Detection of Changes on Parameters Related to Heart Rate Variability after Applying Current Interferential Therapy in Subjects with Non-Specific Low Back Pain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Randomization
2.4. Intervention
2.5. Outcomes Measures
2.6. Sample Size Calculation
2.7. Statistical Analysis
3. Results
4. Discussion
Clinical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hoy, D.; Bain, C.; William, G.; March, L.; Brooks, P.; Blyth, F.; Woolf, A.; Vos, T.; Buchbinder, R. A systematic review of the global prevalence of low back pain. Arthritis Rheum. 2012, 64, 2028–2037. [Google Scholar] [CrossRef]
- Nambi, G.S.; Inbasekaran, D.; Khuman, R.; Surbala, D.; Devi, S.; Jagannathan, K. Changes in pain intensity and health related quality of life with Iyengar yoga in nonspecific chronic low back pain: A randomized controlled study. Int. J. Yoga 2014, 7, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Alsufiany, M.B.; Lohman, E.B.; Daher, N.S.; Gang, G.R.; Shallan, A.I.; Jaber, H.M. Non-specific chronic low back pain and physical activity: A comparison of postural control and hip muscle isometric strength: A cross-sectional study. Medicine 2020, 99, e18544. [Google Scholar] [CrossRef]
- Becker, A.; Held, H.; Redaelli, M.; Strauch, K.; Chenot, J.F.; Leonhardt, C.; Keller, S.; Baum, E.; Pfingsten, M.; Hildebrandt, J.; et al. Low back pain in primary care: Cost of care and prediction of future health utilization. Spine 2010, 35, 1714–1720. [Google Scholar] [CrossRef]
- Oesch, P.; Meyer, K.; Jansen, B.; Kool, J. Functional capacity evaluation: Performance of patients with chronic non-specific low back pain without Waddell signs. J. Occup. Rehabil. 2015, 25, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Waddell, G.; McCulloch, J.A.; Kummel, E.; Venner, R.M. Nonorganic physical signs in low-back pain. Spine 1980, 5, 117–125. [Google Scholar] [CrossRef]
- Ansuategui Echeita, J.; van der Wurff, P.; Killen, V.; Dijkhof, M.; Grootenboer, F.; Reneman, M. Lifting capacity is associated with central sensitization and non-organic signs in patients with chronic back pain. Disabil. Rehabil. 2020, 1–5. [Google Scholar] [CrossRef] [Green Version]
- McCraty, R.; Atkinson, M.; Tomasino, D.; Bradley, R.T. The Coherent Heart: Heartbrain Interactions, Psychophysiological Coherence, and the Emergence of System-Wide Order; Institute of Heartmath: Boulder Creek, CA, USA, 2009. [Google Scholar]
- Echeita, J.A.; Preuper, H.R.S.; Dekker, R.; Stuive, I.; Timmerman, H.; Wolff, A.P.; Reneman, M.F. Central Sensitisation and functioning in patients with chronic low back pain: Protocol for a cross-sectional and cohort study. BMJ Open 2020, 10, e031592. [Google Scholar] [CrossRef] [Green Version]
- Bandeira, P.; Reis, F.; Sequeira, V.; Chaves, A.; Fernandes, O.; Arruda-Sanchez, T. Heart rate variability in patients with low back pain: A systematic review. Scand. J. Pain 2021, 37, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Telles, S.; Sharma, S.K.; Gupta, R.K.; Bhardwaj, A.K.; Ballkrishna, A. Heart rate variability in chronic low back pain patients randomized to yoga or standard care. BMC Complement. Altern. Med. 2016, 16, 279. [Google Scholar] [CrossRef] [Green Version]
- Koening, J.; Loerbroks, A.; Jarczok, M.N.; Fischer, J.E.; Thayer, J.F. Chronic Pain and Heart Rate Variability in a Cross-Sectional Occupational Sample: Evidence for Impaired Vagal Control. Clin. J. Pain 2016, 32, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Tracy, L.M.; Ioannou, L.; Baker, K.S.; Gibson, S.J.; Geogriou-Karistianis, N.; Giummarra, M.J. Meta-analytic evidence for decreased heart rate variability in chronic pain implicating parasympathetic nervous system dysregulation. Pain 2016, 157, 7–29. [Google Scholar] [CrossRef]
- Berry, M.E.; Chapple, I.T.; Ginsbeg, J.P.; Gleichauf, K.J.; Meyer, J.A.; Nagpal, M.L. Non-pharmacological Intervention for Chronic Pain in Veterans: APilot Study of Heart Rate Variability Biofeedback. Glob. Adv. Health Med. 2014, 3, 28–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tousignant-Laflamme, Y.; Marchand, S. Sex differences in cardiac and autonomic response to clinical and experimental pain in LBP patients. Eur. J. Pain 2006, 10, 603–614. [Google Scholar] [CrossRef]
- Almeida, C.C.; Silva, V.Z.M.D.; Júnior, G.C.; Liebano, R.E.; Durigan, J.L.Q. Transcutaneous electrical nerve stimulation and interferential current demonstrate similar effects in relieving acute and chronic pain: A systematic review with meta-analysis. Braz. J. Phys. Ther. 2018, 22, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Franco, Y.R.; Franco, K.M.; Silva, L.A.; Silva, M.O.; Rodríguez, M.N.; Liebano, R.E.; Cabral, C.N. Does the use of interferential current prior to pilates exercises accelerate improvement of chronic nonspecific low back pain? Pain Manag. 2018, 8, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Franco, K.M.; Franco, Y.R.; de Oliveira, N.B.; Miyamoto, C.; Oliveira Santos, M.; Liebano, R.E.; Cabral, C.N. Is Interferential Current Before Pilates Exercises More Effective Than Placebo in Patients With Chronic Nonspecific Low Back Pain? A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2017, 98, 320–328. [Google Scholar] [CrossRef]
- De la Cruz-Torres, B.; Albornoz-Cabello, M.; García-Bermejo, P.; Naranjo-Orellana, J. Autonomic responses to ultrasound-guided percutaneous needle electrolysis of the patellar tendon in healthy male footballers. Acupunct. Med. 2016, 34, 275–279. [Google Scholar] [CrossRef]
- García-Bermejo, P.; De La Cruz-Torres, B.; Naranjo-Orellana, J.; Albornoz-Cabello, M. Autonomic Responses to Ultrasound-Guided Percutaneous Needle Electrolysis; Effect of Needle Puncture or Electrical Current? J. Altern. Complement. Med. 2018, 24, 69–75. [Google Scholar] [CrossRef]
- Meglio, M.; Cioni, B.; Rossi, G.F.; Sandric, S.; Santarelli, P. Spinal cord stimulation affects the central mechanisms of regulation of heart rate. Appl. Neurosurg. 1986, 49, 139–146. [Google Scholar] [CrossRef]
- Sung-Hyoun, C.; Seon-Chil, K. Changes in Electroencephalography by Modulation of Interferential Current Stimulation. Appl. Sci. 2020, 10, 6028. [Google Scholar]
- Albornoz-Cabello, M.; Maya-Martín, J.; Domínguez-Maldonado, G.; Espejo-Antúnez, L.; Heredia-Rizo, A.M. Effect on interferential current therapy on pain perception and disability level in subjects with chronic low back pain: A randomized controlled trial. Clin. Rehabil. 2017, 31, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Alqualo-Costa, R.; Thomé, G.R.; Perracini, M.R.; Liebano, R.E. Low-level laser therapy and interferential current in patients with knee osteoarthritis: A randomized controlled trial protocol. Pain Manag. 2018, 8, 157–166. [Google Scholar] [CrossRef]
- Nazligul, T.; Akpinar, P.; Aktas, I.; UnluOzkan, F.; CagliyanHarteyoglu, H. The effect of interferential current therapy on patients with subacromial impingement syndrome: A randomized, double-blind, sham-controlled study. Eur. J. Phys. Rehabil. Med. 2018, 54, 351–357. [Google Scholar] [CrossRef]
- Sung-Hyoun, C. Frequency and Intensity of Electrical Stimulation of Human Sympathetic Ganglia Affect Heart Rate Variability and Pain Threshold. Appl. Sci. 2019, 9, 4490. [Google Scholar]
- Fuentes, J.P.; Armijo-Olivo, S.; Magee, D.J.; Gross, D.P. Effectiveness of interferential current therapy in the management of musculoskeletal pain: A systematic review and meta-analysis. Phys. Ther. 2010, 90, 1219–1238. [Google Scholar] [CrossRef] [PubMed]
- Woolf, C.J. Central sensitization: Implications for the diagnosis and treatment of pain. Pain 2011, 152, 2–15. [Google Scholar] [CrossRef]
- Koening, J.; Thayer, J.F. Sex differences in healthy human heart rate variability: A meta-anaylsis. Neurosci. Biobehav. Rev. 2016, 64, 288–310. [Google Scholar] [CrossRef] [PubMed]
- Dworkin, R.H.; Turk, D.C.; Farrar, J.T.; Haythornthwaite, J.A.; Jensen, M.P.; Katz, N.P.; Kerns, R.D.; Stucki, G.; Allen, R.R.; Bellamy, N.; et al. Core outcome measures for chronic pain clinical trials: IMMPACT recommendations. Pain 2005, 113, 9–19. [Google Scholar] [CrossRef]
- Camm, A.J. Heart rate variability. Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur. Heart J. 1996, 17, 354–381. [Google Scholar]
- Albornoz, M.; Rebollo, J.; García, R. Escala de Aprensión Psicológica Personal (EAPP) en Fisioterapia. Rev. Iberoam. Fisioter. Y Kinesiol. 2005, 8, 77–87. [Google Scholar] [CrossRef]
- Hurley, D.A.; Minder, P.M.; McDonough, S.M.; Walsh, D.M.; Moore, A.P.; Baxter, D.G. Interferential therapy electrode placement technique in acute low back pain: A preliminary investigation. Arch. Phys. Med. Rehabil. 2001, 82, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Bodes-Pardo, G.; Lluch-Girbés, E.; Roussel, N.; Gallego-Izquierdo, T.; Jiménez-Penick, V.; Pecos-Martín, D. Pain Neurophysiology Education and Therapeutic Exercise for Patients with Chronic Low Back Pain: A Single-Blind Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2018, 99, 338–347. [Google Scholar] [CrossRef]
- Childs, J.D.; Piva, S.R.; Fritz, J.M. Responsiveness of the Numeric Pain Rating Scale in Patients with Low Back Pain. Spine 2005, 30, 1331–1334. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, F.M.; Llobera, J.; Gil del Real, M.T.; Abraira, V.; Gestoso, M.; Fernández, C.; Kovacs-Atención Primaria Group. Validation of the spanish version of the Roland-Morris questionnaire. Spine 2002, 27, 538–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez-Adrados, A.; Beltrán-Velasco, A.I.; González de Ramos, C.; Fernández-Martínez, S.; Martínez-Pascual, B.; Fernández-Elías, V.E.; Clemente-Suárez, V.J. The effect of final dissertation defense language, native vs. non-native, in the psychophysiological stress response of university students. Physiol. Behav. 2020, 224, 113043. [Google Scholar] [CrossRef]
- Mourot, L.; Bouhaddi, M.; Perrey, S.; Rouillon, J.D.; Regnard, J. Quantitative Poincaré plot analysis of heart rate variability: Effect of endurance training. Eur. J. Appl. Physiol. 2004, 91, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Brennan, M.; Palaniswami, M.; Kamen, P. Do existing measures of Poincaré plot geometry reflect nonlinear features of heart rate variability? IEEE Trans. Biomed. Eng. 2001, 48, 1342–1347. [Google Scholar] [CrossRef] [PubMed]
- Catai, A.M.; Pastre, C.M.; Fernades de Godoy, M.F.; Da Silva, E.D.; Takahashi, A.C.M.; Vanderlei, L.C.M. Heart rate variability: Are you using it properly? Standardisation checklist of procedures. Braz. J. Phys. Ther. 2020, 24, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Hoshi, R.A.; Pastre, C.M.; Vanderlei, L.C.; Godoy, M.F. Poincaré plot indexes of heart rate variability: Relationships with other nonlinear variables. Auton. Neurosci. 2013, 177, 271–274. [Google Scholar] [CrossRef]
- Naranjo-Orellana, J.; De la Cruz-Torres, B.; Sarabia-Cachadiña, E.; De Hoyo, M.; Domínguez-Cobo, S. Two new indexes for the assessment of autonomic balance in elite soccer players. Int. J. Sports Physiol. Perform. 2015, 10, 452–457. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge Academic: New York, NY, USA, 1988. [Google Scholar]
- Goudman, L.; Brouns, R.; Linderoth, B.; Moens, M. Effects of spinal cord stimulation on heart rate variability in patients with Failed Back Surgery Syndrome. PLoS ONE 2019, 14, e0219076. [Google Scholar] [CrossRef]
- García-Bermejo, P.; De la Cruz-Torres, B.; Naranja-Orellana, J.; Albornoz-Cabello, M. Autonomicactivity in womenduringpercutaneousneedleelectrolysis. Eur. J. Integr. Med. 2017, 11, 53–58. [Google Scholar]
- Albornoz-Cabello, M.; Maya-Martín, J. Electroestimulación, Neuromuscular y Neuromodulación, 2nd ed.; Elsevier: Barcelona, Spain, 2021. [Google Scholar]
- Wolff, B.; Burns, J.W.; Quartana, P.J.; Lofland, K.; Bruehl, S.; Chung, O.Y. Pain catastrophizing, physiological indexes, and chronic pain severity: Tests of mediation and moderation models. J. Behav. Med. 2008, 31, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Abuín-Porras, V.; Clemente-Suárez, V.J.; Jaén-Crespo, G.; Navarro-Flores, E.; Pareja-Galeano, H.; Romero-Morales, C. Effect of Physiotherapy Treatment in the Autonomic Activation and Pain Perception in Male Patients with Non-Specific Subacute Low Back Pain. J. Clin. Med. 2021, 10, 1793. [Google Scholar] [CrossRef]
- Oosterhof, J.; Wilder-Smith, O.H.; De Boo, T.; Oostendorp, R.A.B.; Crul, B.J.P. The long-term outcome of transcutaneous electrical nerve stimulation in the treatment for patients with chronic pain: A randomized, placebo-controlled trial. Pain Pract. 2012, 12, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, J.; Armijo-Olivo, S.; Funabashi, M.; Miciak, M.; Dick, B.; Warren, S.; Rashiq, S.; Magee, D.J.; Gross, D.P. Enhanced therapeutic alliance modulates pain intensity and muscle pain sensitivity in patients with chronic low back pain: An experimental controlled study. Phys. Ther. 2014, 94, 477–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, N.; Reece, B.; Polus, B.I. Effects of body position on autonomic regulation of cardiovascular function in young, healthy adults. Chiropr. Osteopat. 2007, 15, 19. [Google Scholar] [CrossRef] [Green Version]
- Terkelsen, A.J.; Molgaard, H.; Hansen, J.; Finnerup, N.B.; Kroner, K.; Jensen, T.S. Heart Rate Variability in Complex Regional Pain Syndrome during Rest and Mental and Orthostatic Stress. J. Am. Soc. Anesthesiol. 2012, 116, 133–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total Sample (n = 49) | Experimental Group (n = 25) | Sham Group (n = 24) | p-Value * | |
---|---|---|---|---|
Age (years) | 39 (15.62) | 37 (16.56) | 40 (14.96) | 0.56 |
Height (cm) | 177.49 (5.96) | 177.46 (5.81) | 177.52 (6.21) | 0.97 |
Weight (kg) | 82.29 (14.52) | 81.18 (11.07) | 83.36 (17.37) | 0.61 |
BMI | 25.27 (2.95) | 25.21 (2.79) | 25.33 (3.15) | 0.88 |
PPAS | 24 (5.91) | 24 (5.09) | 24 (6.70) | 0.98 |
NPRS | 7.37 (1.07) | 7.50 (1.18) | 7.24 (0.97) | 0.40 |
RMQ | 12.31 (4.36) | 12.63 (4.39) | 12.00 (4.41) | 0.62 |
Min HR (bmp) | 66.13 (12.86) | 67.31 (13.74) | 65.00 (12.14) | 0.53 |
Max HR (bmp) | 88.90 (15.26) | 84.64 (13.31) | 92.98 (16.14) | 0.06 |
Mean HR (bmp) | 75.00 (13.05) | 73.81 (13.16) | 76.14 (13.11) | 0.54 |
rMSSD (ms) | 31.56 (13.03) | 33.87 (9.16) | 29.34 (15.77) | 0.23 |
SD1 (ms) | 32.57 (24.01) | 33.53 (24.40) | 31.64 (24.10) | 0.79 |
SD2 (ms) | 54.82 (13.61) | 57.13 (11.73) | 52.63 (15.10) | 0.25 |
SS (ms) | 19.46 (5.27) | 18.19 (3.59) | 20.67 (6.33) | 0.10 |
S/PS Ratio | 0.92 (0.59) | 0.88 (0.60) | 0.95 (0.60) | 0.66 |
Variable | Group | Baseline | Intervention | Within-Group Mean Changes | d | Between-Group Mean Changes |
---|---|---|---|---|---|---|
NPRS | SG EG | 7.24 (0.97) 7.50 (1.18) | 6.52 (1.12) 2.96 (1.04) | 0.72 [0.37/1.06] ** 4.54 [4.03/5.05] ** | 0.32 0.89 | 3.56 [2.93/4.18] †† |
HR Min (bpm) | SG EG | 65.00 (12.14) 67.31 (13.74) | 61.37 (11.55) 60.67 (10.41) | 3.62 [1.91/5.34] ** 6.64 [3.98/9.29] ** | 0.15 0.26 | 0.69 [−7.03/5.63] |
HR Max (bpm) | SG EG | 92.98 (16.14) 84.64 (13.31) | 92.71 (16.69) 80.94 (18.45) | 0.27 [−5.99/6.53] 3.70 [−2.80/10.21] | - - | 11.77 [1.67/21.88] † |
HR Mean (bpm) | SG EG | 76.14 (13.11) 73.81 (13.16) | 72.55 (14.03) 67.81 (11.54) | 3.59 [0.79/6.38] * 5.99 [3.05/8.94] ** | 0.13 0.24 | 4.73 [2.66/12.13] |
rMSSD (ms) | SG EG | 29.34 (15.77) 33.87 (9.16) | 33.59 (21.84) 55.21 (17.18) | 4.24 [0.46/8.95] 18.33 [13.24/23.43] ** | - 0.55 | 18.62 [7.29/29.95] † |
SD 1 (ms) | SG EG | 31.64 (24.10) 31.46 (20.54) | 45.37 (11.36) 57.15 (21.73) | 13.72 [4.07/23.37] * 23.61 [18.21/29.02] ** | 0.34 0.52 | 11.77 [1.86/21.68] † |
SD 2 (ms) | SG EG | 52.63 (15.10) 57.13 (11.73) | 43.52 (12.76) 73.19 (17.72) | 9.10 [5.00/13.21] ** 16.06 [10.41/21.69] ** | 0.31 0.47 | 29.67 [20.85/38.48] †† |
SS (ms) | SG EG | 20.67 (6.33) 18.20 (3.59) | 24.80 (6.71) 15.02 (6.70) | 4.13 [2.07/6.18] ** 3.17 [0.65/5.69] * | 0.30 0.28 | 9.77 [5.91/13.63] †† |
S/PS Ratio | SG EG | 0.95 (0.60) 0.88 (0.60) | 0.58 (0.23) 0.31 (0.20) | 0.37 [0.14/0.60] * 0.57 [0.35/0.78] ** | 0.38 0.54 | 0.27 [0.14/0.39] †† |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espejo-Antúnez, L.; Fernández-Morales, C.; Cardero-Durán, M.d.l.Á.; Toledo-Marhuenda, J.V.; Díaz-Mancha, J.A.; Albornoz-Cabello, M. Detection of Changes on Parameters Related to Heart Rate Variability after Applying Current Interferential Therapy in Subjects with Non-Specific Low Back Pain. Diagnostics 2021, 11, 2175. https://doi.org/10.3390/diagnostics11122175
Espejo-Antúnez L, Fernández-Morales C, Cardero-Durán MdlÁ, Toledo-Marhuenda JV, Díaz-Mancha JA, Albornoz-Cabello M. Detection of Changes on Parameters Related to Heart Rate Variability after Applying Current Interferential Therapy in Subjects with Non-Specific Low Back Pain. Diagnostics. 2021; 11(12):2175. https://doi.org/10.3390/diagnostics11122175
Chicago/Turabian StyleEspejo-Antúnez, Luis, Carlos Fernández-Morales, María de los Ángeles Cardero-Durán, José Vicente Toledo-Marhuenda, Juan Antonio Díaz-Mancha, and Manuel Albornoz-Cabello. 2021. "Detection of Changes on Parameters Related to Heart Rate Variability after Applying Current Interferential Therapy in Subjects with Non-Specific Low Back Pain" Diagnostics 11, no. 12: 2175. https://doi.org/10.3390/diagnostics11122175
APA StyleEspejo-Antúnez, L., Fernández-Morales, C., Cardero-Durán, M. d. l. Á., Toledo-Marhuenda, J. V., Díaz-Mancha, J. A., & Albornoz-Cabello, M. (2021). Detection of Changes on Parameters Related to Heart Rate Variability after Applying Current Interferential Therapy in Subjects with Non-Specific Low Back Pain. Diagnostics, 11(12), 2175. https://doi.org/10.3390/diagnostics11122175