Capabilities of Modern Semiconductor Gamma Cameras in Radionuclide Diagnosis of Coronary Artery Disease
Abstract
:1. Introduction
2. Myocardial Perfusion Study
2.1. CZT-SPECT vs. A-SPECT
2.2. Diagnostic Efficacy of CZT Cameras
3. Left Ventricular Contractility
3.1. Global Contractility
3.2. Regional Contractility
4. Myocardial Flow Reserve
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hutton, B.F.; Erlandsson, K.; Thielemans, K. Advances in Clinical Molecular Imaging Instrumentation. Clin. Transl. Imaging 2018, 6, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Garcia, E.V.; Faber, T.L.; Esteves, F.P. Cardiac Dedicated Ultrafast SPECT Cameras: New Designs and Clinical Implications. J. Nucl. Med. 2011, 52, 210–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, M.F. Recent Advances in Cardiac SPECT Instrumentation and System Design. Curr. Cardiol. Rep. 2013, 15, 387. [Google Scholar] [CrossRef]
- Iniewski, K. CZT Detector Technology for Medical Imaging. J. Instrum. 2014, 9, C11001. [Google Scholar] [CrossRef]
- Takahashi, Y.; Miyagawa, M.; Nishiyama, Y.; Ishimura, H.; Mochizuki, T. Performance of a Semiconductor SPECT System: Comparison with a Conventional Anger-Type SPECT Instrument. Ann. Nucl. Med. 2013, 27, 11–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gambhir, S.S.; Berman, D.S.; Ziffer, J.; Nagler, M.; Sandler, M.; Patton, J.; Hutton, B.; Sharir, T.; Haim, S.B.; Haim, S.B. A Novel High-Sensitivity Rapid-Acquisition Single-Photon Cardiac Imaging Camera. J. Nucl. Med. 2009, 50, 635–643. [Google Scholar] [CrossRef] [Green Version]
- Marcassa, C.; Bax, J.J.; Bengel, F.; Hesse, B.; Petersen, C.L.; Reyes, E.; Underwood, R.; European Council of Nuclear Cardiology (ECNC); European Society of Cardiology Working Group 5 (Nuclear Cardiology and Cardiac CT); European Association of Nuclear Medicine Cardiovascular Committee. Clinical Value, Cost-Effectiveness, and Safety of Myocardial Perfusion Scintigraphy: A Position Statement. Eur. Heart J. 2008, 29, 557–563. [Google Scholar] [CrossRef] [Green Version]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the Diagnosis and Management of Chronic Coronary Syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef]
- Esteves, F.P.; Raggi, P.; Folks, R.D.; Keidar, Z.; Askew, J.W.; Rispler, S.; O’Connor, M.K.; Verdes, L.; Garcia, E.V. Novel Solid-State-Detector Dedicated Cardiac Camera for Fast Myocardial Perfusion Imaging: Multicenter Comparison with Standard Dual Detector Cameras. J. Nucl. Cardiol. 2009, 16, 927–934. [Google Scholar] [CrossRef] [Green Version]
- Sharir, T.; Ben-Haim, S.; Merzon, K.; Prochorov, V.; Dickman, D.; Ben-Haim, S.; Berman, D.S. High-Speed Myocardial Perfusion Imaging Initial Clinical Comparison with Conventional Dual Detector Anger Camera Imaging. JACC Cardiovasc. Imaging 2008, 1, 156–163. [Google Scholar] [CrossRef] [Green Version]
- Verger, A.; Djaballah, W.; Fourquet, N.; Rouzet, F.; Koehl, G.; Imbert, L.; Poussier, S.; Fay, R.; Roch, V.; Le Guludec, D.; et al. Comparison between Stress Myocardial Perfusion SPECT Recorded with Cadmium-Zinc-Telluride and Anger Cameras in Various Study Protocols. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 331–340. [Google Scholar] [CrossRef]
- Mannarino, T.; Assante, R.; Ricciardi, C.; Zampella, E.; Nappi, C.; Gaudieri, V.; Mainolfi, C.G.; Di Vaia, E.; Petretta, M.; Cesarelli, M.; et al. Head-to-Head Comparison of Diagnostic Accuracy of Stress-Only Myocardial Perfusion Imaging with Conventional and Cadmium-Zinc Telluride Single-Photon Emission Computed Tomography in Women with Suspected Coronary Artery Disease. J. Nucl. Cardiol. 2021, 28, 888–897. [Google Scholar] [CrossRef] [PubMed]
- Cantoni, V.; Green, R.; Acampa, W.; Zampella, E.; Assante, R.; Nappi, C.; Gaudieri, V.; Mannarino, T.; Cuocolo, R.; Di Vaia, E.; et al. Diagnostic Performance of Myocardial Perfusion Imaging with Conventional and CZT Single-Photon Emission Computed Tomography in Detecting Coronary Artery Disease: A Meta-Analysis. J. Nucl. Cardiol. 2019, 28, 698–715. [Google Scholar] [CrossRef]
- Nudi, F.; Iskandrian, A.E.; Schillaci, O.; Peruzzi, M.; Frati, G.; Biondi-Zoccai, G. Diagnostic Accuracy of Myocardial Perfusion Imaging with CZT Technology: Systemic Review and Meta-Analysis of Comparison with Invasive Coronary Angiography. JACC Cardiovasc. Imaging 2017, 10, 787–794. [Google Scholar] [CrossRef]
- Zhang, Y.-Q.; Jiang, Y.-F.; Hong, L.; Chen, M.; Zhang, N.-N.; Yang, H.-J.; Zhou, Y.-F. Diagnostic Value of Cadmium-Zinc-Telluride Myocardial Perfusion Imaging versus Coronary Angiography in Coronary Artery Disease: A PRISMA-Compliant Meta-Analysis: A PRISMA-Compliant Meta-Analysis. Medicine 2019, 98, e14716. [Google Scholar] [CrossRef] [PubMed]
- Gimelli, A.; Liga, R.; Duce, V.; Kusch, A.; Clemente, A.; Marzullo, P. Accuracy of Myocardial Perfusion Imaging in Detecting Multivessel Coronary Artery Disease: A Cardiac CZT Study. J. Nucl. Cardiol. 2017, 24, 687–695. [Google Scholar] [CrossRef]
- Zellweger, M.J. The Newer, the Better; and May Be Not Good Enough? J. Nucl. Cardiol. 2021, 28, 716–717. [Google Scholar] [CrossRef] [Green Version]
- Caobelli, F.; Akin, M.; Thackeray, J.T.; Brunkhorst, T.; Widder, J.; Berding, G.; Burchert, I.; Bauersachs, J.; Bengel, F.M. Diagnostic Accuracy of Cadmium-Zinc-Telluride-Based Myocardial Perfusion SPECT: Impact of Attenuation Correction Using a Co-Registered External Computed Tomography. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 1036–1043. [Google Scholar] [CrossRef] [PubMed]
- Esteves, F.P.; Galt, J.R.; Folks, R.D.; Verdes, L.; Garcia, E.V. Diagnostic Performance of Low-Dose Rest/Stress Tc-99m Tetrofosmin Myocardial Perfusion SPECT Using the 530c CZT Camera: Quantitative vs Visual Analysis. J. Nucl. Cardiol. 2014, 21, 158–165. [Google Scholar] [CrossRef]
- Mirshahvalad, S.A.; Chavoshi, M.; Hekmat, S. Diagnostic Performance of Prone-Only Myocardial Perfusion Imaging versus Coronary Angiography in the Detection of Coronary Artery Disease: A Systematic Review and Meta-Analysis. J. Nucl. Cardiol. 2020. [Google Scholar] [CrossRef]
- Nishiyama, Y.; Miyagawa, M.; Kawaguchi, N.; Nakamura, M.; Kido, T.; Kurata, A.; Kido, T.; Ogimoto, A.; Higaki, J.; Mochizuki, T. Combined Supine and Prone Myocardial Perfusion Single-Photon Emission Computed Tomography with a Cadmium Zinc Telluride Camera for Detection of Coronary Artery Disease. Circ. J. 2014, 78, 1169–1175. [Google Scholar] [CrossRef] [Green Version]
- Nakazato, R.; Tamarappoo, B.K.; Kang, X.; Wolak, A.; Kite, F.; Hayes, S.W.; Thomson, L.E.J.; Friedman, J.D.; Berman, D.S.; Slomka, P.J. Quantitative Upright-Supine High-Speed SPECT Myocardial Perfusion Imaging for Detection of Coronary Artery Disease: Correlation with Invasive Coronary Angiography. J. Nucl. Med. 2010, 51, 1724–1731. [Google Scholar] [CrossRef] [Green Version]
- Agostini, D.; Roule, V.; Nganoa, C.; Roth, N.; Baavour, R.; Parienti, J.-J.; Beygui, F.; Manrique, A. First Validation of Myocardial Flow Reserve Assessed by Dynamic 99mTc-Sestamibi CZT-SPECT Camera: Head to Head Comparison with 15O-Water PET and Fractional Flow Reserve in Patients with Suspected Coronary Artery Disease. The WATERDAY Study. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1079–1090. [Google Scholar] [CrossRef] [Green Version]
- Zavadovsky, K.V.; Mochula, A.V.; Boshchenko, A.A.; Vrublevsky, A.V.; Baev, A.E.; Krylov, A.L.; Gulya, M.O.; Nesterov, E.A.; Liga, R.; Gimelli, A. Absolute Myocardial Blood Flows Derived by Dynamic CZT Scan vs Invasive Fractional Flow Reserve: Correlation and Accuracy. J. Nucl. Cardiol. 2021, 28, 249–259. [Google Scholar] [CrossRef]
- do A H de Souza, A.C.; Gonçalves, B.K.D.; Tedeschi, A.L.; Lima, R.S.L. Quantification of Myocardial Flow Reserve Using a Gamma Camera with Solid-State Cadmium-Zinc-Telluride Detectors: Relation to Angiographic Coronary Artery Disease. J. Nucl. Cardiol. 2021, 28, 876–884. [Google Scholar] [CrossRef]
- Ben Bouallègue, F.; Roubille, F.; Lattuca, B.; Cung, T.T.; Macia, J.-C.; Gervasoni, R.; Leclercq, F.; Mariano-Goulart, D. SPECT Myocardial Perfusion Reserve in Patients with Multivessel Coronary Disease: Correlation with Angiographic Findings and Invasive Fractional Flow Reserve Measurements. J. Nucl. Med. 2015, 56, 1712–1717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyagawa, M.; Nishiyama, Y.; Uetani, T.; Ogimoto, A.; Ikeda, S.; Ishimura, H.; Watanabe, E.; Tashiro, R.; Tanabe, Y.; Kido, T.; et al. Estimation of Myocardial Flow Reserve Utilizing an Ultrafast Cardiac SPECT: Comparison with Coronary Angiography, Fractional Flow Reserve, and the SYNTAX Score. Int. J. Cardiol. 2017, 244, 347–353. [Google Scholar] [CrossRef]
- Herzog, B.A.; Buechel, R.R.; Katz, R.; Brueckner, M.; Husmann, L.; Burger, I.A.; Pazhenkottil, A.P.; Valenta, I.; Gaemperli, O.; Treyer, V.; et al. Nuclear Myocardial Perfusion Imaging with a Cadmium-Zinc-Telluride Detector Technique: Optimized Protocol for Scan Time Reduction. J. Nucl. Med. 2010, 51, 46–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Dijk, J.D.; Mouden, M.; Ottervanger, J.P.; van Dalen, J.A.; Knollema, S.; Slump, C.H.; Jager, P.L. Value of Attenuation Correction in Stress-Only Myocardial Perfusion Imaging Using CZT-SPECT. J. Nucl. Cardiol. 2017, 24, 395–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allman, K.C.; Sucharski, L.A.; Stafford, K.A.; Petry, N.A.; And, W.W. Determination of Extent and Location of Coronary Artery Disease in Patients without Prior Myocardial Infarction by Thaffium-20 1 Tomography with Pharmacologic Stress. Available online: https://jnm.snmjournals.org/content/jnumed/33/12/2067.full.pdf (accessed on 14 October 2021).
- Travin, M.I.; Katz, M.S.; Moulton, A.W.; Miele, N.J.; Sharaf, B.L.; Johnson, L.L. Accuracy of Dipyridamole SPECT Imaging in Identifying Individual Coronary Stenoses and Multivessel Disease in Women versus Men. J. Nucl. Cardiol. 2000, 7, 213–220. [Google Scholar] [CrossRef]
- Perrin, M.; Roch, V.; Claudin, M.; Verger, A.; Boutley, H.; Karcher, G.; Baumann, C.; Veran, N.; Marie, P.-Y.; Imbert, L. Assessment of Myocardial CZT SPECT Recording in a Forward-Leaning Bikerlike Position. J. Nucl. Med. 2019, 60, 824–829. [Google Scholar] [CrossRef] [Green Version]
- Fiechter, M.; Gebhard, C.; Fuchs, T.A.; Ghadri, J.R.; Stehli, J.; Kazakauskaite, E.; Herzog, B.A.; Pazhenkottil, A.P.; Gaemperli, O.; Kaufmann, P.A. Cadmium-Zinc-Telluride Myocardial Perfusion Imaging in Obese Patients. J. Nucl. Med. 2012, 53, 1401–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budzyńska, A.; Osiecki, S.; Mazurek, A.; Piszczek, S.; Dziuk, M. Feasibility of Myocardial Perfusion Imaging Studies in Morbidly Obese Patients with a Cadmium-Zinc-Telluride Cardiac Camera. Nucl. Med. Rev. Cent. East. Eur. 2019, 22, 18–22. [Google Scholar] [PubMed]
- Einstein, A.J.; Blankstein, R.; Andrews, H.; Fish, M.; Padgett, R.; Hayes, S.W.; Friedman, J.D.; Qureshi, M.; Rakotoarivelo, H.; Slomka, P.; et al. Comparison of Image Quality, Myocardial Perfusion, and Left Ventricular Function between Standard Imaging and Single-Injection Ultra-Low-Dose Imaging Using a High-Efficiency SPECT Camera: The Millisievert Study. J. Nucl. Med. 2014, 55, 1430–1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DePuey, E.G. Traditional Gamma Cameras Are Preferred. J. Nucl. Cardiol. 2016, 23, 795–802. [Google Scholar] [CrossRef]
- Abidov, A.; Germano, G.; Hachamovitch, R.; Berman, D.S. Gated SPECT in Assessment of Regional and Global Left Ventricular Function: Major Tool of Modern Nuclear Imaging. J. Nucl. Cardiol. 2006, 13, 261–279. [Google Scholar] [CrossRef]
- Cochet, H.; Bullier, E.; Gerbaud, E.; Durieux, M.; Godbert, Y.; Lederlin, M.; Coste, P.; Barat, J.-L.; Laurent, F.; Montaudon, M. Absolute Quantification of Left Ventricular Global and Regional Function at Nuclear MPI Using Ultrafast CZT SPECT: Initial Validation versus Cardiac MR. J. Nucl. Med. 2013, 54, 556–563. [Google Scholar] [CrossRef] [Green Version]
- Giorgetti, A.; Masci, P.G.; Marras, G.; Rustamova, Y.K.; Gimelli, A.; Genovesi, D.; Lombardi, M.; Marzullo, P. Gated SPECT Evaluation of Left Ventricular Function Using a CZT Camera and a Fast Low-Dose Clinical Protocol: Comparison to Cardiac Magnetic Resonance Imaging. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 1869–1875. [Google Scholar] [CrossRef]
- Claudin, M.; Imbert, L.; Djaballah, W.; Veran, N.; Poussier, S.; Roch, V.; Perrin, M.; Verger, A.; Boutley, H.; Karcher, G.; et al. Routine Evaluation of Left Ventricular Function Using CZT-SPECT, with Low Injected Activities and Limited Recording Times. J. Nucl. Cardiol. 2018, 25, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Sala, M.; Kincl, V.; Kamínek, M.; Vašina, J.; Máchal, J.; Panovský, R.; Feitová, V.; Opatřil, L.; Holeček, T. Assessment of Left Ventricular Volumes and Ejection Fraction Using Ultra-Low-Dose Thallium-201 SPECT on a CZT Camera: A Comparison with Magnetic Resonance Imaging. J. Nucl. Cardiol. 2020. [Google Scholar] [CrossRef]
- Coupez, E.; Merlin, C.; Tuyisenge, V.; Sarry, L.; Pereira, B.; Lusson, J.R.; Boyer, L.; Cassagnes, L. Validation of Cadmium–Zinc–Telluride Camera for Measurement of Left Ventricular Systolic Performance. J. Nucl. Cardiol. 2018, 25, 1029–1036. [Google Scholar] [CrossRef]
- Ben-Haim, S.; Murthy, V.L.; Breault, C.; Allie, R.; Sitek, A.; Roth, N.; Fantony, J.; Moore, S.C.; Park, M.-A.; Kijewski, M.; et al. Quantification of Myocardial Perfusion Reserve Using Dynamic SPECT Imaging in Humans: A Feasibility Study. J. Nucl. Med. 2013, 54, 873–879. [Google Scholar] [CrossRef] [Green Version]
- Otaki, Y.; Manabe, O.; Miller, R.J.H.; Manrique, A.; Nganoa, C.; Roth, N.; Berman, D.S.; Germano, G.; Slomka, P.J.; Agostini, D. Quantification of Myocardial Blood Flow by CZT-SPECT with Motion Correction and Comparison with 15O-Water PET. J. Nucl. Cardiol. 2021, 28, 1477–1486. [Google Scholar] [CrossRef] [PubMed]
- Danad, I.; Uusitalo, V.; Kero, T.; Saraste, A.; Raijmakers, P.G.; Lammertsma, A.A.; Heymans, M.W.; Kajander, S.A.; Pietilä, M.; James, S.; et al. Quantitative Assessment of Myocardial Perfusion in the Detection of Significant Coronary Artery Disease: Cutoff Values and Diagnostic Accuracy of Quantitative [(15)O]H2O PET Imaging. J. Am. Coll. Cardiol. 2014, 64, 1464–1475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Waard, G.; Danad, I.; da Cunha, R.P.; Teunissen, P.; van de Hoef, T.; Raijmakers, P.; Lammertsma, A.; Davies, J.; Knaapen, P.; Van Royen, N. Hyperemic Ffr and Baseline Ifr Have an Equivalent Diagnostic Accuracy When Compared to Myocardial Blood Flow Quantified by H215o Pet Perfusion Imaging. J. Am. Coll. Cardiol. 2014, 63, A1692. [Google Scholar] [CrossRef] [Green Version]
- Murthy, V.L.; Bateman, T.M.; Beanlands, R.S.; Berman, D.S.; Borges-Neto, S.; Chareonthaitawee, P.; Cerqueira, M.D.; deKemp, R.A.; DePuey, E.G.; Dilsizian, V.; et al. Clinical Quantification of Myocardial Blood Flow Using PET: Joint Position Paper of the SNMMI Cardiovascular Council and the ASNC. J. Nucl. Cardiol. 2018, 25, 269–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziadi, M.C.; Dekemp, R.A.; Williams, K.; Guo, A.; Renaud, J.M.; Chow, B.J.W.; Klein, R.; Ruddy, T.D.; Aung, M.; Garrard, L.; et al. Does Quantification of Myocardial Flow Reserve Using Rubidium-82 Positron Emission Tomography Facilitate Detection of Multivessel Coronary Artery Disease? J. Nucl. Cardiol. 2012, 19, 670–680. [Google Scholar] [CrossRef]
- Shiraishi, S.; Tsuda, N.; Sakamoto, F.; Ogasawara, K.; Tomiguchi, S.; Tsujita, K.; Yamashita, Y. Clinical Usefulness of Quantification of Myocardial Blood Flow and Flow Reserve Using CZT-SPECT for Detecting Coronary Artery Disease in Patients with Normal Stress Perfusion Imaging. J. Cardiol. 2020, 75, 400–409. [Google Scholar] [CrossRef]
Esteves et al. [9] | Perfusion | A-SPECT 1 vs. CZT-SPECT 2 | 92% Agreement in Detection of Ischemia |
Sharir et al. [10] | High concordance of TPD 3, concordance in vascular territories >90% | ||
Verger et al. [11] | High >85% concordance for MIBI 4 and Thallium | ||
Mannarino et al. [12] | Women with low to intermediate prob. of CAD 5—no correlation between SSS 6 values | ||
Cantoni et al. [13] | CZT-SPECT vs. coronary angiography | Diagnostic efficacy of CZT-SPECT slightly higher than of A-SPECT (AUROC 7 89% vs. 83%) | |
Nudi et al. [14] | Detection of CAD: sensitivity. 0.84, specificity 0.69 | ||
Zhang et al. [15] | Detection of CAD: sensitivity 0.84, specificity 0.72 | ||
Gimelli et al. [16] | Effective detection of patients with mutivessel CAD | ||
Van Dijk et al. [17] | AC 8 | Increase in specificity (0.45 to 0.67) | |
Caobelli et al. [18] | increase in specificity (0.40 to 0.100) | ||
Esteves et al. [19] | AC does not affect visual interpretation | ||
Mirshavalad et al. [20] | Two patient positions | Higher specificity in prone than in supine position (0.86 vs. 0.67) | |
Nishiyama et al. [21] | Supine + prone—increase in specificity vs. supine only (0.85 vs. 0.50) | ||
Nakazato et al. [22] | Upright + supine vs. upright (sensitivity 0.94 vs. 0.86, specificity 0.91 vs. 0.59) | ||
Agostini et al. [23] | MFR 9 | Comparison with PET 10 | Agreement in entire myocardium and in each of vascular territories |
Agostini et al. [23] | Comparison with angiography or FFR 11 | High specificity (0.85) and accuracy (0.81) in detection of haemodynamically significant stenosis (FFR ≤ 0.8). | |
Zavadovsky et al. [24] | correlation between MFR and FFR (r = 0.66, p = 0.01) | ||
De Souza et al. [25] | Lower regional MFR indices in significantly stenosed than in unchanged vessels [1.81 vs. 2.75, p < 0.001]. | ||
Bouallegue et al. [26] | 3-vessel disease | MFR lower in patients with 3-vessel disease than without it: 1.57 vs. 2.17, p = 0.01 | |
Myagawa et al. [27] | Lower global MFR in 3- than in 1-vessel patients [1.18 vs. 1.46 p = 0.003], high diagnostic indices, 0.93 sensitivity and 0. 76 specificity in detecting 3-vessel disease |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Błaszczyk, M.; Adamczewski, Z.; Płachcińska, A. Capabilities of Modern Semiconductor Gamma Cameras in Radionuclide Diagnosis of Coronary Artery Disease. Diagnostics 2021, 11, 2130. https://doi.org/10.3390/diagnostics11112130
Błaszczyk M, Adamczewski Z, Płachcińska A. Capabilities of Modern Semiconductor Gamma Cameras in Radionuclide Diagnosis of Coronary Artery Disease. Diagnostics. 2021; 11(11):2130. https://doi.org/10.3390/diagnostics11112130
Chicago/Turabian StyleBłaszczyk, Michał, Zbigniew Adamczewski, and Anna Płachcińska. 2021. "Capabilities of Modern Semiconductor Gamma Cameras in Radionuclide Diagnosis of Coronary Artery Disease" Diagnostics 11, no. 11: 2130. https://doi.org/10.3390/diagnostics11112130
APA StyleBłaszczyk, M., Adamczewski, Z., & Płachcińska, A. (2021). Capabilities of Modern Semiconductor Gamma Cameras in Radionuclide Diagnosis of Coronary Artery Disease. Diagnostics, 11(11), 2130. https://doi.org/10.3390/diagnostics11112130