major Chronic Inflammatory and Degenerative Diseases: A Potential New Systemic Approach to Their Treatment. Curr. Pharm. Biotechnol. 2015, 16, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Ballegaard, V.; Ralfkiaer, U.; Pedersen, K.K.; Hove, M.; Koplev, S.; Brændstrup, P.; Ryder, L.P.; Madsen, H.O.; Gerstoft, J.; Grønbæk, K.; et al. MicroRNA-210, MicroRNA-331, and MicroRNA-7 Are Differentially Regulated in Treated HIV-1-Infected Individuals and Are Associated with Markers of Systemic Inflammation. J. Acquir. Immune Defic. Syndr. 2017, 74, e104–e113. [Google Scholar] [CrossRef] [PubMed]
- Guadalupe, M.; Reay, E.; Sankaran, S.; Prindiville, T.; Flamm, J.; McNeil, A.; Dandekar, S. Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J. Virol. 2003, 77, 11708–11717. [Google Scholar] [CrossRef] [Green Version]
- Guadalupe, M.; Sankaran, S.; George, M.D.; Reay, E.; Verhoeven, D.; Shacklett, B.L.; Flamm, J.; Wegelin, J.; Prindiville, T.; Dandekar, S. Viral suppression and immune restoration in the gastrointestinal mucosa of human immunodeficiency virus type 1-infected patients initiating therapy during primary or chronic infection. J. Virol. 2006, 80, 8236–8247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattapallil, J.J.; Douek, D.C.; Hill, B.; Nishimura, Y.; Martin, M.; Roederer, M. Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 2005, 434, 1093–1097. [Google Scholar] [CrossRef] [PubMed]
- Brenchley, J.M.; Price, D.A.; Schacker, T.W.; Asher, T.E.; Silvestri, G.; Rao, S.; Kazzaz, Z.; Bornstein, E.; Lambotte, O.; Altmann, D.; et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med. 2006, 12, 1365–1371. [Google Scholar] [CrossRef] [Green Version]
- Dinh, D.M.; Volpe, G.E.; Duffalo, C.; Bhalchandra, S.; Tai, A.K.; Kane, A.V.; Wanke, C.A.; Ward, H.D. Intestinal microbiota, microbial translocation, and systemic inflammation in chronic HIV infection. J. Infect. Dis. 2015, 211, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Hunt, P.W.; Sinclair, E.; Rodriguez, B.; Shive, C.; Clagett, B.; Funderburg, N.; Robinson, J.; Huang, Y.; Epling, L.; Martin, J.N.; et al. Gut epithelial barrier dysfunction and innate immune activation predict mortality in treated HIV infection. J. Infect. Dis. 2014, 210, 1228–1238. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Lederman, M.M.; Hunt, P.; Sieg, S.F.; Haley, K.; Rodriguez, B.; Landay, A.; Martin, J.; Sinclair, E.; Asher, A.I.; et al. Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection. J. Infect. Dis. 2009, 199, 1177–1185. [Google Scholar] [CrossRef]
- Alvarez, A.; Orden, S.; Andújar, I.; Collado-Diaz, V.; Núñez-Delgado, S.; Galindo, M.J.; Estrada, V.; Apostolova, N.; Esplugues, J.V. Cardiovascular toxicity of abacavir: A clinical controversy in need of a pharmacological explanation. AIDS 2017, 31, 1781–1795. [Google Scholar] [CrossRef]
- De Clercq, E. Tenofovir alafenamide (TAF) as the successor of tenofovir disoproxil fumarate (TDF). Biochem. Pharmacol. 2016, 119, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Stellbrink, H.J.; Lazzarin, A.; Woolley, I.; Llibre, J.M. The potential role of bictegravir/emtricitabine/tenofovir alafenamide (BIC/FTC/TAF) single-tablet regimen in the expanding spectrum of fixed-dose combination therapy for HIV. HIV Med. 2020, 21 (Suppl. 1), 3–16. [Google Scholar] [CrossRef] [PubMed]
- Friis-Møller, N.; Weber, R.; Reiss, P.; Thiébaut, R.; Kirk, O.; d’Arminio Monforte, A.; Pradier, C.; Morfeldt, L.; Mateu, S.; Law, M.; et al. DAD study group. Cardiovascular disease risk factors in HIV patients--association with antiretroviral therapy. Results from the DAD study. AIDS 2003, 17, 1179–1193. [Google Scholar] [CrossRef]
- Calza, L.; Manfredi, R.; Chiodo, F. Hyperlipidaemia in patients with HIV-1 infection receiving highly active antiretroviral therapy: Epidemiology, pathogenesis, clinical course and management. Int. J. Antimicrob. Agents 2003, 22, 89–99. [Google Scholar] [CrossRef]
- Guaraldi, G.; Stentarelli, C.; Zona, S.; Santoro, A. HIV-associated lipodystrophy: Impact of antiretroviral therapy. Drugs 2013, 73, 1431–1450. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, L.; Ryom, L.; Neesgaard, B.; Wandeler, G.; Staub, T.; Gisinger, M.; Skoll, M.; Günthard, H.F.; Scherrer, A.; Mussini, C.; et al. Clinical outcomes of two-drug regimens vs. three-drug regimens in antiretroviral treatment-experienced people living with HIV. Clin. Infect. Dis. 2020, ciaa1878. [Google Scholar] [CrossRef]
- Cento, V.; Perno, C.F. Two-drug regimens with dolutegravir plus rilpivirine or lamivudine in HIV-1 treatment-naïve, virologically-suppressed patients: Latest evidence from the literature on their efficacy and safety. J. Glob. Antimicrob. Resist. 2020, 20, 228–237. [Google Scholar] [CrossRef]
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.T.; Corrà, U.; Cosyns, B.; Deaton, C.; et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar]
- Ryom, L.; Cotter, A.; De Miguel, R.; Béguelin, C.; Podlekareva, D.; Arribas, J.R.; Marzolini, C.; Mallon, P.; Rauch, A.; Kirk, O.; et al. 2019 update of the European AIDS Clinical Society Guidelines for treatment of people living with HIV version 10.0. HIV Med. 2020, 21, 617–624. [Google Scholar] [CrossRef]
- Rychter, A.M.; Ratajczak, A.E.; Zawada, A.; Dobrowolska, A.; Krela-Kaźmierczak, I. Non-Systematic Review of Diet and Nutritional Risk Factors of Cardiovascular Disease in Obesity. Nutrients 2020, 12, 814. [Google Scholar] [CrossRef] [Green Version]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e596–e646. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. PREDIMED Study Investigators. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Magnoni, M.; Scarano, P.; Vergani, V.; Berteotti, M.; Gallone, G.; Cristell, N.; Maseri, A.; Cianflone, D. Impact of adherence to a Mediterranean Diet pattern on patients with first acute myocardial infarction. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 574–580. [Google Scholar] [CrossRef]
- Koliaki, C.; Liatis, S.; Kokkinos, A. Obesity and cardiovascular disease: Revisiting an old relationship. Metabolism 2019, 92, 98–107. [Google Scholar] [CrossRef]
- Siervo, M.; Lara, J.; Chowdhury, S.; Ashor, A.; Oggioni, C.; Mathers, J.C. Effects of the Dietary Approach to Stop Hypertension (DASH) diet on cardiovascular risk factors: A systematic review and meta-analysis. Br. J. Nutr. 2015, 113, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, Y.; Nishimura, K.; Barnard, N.D.; Takegami, M.; Watanabe, M.; Sekikawa, A.; Okamura, T.; Miyamoto, Y. Vegetarian diets and blood pressure: A meta-analysis. JAMA Intern. Med. 2014, 174, 577–587. [Google Scholar] [CrossRef]
- Kwok, C.S.; Umar, S.; Myint, P.K.; Mamas, M.A.; Loke, Y.K. Vegetarian diet, Seventh Day Adventists and risk of cardiovascular mortality: A systematic review and meta-analysis. Int. J. Cardiol. 2014, 176, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Chiavaroli, L.; Nishi, S.K.; Khan, T.A.; Braunstein, C.R.; Glenn, A.J.; Mejia, S.B.; Rahelić, D.; Kahleová, H.; Salas-Salvadó, J.; Jenkins, D.J.A.; et al. Portfolio Dietary Pattern and Cardiovascular Disease: A Systematic Review and Meta-analysis of Controlled Trials. Prog. Cardiovasc. Dis. 2018, 61, 43–53. [Google Scholar] [CrossRef]
- Jenkins, D.J.; Kendall, C.W.; Faulkner, D.; Vidgen, E.; Trautwein, E.A.; Parker, T.L.; Marchie, A.; Koumbridis, G.; Lapsley, K.G.; Josse, R.G.; et al. A dietary portfolio approach to cholesterol reduction: Combined effects of plant sterols, vegetable proteins, and viscous fibers in hypercholesterolemia. Metabolism 2002, 51, 1596–1604. [Google Scholar] [CrossRef]
- Hu, T.; Bazzano, L.A. The low-carbohydrate diet and cardiovascular risk factors: Evidence from epidemiologic studies. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Torres, N.; Guevara-Cruz, M.; Velázquez-Villegas, L.A.; Tovar, A.R. Nutrition and Atherosclerosis. Arch. Med. Res. 2015, 46, 408–426. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.D.; Miller, P.E.; Vargas, A.J.; Weed, D.L.; Cohen, S.S. Meta-analysis of Egg Consumption and Risk of Coronary Heart Disease and Stroke. J. Am. Coll. Nutr. 2016, 35, 704–716. [Google Scholar] [CrossRef] [PubMed]
- Callejo, M.; Barberá, J.A.; Duarte, J.; Perez-Vizcaino, F. Impact of Nutrition on Pulmonary Arterial Hypertension. Nutrients 2020, 12, 169. [Google Scholar] [CrossRef] [Green Version]
- Stradling, C.; Thomas, G.N.; Hemming, K.; Taheri, S.; Taylor, S.; Ross, J.; Das, S. The Mediterranean portfolio diet in HIV dyslipidaemia: A randomized controlled trial. In Proceedings of the Conference on Retroviruses and Opportunistic Infections, Boston, MA, USA, 4–7 March 2018. [Google Scholar]
- Brown, T.T.; Cole, S.R.; Li, X.; Kingsley, L.A.; Palella, F.J.; Riddler, S.A.; Visscher, B.R.; Margolick, J.B.; Dobs, A.S. Antiretroviral therapy and the prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study. Arch. Intern. Med. 2005, 165, 1179–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho, A.R.; Moreira, F.A.; Santos, A.C.; Silva-Pinto, A.; Sarmento, A.; Carvalho, D.; Freitas, P. Diabetes mellitus in HIV-infected patients: Fasting glucose, A1c, or oral glucose tolerance test—Which method to choose for the diagnosis? BMC Infect. Dis. 2018, 18, 309. [Google Scholar] [CrossRef]
- Brown, T.T.; Tassiopoulos, K.; Bosch, R.J.; Shikuma, C.; McComsey, G.A. Association between systemic inflammation and incident diabetes in HIV-infected patients after initiation of antiretroviral therapy. Diabetes Care. 2010, 33, 2244–2249. [Google Scholar] [CrossRef] [Green Version]
- Gianotti, N.; Visco, F.; Galli, L.; Barda, B.; Piatti, P.; Salpietro, S.; Bigoloni, A.; Vinci, C.; Nozza, S.; Gallotta, G.; et al. Detecting impaired glucose tolerance or type 2 diabetes mellitus by means of an oral glucose tolerance test in HIV-infected patients. HIV Med. 2011, 12, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Galli, L.; Salpietro, S.; Pellicciotta, G.; Galliani, A.; Piatti, P.; Hasson, H.; Guffanti, M.; Gianotti, N.; Bigoloni, A.; Lazzarin, A.; et al. Risk of type 2 diabetes among HIV-infected and healthy subjects in Italy. Eur. J. Epidemiol. 2012, 27, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Bavaro, D.F.; Di Carlo, D.; Rossetti, B.; Bruzzone, B.; Vicenti, I.; Pontali, E.; Zoncada, A.; Lombardi, F.; Di Giambenedetto, S.; Borghi, V.; et al. Pretreatment HIV drug resistance and treatment failure in non-Italian HIV-1-infected patients enrolled in ARCA. Antivir. Ther. 2020, 25, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Grunfeld, C. Insulin resistance in HIV infection: Drugs, host responses, or restoration to health? Top HIV Med. 2008, 16, 89–93. [Google Scholar] [PubMed]
- Brown, T.T.; Li, X.; Cole, S.R.; Kingsley, L.A.; Palella, F.J.; Riddler, S.A.; Chmiel, J.S.; Visscher, B.R.; Margolick, J.B.; Dobs, A.S. Cumulative exposure to nucleoside analogue reverse transcriptase inhibitors is associated with insulin resistance markers in the Multicenter AIDS Cohort Study. AIDS 2005, 19, 1375–1383. [Google Scholar] [CrossRef]
- Hresko, R.C.; Hruz, P.W. HIV protease inhibitors act as competitive inhibitors of the cytoplasmic glucose binding site of GLUTs with differing affinities for GLUT1 and GLUT4. PLoS ONE 2011, 6, e25237. [Google Scholar] [CrossRef] [Green Version]
- Yarasheski, K.E.; Tebas, P.; Sigmund, C.; Dagogo-Jack, S.; Bohrer, A.; Turk, J.; Halban, P.A.; Cryer, P.E.; Powderly, W.G. Insulin resistance in HIV protease inhibitor-associated diabetes. J. Acquir. Immune. Defic. Syndr. 1999, 21, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Trabattoni, D.; Schenal, M.; Cesari, M.; Castelletti, E.; Pacei, M.; Goldberg, B.; Gori, A.; Clerici, M. Low interleukin-10 production is associated with diabetes in HIV-infected patients undergoing antiviral therapy. Med. Microbiol. Immunol. 2006, 195, 125–132. [Google Scholar] [CrossRef]
- Nolan, N.S.; Adamson, S.; Reeds, D.; O’Halloran, J.A. Bictegravir-Based Antiretroviral Therapy-Associated Accelerated Hyperglycemia and Diabetes Mellitus. Open Forum Infect. Dis. 2021, 8, ofab077. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Hill, A. Risks of metabolic syndrome and diabetes with integrase inhibitor-based therapy. Curr. Opin. Infect. Dis. 2021, 34, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Van Wyk, J.; Ajana, F.; Bisshop, F.; De Wit, S.; Osiyemi, O.; Portilla Sogorb, J.; Routy, J.P.; Wyen, C.; Ait-Khaled, M.; Nascimento, M.C.; et al. Efficacy and Safety of Switching to Dolutegravir/Lamivudine Fixed-Dose 2-Drug Regimen vs Continuing a Tenofovir Alafenamide-Based 3- or 4-Drug Regimen for Maintenance of Virologic Suppression in Adults Living With Human Immunodeficiency Virus Type 1: Phase 3, Randomized, Noninferiority TANGO Study. Clin. Infect. Dis. 2020, 71, 1920–1929. [Google Scholar]
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef]
- Duncan, A.D.; Peters, B.S.; Rivas, C.; Goff, L.M. Reducing risk of Type 2 diabetes in HIV: A mixed-methods investigation of the STOP-Diabetes diet and physical activity intervention. Diabet Med. 2020, 37, 1705–1714. [Google Scholar] [CrossRef]
- Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006, 444, 840–846. [Google Scholar] [CrossRef]
- Rising, R.; Harper, I.T.; Fontvielle, A.M.; Ferraro, R.T.; Spraul, M.; Ravussin, E. Determinants of total daily energy expenditure: Variability in physical activity. Am. J. Clin. Nutr. 1994, 59, 800–804. [Google Scholar] [CrossRef]
- Ge, L.; Sadeghirad, B.; Ball, G.D.C.; da Costa, B.R.; Hitchcock, C.L.; Svendrovski, A.; Kiflen, R.; Quadri, K.; Kwon, H.Y.; Karamouzian, M.; et al. Comparison of dietary macronutrient patterns of 14 popular named dietary programmes for weight and cardiovascular risk factor reduction in adults: Systematic review and network meta-analysis of randomised trials. BMJ 2020, 369, m696. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. 5. Lifestyle Management: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42, S46–S60. [Google Scholar] [CrossRef] [Green Version]
- Ghazzawi, H.; Mustafa, S. Effect of High-Protein Breakfast Meal on Within-DayAppetite Hormones Cholecystokinin, Ghrelin, Peptide Yy, Glucagone Like Peptide-1 in adults. Clin. Nutr. Exp. 2019, 28, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Hoel, H.; Hove-Skovsgaard, M.; Hov, J.R.; Gaardbo, J.C.; Holm, K.; Kummen, M.; Rudi, K.; Nwosu, F.; Valeur, J.; Gelpi, M.; et al. Impact of HIV and Type 2 diabetes on Gut Microbiota Diversity, Tryptophan Catabolism and Endothelial Dysfunction. Sci. Rep. 2018, 8, 6725. [Google Scholar] [CrossRef] [PubMed]
- Cunningham-Rundles, S.; Ahrné, S.; Johann-Liang, R.; Abuav, R.; Dunn-Navarra, A.M.; Grassey, C.; Bengmark, S.; Cervia, J.S. Effect of probiotic bacteria on microbial host defense, growth, and immune function in human immunodeficiency virus type-1 infection. Nutrients 2011, 3, 1042–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, O.O.; Kelesidis, T.; Cordova, R.; Khanlou, H. Immunomodulation of antiretroviral drug-suppressed chronic HIV-1 infection in an oral probiotic double-blind placebo-controlled trial. AIDS Res. Hum. Retrovir. 2014, 30, 988–995. [Google Scholar] [CrossRef]
- Connolly, N.C.; Riddler, S.A.; Rinaldo, C.R. Proinflammatory cytokines in HIV disease-a review and rationale for new therapeutic approaches. AIDS Rev. 2005, 7, 168–180. [Google Scholar] [PubMed]
- Merlini, E.; Bai, F.; Bellistrì, G.M.; Tincati, C.; d’Arminio Monforte, A.; Marchetti, G. Evidence for polymicrobic flora translocating in peripheral blood of HIV-infected patients with poor immune response to antiretroviral therapy. PLoS ONE 2011, 6, e18580. [Google Scholar] [CrossRef]
- Gad, M.; Ravn, P.; Søborg, D.A.; Lund-Jensen, K.; Ouwehand, A.C.; Jensen, S.S. Regulation of the IL-10/IL-12 axis in human dendritic cells with probiotic bacteria. FEMS Immunol. Med. Microbiol. 2011, 63, 93–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EACS Guidelines Version 10.1. October 2020. Available online: https://www.eacsociety.org/media/guidelines-10.1_30032021_1.pdf (accessed on 16 September 2021).
- Ando, M.; Yanagisawa, N. Epidemiology, clinical characteristics, and management of chronic kidney disease in human immunodeficiency virus-infected patients. World J. Nephrol. 2015, 4, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Mocroft, A.; Neuhaus, J.; Peters, L.; Ryom, L.; Bickel, M.; Grint, D.; Koirala, J.; Szymczak, A.; Lundgren, J.; Ross, M.J.; et al. Hepatitis B and C co-infection are independent predictors of progressive kidney disease in HIV-positive, antiretroviral-treated adults. PLoS ONE 2012, 7, e40245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryom, L.; Mocroft, A.; Kirk, O.; Ross, M.; Reiss, P.; Fux, C.A.; Morlat, P.; Moranne, O.; Smith, C.; El-Sadr, W.; et al. Predictors of advanced chronic kidney disease and end-stage renal disease in HIV-positive persons. AIDS 2014, 28, 187–199. [Google Scholar] [CrossRef] [PubMed]
- George, E.; Lucas, G.M.; Nadkarni, G.N.; Fine, D.M.; Moore, R.; Atta, M.G. Kidney function and the risk of cardiovascular events in HIV-1-infected patients. AIDS 2010, 24, 387–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mocroft, A.; Ryom, L.; Begovac, J.; Monforte, A.D.; Vassilenko, A.; Gatell, J.; Florence, E.; Ormaasen, V.; Kirk, O.; Lundgren, J.D.; et al. Deteriorating renal function and clinical outcomes in HIV-positive persons. AIDS 2014, 28, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Mallipattu, S.K.; Salem, F.; Wyatt, C.M. The changing epidemiology of HIV-related chronic kidney disease in the era of antiretroviral therapy. Kidney Int. 2014, 86, 259–265. [Google Scholar] [CrossRef] [Green Version]
- Petersen, N.; Knudsen, A.D.; Mocroft, A.; Kirkegaard-Klitbo, D.; Arici, E.; Lundgren, J.; Benfield, T.; Oturai, P.; Nordestgaard, B.G.; Feldt-Rasmussen, B.; et al. Prevalence of impaired renal function in virologically suppressed people living with HIV compared with controls: The Copenhagen Comorbidity in HIV Infection (COCOMO) study. HIV Med. 2019, 20, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Bertoldi, A.; De Crignis, E.; Miserocchi, A.; Bon, I.; Musumeci, G.; Longo, S.; D’Urbano, V.; La Manna, G.; Calza, L.; Re, M.C. HIV and kidney: A dangerous liaison. New Microbiol. 2017, 40, 1–10. [Google Scholar]
- Faulhaber, J.R.; Nelson, P.J. Virus-induced cellular immune mechanisms of injury to the kidney. Clin. J. Am. Soc. Nephrol. 2007, 2, S2–S5. [Google Scholar] [CrossRef] [PubMed]
- Ostrowski, S.R.; Katzenstein, T.L.; Pedersen, B.K.; Gerstoft, J.; Ullum, H. Residual viraemia in HIV-1-infected patients with plasma viral load. Scand J. Immunol. 2008, 68, 652–660. [Google Scholar] [CrossRef]
- Bastard, J.P.; Soulié, C.; Fellahi, S.; Haïm-Boukobza, S.; Simon, A.; Katlama, C.; Calvez, V.; Marcelin, A.G.; Capeau, J. Circulating interleukin-6 levels correlate with residual HIV viraemia and markers of immune dysfunction in treatment-controlled HIV-infected patients. Antivir. Ther. 2012, 17, 915–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snyder, A.; Alsauskas, Z.C.; Leventhal, J.S.; Rosenstiel, P.E.; Gong, P.; Chan, J.J.; Barley, K.; He, J.C.; Klotman, M.E.; Ross, M.J.; et al. HIV-1 viral protein r induces ERK and caspase-8-dependent apoptosis in renal tubular epithelial cells. AIDS 2010, 24, 1107–1119. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, S.; Ghebremichael, M.; Li, M.; Foli, Y.; Langs-Barlow, A.; Ogbuagu, A.; Barakat, L.; Tubridy, E.; Edifor, R.; Lam, W.; et al. Antiretroviral therapy-induced mitochondrial toxicity: Potential mechanisms beyond polymerase-γ inhibition. Clin. Pharmacol. Ther. 2014, 96, 110–120. [Google Scholar] [CrossRef] [Green Version]
- Karras, A.; Lafaurie, M.; Furco, A.; Bourgarit, A.; Droz, D.; Sereni, D.; Legendre, C.; Martinez, F.; Molina, J.M. Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: Three cases of renal failure, Fanconi syndrome, and nephrogenic diabetes insipidus. Clin. Infect. Dis. 2003, 36, 1070–1073. [Google Scholar] [CrossRef] [Green Version]
- Hsu, R.; Brunet, L.; Fusco, J.; Beyer, A.; Prajapati, G.; Wyatt, C.; Wohlfeiler, M.; Fusco, G. Risk of chronic kidney disease in people living with HIV by tenofovir disoproxil fumarate (TDF) use and baseline D:A:D chronic kidney disease risk score. HIV Med. 2021, 22, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Brewster, U.C.; Perazella, M.A. Acute interstitial nephritis associated with atazanavir, a new protease inhibitor. Am. J. Kidney Dis. 2004, 44, e81–e84. [Google Scholar] [CrossRef]
- Izzedine, H.; M’rad, M.B.; Bardier, A.; Daudon, M.; Salmon, D. Atazanavir crystal nephropathy. AIDS 2007, 21, 2357–2358. [Google Scholar] [CrossRef]
- Anderson, P.L.; Lichtenstein, K.A.; Gerig, N.E.; Kiser, J.J.; Bushman, L.R. Atazanavir-containing renal calculi in an HIV-infected patient. AIDS 2007, 21, 1060–1062. [Google Scholar] [CrossRef]
- Mocroft, A.; Kirk, O.; Reiss, P.; De Wit, S.; Sedlacek, D.; Beniowski, M.; Gatell, J.; Phillips, A.N.; Ledergerber, B.; Lundgren, J.D.; et al. Estimated glomerular filtration rate, chronic kidney disease and antiretroviral drug use in HIV-positive patients. AIDS 2010, 24, 1667–1678. [Google Scholar] [CrossRef] [Green Version]
- Hepatitis, B. EASL Guidelines, 2019; Preexposure Prophylaxis for the Prevention of HIV Infection in the United States—2017 Update Clinical Practice Guideline. J. Hepatol. 2017, 67, 370–398. [Google Scholar]
- Chazot, R.; Botelho-Nevers, E.; Frésard, A.; Maillard, N.; Mariat, C.; Lucht, F.; Gagneux-Brunon, A. Diagnostic challenges of kidney diseases in HIV-infected patients. Expert Rev. Anti. Infect. Ther. 2017, 15, 903–915. [Google Scholar] [CrossRef] [PubMed]
- Neyra, R.; Chen, K.Y.; Sun, M.; Shyr, Y.; Hakim, R.M.; Ikizler, T.A. Increased resting energy expenditure in patients with end-stage renal disease. JPEN J. Parenter Enteral Nutr. 2003, 27, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef]
- Yan, B.; Su, X.; Xu, B.; Qiao, X.; Wang, L. Effect of diet protein restriction on progression of chronic kidney disease: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0206134. [Google Scholar] [CrossRef] [PubMed]
- Zha, Y.; Qian, Q. Protein Nutrition and Malnutrition in CKD and ESRD. Nutrients 2017, 9, 208. [Google Scholar] [CrossRef] [PubMed]
- Fantuzzi, A.L.; Lugli, F.; Giannini, R. The opinion of patients with chronic renal disease on low-protein foods. G. Tec. Nefrol. Dial. 2014, 26, 361–367. [Google Scholar] [CrossRef]
- D’Alessandro, C.; Rossi, A.; Innocenti, M.; Ricchiuti, G.; Bozzoli, L.; Sbragia, G.; Meola, M.; Cupisti, A. Dietary protein restriction for renal patients: Don’t forget protein-free foods. J. Ren. Nutr. 2013, 23, 367–371. [Google Scholar] [CrossRef]
- Bradbury, B.D.; Fissell, R.B.; Albert, J.M.; Anthony, M.S.; Critchlow, C.W.; Pisoni, R.L.; Port, F.K.; Gillespie, B.W. Predictors of early mortality among incident US hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Clin. J. Am. Soc. Nephrol. 2007, 2, 89–99. [Google Scholar] [CrossRef]
- Adeney, K.L.; Siscovick, D.S.; Ix, J.H.; Seliger, S.L.; Shlipak, M.G.; Jenny, N.S.; Kestenbaum, B.R. Association of serum phosphate with vascular and valvular calcification in moderate CKD. J. Am. Soc. Nephrol. 2009, 20, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Reaich, D.; Channon, S.M.; Scrimgeour, C.M.; Daley, S.E.; Wilkinson, R.; Goodship, T.H. Correction of acidosis in humans with CRF decreases protein degradation and amino acid oxidation. Am. J. Physiol. 1993, 265, E230–E235. [Google Scholar] [CrossRef]
- Montemurno, E.; Cosola, C.; Dalfino, G.; Daidone, G.; De Angelis, M.; Gobbetti, M.; Gesualdo, L. What would you like to eat, Mr CKD Microbiota? A Mediterranean Diet, please! Kidney Blood Press Res. 2014, 39, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, G.N.; Bryson, C.L.; Weiss, N.S.; Miller, R.; Scott, J.D.; Boyko, E.J. The prevalence of cirrhosis and hepatocellular carcinoma in patients with human immunodeficiency virus infection. Hepatology 2013, 57, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Thio, C.L.; Seaberg, E.C.; Skolasky, R., Jr.; Phair, J.; Visscher, B.; Muñoz, A.; Thomas, D.L. Multicenter AIDS Cohort Study. HIV-1, hepatitis B virus, and risk of liver-related mortality in the Multicenter Cohort Study (MACS). Lancet 2002, 360, 1921–1926. [Google Scholar] [CrossRef]
- Bavaro, D.F.; Saracino, A.; Fiordelisi, D.; Bruno, G.; Ladisa, N.; Monno, L.; Angarano, G. Influence of HLA-B18 on liver fibrosis progression in a cohort of HIV/HCV coinfected individuals. J. Med. Virol. 2019, 91, 751–757. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Weinberg, E.M.; Tai, A.W.; Peng, L.F.; Brockman, M.A.; Kim, K.A.; Kim, S.S.; Borges, C.B.; Shao, R.X.; Chung, R.T. HIV increases HCV replication in a TGF-beta1-dependent manner. Gastroenterology 2008, 134, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Hong, F.; Tuyama, A.; Lee, T.F.; Loke, J.; Agarwal, R.; Cheng, X.; Garg, A.; Fiel, M.I.; Schwartz, M.; Walewski, J.; et al. Hepatic stellate cells express functional CXCR4: Role in stromal cell-derived factor-1alpha-mediated stellate cell activation. Hepatology 2009, 49, 2055–2067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balagopal, A.; Ray, S.C.; De Oca, R.M.; Sutcliffe, C.G.; Vivekanandan, P.; Higgins, Y.; Mehta, S.H.; Moore, R.D.; Sulkowski, M.S.; Thomas, D.L.; et al. Kupffer cells are depleted with HIV immunodeficiency and partially recovered with antiretroviral immune reconstitution. AIDS 2009, 23, 2397–2404. [Google Scholar] [CrossRef] [Green Version]
- Balagopal, A.; Philp, F.H.; Astemborski, J.; Block, T.M.; Mehta, A.; Long, R.; Kirk, G.D.; Mehta, S.H.; Cox, A.L.; Thomas, D.L.; et al. Human immunodeficiency virus-related microbial translocation and progression of hepatitis C. Gastroenterology 2008, 135, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Woreta, T.A.; Sutcliffe, C.G.; Mehta, S.H.; Brown, T.T.; Higgins, Y.; Thomas, D.L.; Torbenson, M.S.; Moore, R.D.; Sulkowski, M.S. Incidence and risk factors for steatosis progression in adults coinfected with HIV and hepatitis C virus. Gastroenterology 2011, 140, 809–817. [Google Scholar] [CrossRef] [Green Version]
- Norwood, J.; Turner, M.; Bofill, C.; Rebeiro, P.; Shepherd, B.; Bebawy, S.; Hulgan, T.; Raffanti, S.; Haas, D.W.; Sterling, T.R.; et al. Brief Report: Weight Gain in Persons with HIV Switched From Efavirenz-Based to Integrase Strand Transfer Inhibitor-Based Regimens. J. Acquir. Immune Defic. Syndr. 2017, 76, 527–531. [Google Scholar] [CrossRef]
- Menard, A.; Meddeb, L.; Tissot-Dupont, H.; Ravaux, I.; Dhiver, C.; Mokhtari, S.; Tomei, C.; Brouqui, P.; Colson, P.; Stein, A. Dolutegravir and weight gain: An unexpected bothering side effect? AIDS 2017, 31, 1499–1500. [Google Scholar] [CrossRef] [PubMed]
- Vodkin, I.; Valasek, M.A.; Bettencourt, R.; Cachay, E.; Loomba, R. Clinical, biochemical and histological differences between HIV-associated NAFLD and primary NAFLD: A case-control study. Aliment Pharmacol. Ther. 2015, 41, 368–378. [Google Scholar] [CrossRef] [PubMed]
- Fracanzani, A.L.; Valenti, L.; Bugianesi, E.; Andreoletti, M.; Colli, A.; Vanni, E.; Bertelli, C.; Fatta, E.; Bignamini, D.; Marchesini, G.; et al. Risk of severe liver disease in nonalcoholic fatty liver disease with normal aminotransferase levels: A role for insulin resistance and diabetes. Hepatology 2008, 48, 792–798. [Google Scholar] [CrossRef]
- Ratziu, V.; Giral, P.; Munteanu, M.; Messous, D.; Mercadier, A.; Bernard, M.; Morra, R.; Imbert-Bismut, F.; Bruckert, E.; Poynard, T. Screening for liver disease using non-invasive biomarkers (FibroTest, SteatoTest and NashTest) in patients with hyperlipidaemia. Aliment Pharmacol. Ther. 2007, 25, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Talwalkar, J.A.; Yin, M.; Glaser, K.J.; Sanderson, S.O.; Ehman, R.L. Early detection of nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease by using MR elastography. Radiology 2011, 259, 749–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, V.W.; Vergniol, J.; Wong, G.L.; Foucher, J.; Chan, H.L.; Le Bail, B.; Choi, P.C.; Kowo, M.; Chan, A.W.; Merrouche, W.; et al. Diagnosis of fibrosis and cirrhosis using liver stiffness measurement in nonalcoholic fatty liver disease. Hepatology 2010, 51, 454–462. [Google Scholar] [CrossRef]
- Plauth, M.; Bernal, W.; Dasarathy, S.; Merli, M.; Plank, L.D.; Schütz, T.; Bischoff, S.C. ESPEN guideline on clinical nutrition in liver disease. Clin. Nutr. 2019, 38, 485–521. [Google Scholar] [CrossRef] [Green Version]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef]
- Viljanen, A.P.; Iozzo, P.; Borra, R.; Kankaanpää, M.; Karmi, A.; Lautamäki, R.; Järvisalo, M.; Parkkola, R.; Rönnemaa, T.; Guiducci, L.; et al. Effect of weight loss on liver free fatty acid uptake and hepatic insulin resistance. J. Clin. Endocrinol. Metab. 2009, 94, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Zelber-Sagi, S.; Salomone, F.; Mlynarsky, L. The Mediterranean dietary pattern as the diet of choice for non-alcoholic fatty liver disease: Evidence and plausible mechanisms. Liver Int. 2017, 37, 936–949. [Google Scholar] [CrossRef] [Green Version]
- Koopman, K.E.; Caan, M.W.; Nederveen, A.J.; Pels, A.; Ackermans, M.T.; Fliers, E.; la Fleur, S.E.; Serlie, M.J. Hypercaloric diets with increased meal frequency, but not meal size, increase intrahepatic triglycerides: A randomized controlled trial. Hepatology 2014, 60, 545–553. [Google Scholar] [CrossRef]
- Juakiem, W.; Torres, D.M.; Harrison, S.A. Nutrition in cirrhosis and chronic liver disease. Clin. Liver Dis. 2014, 18, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.; Lee, S.S.; Raman, M. Prevalence and mechanisms of malnutrition in patients with advanced liver disease, and nutrition management strategies. Clin. Gastroenterol. Hepatol. 2012, 10, 117–125. [Google Scholar] [CrossRef]
- Dudrick, S.J.; Kavic, S.M. Hepatobiliary nutrition: History and future. J. Hepatobiliary Pancreat. Surg. 2002, 9, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Vlahcevic, Z.R.; Buhac, I.; Farrar, J.T.; Bell, C.C., Jr.; Swell, L. Bile acid metabolism in patients with cirrhosis. I. Kinetic aspects of cholic acid metabolism. Gastroenterology 1971, 60, 491–498. [Google Scholar] [CrossRef]
- Tsiaousi, E.T.; Hatzitolios, A.I.; Trygonis, S.K.; Savopoulos, C.G. Malnutrition in end stage liver disease: Recommendations and nutritional support. J. Gastroenterol. Hepatol. 2008, 23, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Dasarathy, S. Consilience in sarcopenia of cirrhosis. J. Cachexia Sarcopenia Muscle. 2012, 3, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Englesbe, M.J.; Patel, S.P.; He, K.; Lynch, R.J.; Schaubel, D.E.; Harbaugh, C.; Holcombe, S.A.; Wang, S.C.; Segev, D.L.; Sonnenday, C.J. Sarcopenia and mortality after liver transplantation. J. Am. Coll. Surg. 2010, 211, 271–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakaya Okita, K.; Suzuki, K.; Moriwaki, H.; Kato, A.; Miwa, Y.; Shiraishi, K.; Okuda, H.; Onji, M.; Kanazawa, H.; Tsubouchi, H.; et al. Hepatic Nutritional Therapy (HNT) Study Group. BCAA-enriched snack improves nutritional state of cirrhosis. Nutrition 2007, 23, 113–120. [Google Scholar] [CrossRef]
- Plank, L.D.; Gane, E.J.; Peng, S.; Muthu, C.; Mathur, S.; Gillanders, L.; McIlroy, K.; Donaghy, A.J.; McCall, J.L. Nocturnal nutritional supplementation improves total body protein status of patients with liver cirrhosis: A randomized 12-month trial. Hepatology 2008, 48, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Córdoba, J.; López-Hellín, J.; Planas, M.; Sabín, P.; Sanpedro, F.; Castro, F.; Esteban, R.; Guardia, J. Normal protein diet for episodic hepatic encephalopathy: Results of a randomized study. J. Hepatol. 2004, 41, 38–43. [Google Scholar] [CrossRef]
- Amodio, P.; Bemeur, C.; Butterworth, R.; Cordoba, J.; Kato, A.; Montagnese, S.; Uribe, M.; Vilstrup, H.; Morgan, M.Y. The nutritional management of hepatic encephalopathy in patients with cirrhosis: International Society for Hepatic Encephalopathy and Nitrogen Metabolism Consensus. Hepatology 2013, 58, 325–336. [Google Scholar] [CrossRef]
- Chadalavada, R.; Sappati Biyyani, R.S.; Maxwell, J.; Mullen, K. Nutrition in hepatic encephalopathy. Nutr. Clin. Pract. 2010, 25, 257–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salerno, F.; Guevara, M.; Bernardi, M.; Moreau, R.; Wong, F.; Angeli, P.; Garcia-Tsao, G.; Lee, S.S. Refractory ascites: Pathogenesis, definition and therapy of a severe complication in patients with cirrhosis. Liver Int. 2010, 30, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Gebremichael, D.Y.; Hadush, K.T.; Kebede, E.M.; Zegeye, R.T. Food Insecurity, Nutritional Status, and Factors Associated with Malnutrition among People Living with HIV/AIDS Attending Antiretroviral Therapy at Public Health Facilities in West Shewa Zone, Central Ethiopia. Biomed. Res. Int. 2018, 2018, 1913534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, P.; Saloojee, H.; Chen, J.Y.; Chung, R.T. Noncommunicable diseases in HIV infection in low- and middle-income countries: Gastrointestinal, hepatic, and nutritional aspects. J. Acquir. Immune Defic. Syndr. 2014, 67, S79–S86. [Google Scholar] [CrossRef] [Green Version]
- Wanke, C.A.; Silva, M.; Knox, T.A.; Forrester, J.; Speigelman, D.; Gorbach, S.L. Weight loss and wasting remain common complications in individuals infected with human immunodeficiency virus in the era of highly active antiretroviral therapy. Clin. Infect. Dis. 2000, 31, 803–805. [Google Scholar] [CrossRef] [PubMed]
- Berhe, N.; Tegabu, D.; Alemayehu, M. Effect of nutritional factors on adherence to antiretroviral therapy among HIV-infected adults: A case control study in Northern Ethiopia. BMC Infect. Dis. 2013, 13, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Diagnosis of CVD in PLWH | |
| |
Nutritional management of CVD in PLWH | |
| |
| |
| |
| |
| |
FOOD GROUP | RECOMMENDATION |
Nuts/seeds | ≥3 servings/week |
Olive oil | ≥4 tbsp/day (around 50 mL) |
Fresh fruits/vegetables | ≥2–3 servings/day |
Legumes | ≥3 serving/week |
Fish, poultry, dairy products | ≥3 serving/week |
Whole grain cereals | ≥2 serving/week |
Wine (red, dry) | ≥7 glasses/week |
Red and processed meats | <1 serving/day |
Sweets | <1 serving/day |
The dietary approach to stop hypertension (DASH) diet is another dietary approach that reduces CVD incidence, and, in particular, hypertension. Differently from the Mediterranean diet, it demands a minor use of extra-virgin olive oil. The portfolio diet focuses on consumption of “cholesterol-lowering food” such as nuts, apples, oranges, berries, soluble fibers from oats, barley, psyllium, okra or eggplant, vegetal protein from legumes or soy products, and integration with 2 g plant sterols provided in a plant sterol-enriched margarine | |
| |
| |
|
Diagnosis of Diabetes in PLWH |
|
|
|
|
Nutritional management of diabetes in PLWH |
|
|
|
|
|
Diagnosis management of CKD in PLWH |
|
|
Nutritional management of CKD in PLWH |
|
|
|
|
|
Diagnosis of liver diseases in PLWH |
|
Nutritional management of liver disease in PLWH |
In cases of NAFLD or NASH, lifestyle intervention and weight loss are crucial (first approach)
|
In cases of CIRRHOSIS:
|
In cases of ASCITES:
|
Nutritional suggestions for low- and middle- income countries |
---|
Approach to the nutritional status of PLWH in LMICs:
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bavaro, D.F.; Laghetti, P.; Poliseno, M.; De Gennaro, N.; Di Gennaro, F.; Saracino, A. A Step Closer to the “Fourth 90”: A Practical Narrative Review of Diagnosis and Management of Nutritional Issues of People Living with HIV. Diagnostics 2021, 11, 2047. https://doi.org/10.3390/diagnostics11112047
Bavaro DF, Laghetti P, Poliseno M, De Gennaro N, Di Gennaro F, Saracino A. A Step Closer to the “Fourth 90”: A Practical Narrative Review of Diagnosis and Management of Nutritional Issues of People Living with HIV. Diagnostics. 2021; 11(11):2047. https://doi.org/10.3390/diagnostics11112047
Chicago/Turabian StyleBavaro, Davide Fiore, Paola Laghetti, Mariacristina Poliseno, Nicolò De Gennaro, Francesco Di Gennaro, and Annalisa Saracino. 2021. "A Step Closer to the “Fourth 90”: A Practical Narrative Review of Diagnosis and Management of Nutritional Issues of People Living with HIV" Diagnostics 11, no. 11: 2047. https://doi.org/10.3390/diagnostics11112047
APA StyleBavaro, D. F., Laghetti, P., Poliseno, M., De Gennaro, N., Di Gennaro, F., & Saracino, A. (2021). A Step Closer to the “Fourth 90”: A Practical Narrative Review of Diagnosis and Management of Nutritional Issues of People Living with HIV. Diagnostics, 11(11), 2047. https://doi.org/10.3390/diagnostics11112047