Reference Values of Native T1 at 3T Cardiac Magnetic Resonance—Standardization Considerations between Different Vendors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Cardiac MR Protocol
2.3. T1 Mapping Analysis
- By drawing a ROI in the area of interest. We preferred using endocardial and epicardial contours for the entire slice being analyzed; afterwards, the ROIs were forwarded to all the 8 images, with eventual adjustments in their position depending on respiratory variation between images, and the software returned the T1 values (ms), according to the exponential curve of the respective type of T1 mapping sequence (Figure 1) [7,18,19,20].
- By acquiring a co-registered image set, where the T1 value of each pixel was encoded to display a color. Thus, a parametric T1 map was created by the analysis software (in this case, CVI42− derived), allowing further qualitative assessment but also containing pixel-wise information of the T1 values (Figure 2, right panel) [6,7,12,14].
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Assuncao, A.N., Jr.; Dantas, R.N., Jr.; Val, R.M.; Gianotto, P.; Marin, A.S.; Golden, M.; Gutierrez, M.A.; Parga, J.R.; Nomura, C.H. Clinical evaluation of left ventricular function and morphology using an accelerated k-t sensitivity encoding method in cardiovascular magnetic resonance. Insights Imaging 2019, 10, 62. [Google Scholar] [CrossRef] [PubMed]
- Petersen, S.E.; Aung, N.; Sanghvi, M.M.; Zemrak, F.; Fung, K.; Paiva, J.M.; Francis, J.M.; Khanji, M.Y.; Lukaschuk, E.; Lee, A.M.; et al. Reference ranges for cardiac structure and function using cardiovascular magnetic resonance (CMR) in Caucasians from the UK Biobank population cohort. J. Cardiovasc. Magn. Reson. 2017, 19, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delso, G.; Farré, L.; Ortiz-Pérez, J.T.; Prat, S.; Doltra, A.; Perea, R.J.; Caralt, T.M.; Lorenzatti, D.; Vega, J.; Sotes, S.; et al. Improving the robustness of MOLLI T1 maps with a dedicated motion correction algorithm. Sci. Rep. 2021, 11, 18546. [Google Scholar] [CrossRef]
- Tao, Q.; Lelieveldt, B.; Geest, R. Deep learning for quantitative cardiac MRI. Am. J. Roentgenol. 2020, 214, 529–535. [Google Scholar] [CrossRef]
- Graaf, W.; Vandoorne, K.; Arslan, F. Contrast-Enhanced T1-Mapping MRI for the Assessment of Myocardial Contrast-Enhanced T 1-Mapping MRI for the Assessment of Myocardial Fibrosis. Curr. Cardiovasc. Imaging Rep. 2014, 7, 9260. [Google Scholar] [CrossRef]
- Radenkovic, D.; Weingärtner, S.; Ricketts, L.; Moon, J.C.; Captur, G. T1 mapping in cardiac MRI. Heart Fail. Rev. 2017, 22, 415–430. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, T.; Hafyane, T.; Stikov, N.; Akdeniz, C.; Greiser, A.; Friedrich, M.G. Comparison of different cardiovascular magnetic resonance sequences for native myocardial T1 mapping at 3T. J. Cardiovasc. Magn. Reson. 2016, 18, 1–12. [Google Scholar] [CrossRef]
- Messroghli, D.R.; Niendorf, T.; Schulz-Menger, J.; Dietz, R.; Friedrich, M.G. T1 Mapping in Patients with Acute Myocardial Infarction. J. Cardiovasc. Magn. Reson. 2003, 5, 353–359. [Google Scholar] [CrossRef]
- Attenberger, U.I.; Runge, V.M.; Williams, J.; Michaely, H.J. Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. Investig. Radiol. 2008, 12, 69. [Google Scholar]
- McDiarmid, A.K.; Broadbent, D.A.; Higgins, D.M.; Swoboda, P.P.; Kidambi, A.; Ripley, D.P.; Erhayiem, B.; Musa, T.A.; Dobson, L.E.; Greenwood, J.P.; et al. The effect of changes to MOLLI scheme on T1 mapping and extra cellular volume calculation in healthy volunteers with 3 tesla cardiovascular magnetic resonance imaging. Quant. Imaging Med. Surg. 2015, 5, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Kellman, P.; Arai, A.E.; Xue, H. T1 and extracellular volume mapping in the heart: Estimation of error maps and the influence of noise on precision. J. Cardiovasc. Magn. Reson. 2013, 15, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, J.C.; Messroghli, D.R.; Kellman, P.; Piechnik, S.K.; Robson, M.D.; Ugander, M.; Gatehouse, P.D.; Arai, A.E.; Friedrich, M.G.; Neubauer, S.; et al. Myocardial T1 mapping and extracellular volume quantification: A Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J. Cardiovasc. Magn. Reson. 2013, 15, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, K.; Flewitt, J.A.; Green, J.D.; Pagano, J.J.; Friedrich, M.G.; Thompson, R.B. Saturation recovery single-shot acquisition (SASHA) for myocardial T 1 mapping. Magn. Reson. Med. 2014, 71, 2082–2095. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, J.F.; Weng, A.M.; Donhauser, J.; Greiser, A.; Chow, K.; Nordbeck, P.; Bley, T.A.; Köstler, H. T1- and ECV-mapping in clinical routine at 3 T: Differences between MOLLI, ShMOLLI and SASHA. BMC Med. Imaging 2019, 19, 59. [Google Scholar] [CrossRef] [Green Version]
- Weingärtner, S.; Meßner, N.M.; Budjan, J.; Loßnitzer, D.; Mattler, U.; Papavassiliu, T.; Zöllner, F.G.; Schad, L.R. Myocardial T1—mapping at 3T using saturation-recovery: Reference values, precision and comparison with MOLLI. J. Cardiovasc. Magn. Reson. 2016, 18, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herzog, B.G.J.; Plein, S. Cardiovascular Magnetic Resonance—Pocket Guide; European Society of Cardiology: Brussels, Belgium, 2017; pp. 17–20. [Google Scholar]
- Messroghli, D.R.; Moon, J.C.; Ferreira, V.M.; Grosse-Wortmann, L.; He, T.; Kellman, P.; Mascherbauer, J.; Nezafat, R.; Salerno, M.; Schelbert, E.B.; et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2 and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imagin. J. Cardiovasc. Magn. Reson. 2017, 19, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, V.M.; Piechnik, S.K. CMR parametric mapping as a tool for myocardial tissue characterization. Korean Circ. J. 2020, 50, 658–676. [Google Scholar] [CrossRef]
- Schulz-Menger, J.; Bluemke, D.A.; Bremerich, J.; Flamm, S.D.; Fogel, M.A.; Friedrich, M.G.; Kim, R.J.; von Knobelsdorff-Brenkenhoff, F.; Kramer, C.M.; Pennell, D.J.; et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance—2020 update. J. Cardiovasc. Magn. Reson. 2020, 22, 1–22. [Google Scholar] [CrossRef]
- Mondy, V.C.; Peter, S.B.; Ravi, R. Native T1 mapping in diffuse myocardial diseases using 3-Tesla MRI: An institutional experience. Indian J. Radiol. Imaging 2020, 30, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Kauermann, G.; Küchenhoff, H. Stichproben. Methoden und Praktische Umsetzung Mit R; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Granitz, M.; Motloch, L.J.; Granitz, C.; Meissnitzer, M.; Hitzl, W.; Hergan, K.; Schlattau, A. Comparison of native myocardial T1 and T2 mapping at 1.5T and 3T in healthy volunteers: Reference values and clinical implications. Wien. Klin. Wochenschr. 2019, 131, 143–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gottbrecht, M.; Kramer, C.M.; Salerno, M. Native T1 and extracellular volume measurements by cardiac MRI in healthy adults: A meta-analysis. Radiology 2019, 290, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Roy, C.; Slimani, A.; De Meester, C.; Amzulescu, M.; Pasquet, A.; Vancraeynest, D.; Vanoverschelde, J.L.; Pouleur, A.C.; Gerber, B.L. Age and sex corrected normal reference values of T1, T2 T2∗and ECV in healthy subjects at 3T CMR. J. Cardiovasc. Magn. Reson. 2017, 19, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Yang, D.; Han, Y.; Cheng, W.; Sun, J.; Wan, K.; Liu, H.; Greiser, A.; Zhou, X.; Chen, Y. Age and gender impact the measurement of myocardial interstitial fibrosis in a healthy adult Chinese population: A cardiac magnetic resonance study. Front. Physiol. 2018, 9, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira, T.; Hafyane, T.; Jerosch-Herold, M.; Marcotte, F.; Mongeon, F.-P. Myocardial Partition Coefficient of Gadolinium: A Pilot Study in Patients with Acute Myocarditis, Chronic Myocardial Infarction, and in Healthy Volunteers. Can. J. Cardiol. 2019, 35, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Kellman, P.; Hansen, M.S. T1-mapping in the heart: Accuracy and precision. J. Cardiovasc. Magn. Reson. 2014, 16, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popescu, I.A.; Werys, K.; Zhang, Q.; Puchta, H.; Hann, E.; Lukaschuk, E.; Ferreira, V.M.; Piechnik, S.K. Standardization of T1-mapping in cardiovascular magnetic resonance using clustered structuring for benchmarking normal ranges. Int. J. Cardiol. 2021, 326, 220–225. [Google Scholar] [CrossRef]
- Reiter, G.; Reiter, C.; Kräuter, C.; Fuchsjäger, M.; Reiter, U. Cardiac magnetic resonance T1 mapping. Part 1: Aspects of acquisition and evaluation. Eur. J. Radiol. 2018, 109, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Rosmini, S.; Bulluck, H.; Captur, G.; Treibel, T.A.; Abdel-Gadir, A.; Bhuva, A.N.; Culotta, V.; Merghani, A.; Fontana, M.; Maestrini, V.; et al. Myocardial native T1 and extracellular volume with healthy ageing and gender. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 615–621. [Google Scholar] [CrossRef] [Green Version]
- Robinson, A.A.; Chow, K.; Salerno, M. Myocardial T1 and ECV Measurement: Underlying Concepts and Technical Considerations. JACC Cardiovasc. Imaging 2019, 12, 2332–2344. [Google Scholar] [CrossRef] [PubMed]
- Dabir, D.; Child, N.; Kalra, A.; Rogers, T.; Gebker, R.; Jabbour, A.; Plein, S.; Yu, C.Y.; Otton, J.; Kidambi, A.; et al. Reference values for healthy human myocardium using a T1 mapping methodology: Results from the International T1 Multicenter cardiovascular magnetic resonance study7. J. Cardiovasc. Magn. Reson. 2014, 16, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Knobelsdorff-Brenkenhoff, F.; Prothmann, M.; Dieringer, M.A.; Wassmuth, R.; Greiser, A.; Schwenke, C.; Niendorf, T.; Schulz-Menger, J. Myocardial T1 and T2 mapping at 3 T: Reference values, influencing factors and implications. J. Cardiovasc. Magn. Reson. 2013, 15, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Base Sequence | TR (ms) | TE (ms) | FA (°) | FOV (mm) | Matrix | Slice Thickness (mm) | Gap (mm) | Number of Slices | BW (Hz) | |
---|---|---|---|---|---|---|---|---|---|---|
T2 AX | FASE | 9100 | 80 | 90 | 450 × 340 | 224 × 256 | 8 | 2 | 16–18 (Aortic arch to liver) | 651 |
Cine 2ch | SSFP | 2 | 1.5 | 55 | 400–450 × 400–420 | 224 × 192 | 8 | 2 | 1 | 1302 |
Cine 4ch | 1 | |||||||||
Cine SA | 9–11 (depending on heart size) | |||||||||
T2 FS AX | FSE | 2036 | 60 | 90 | 400–450 × 300 | 160 × 256 | 8 | 6–8 | 3 (base, midventricular and apex) | 651 |
T1 mapping | MOLLI 5(3)3 | 3.9 | 1.4 | 13 | 400 × 450 | 128 × 208 | 8 | 2 | 3 (base, midventricular and apex) | 408 |
Overall Population (n = 20) | Women (n = 11, 55%) | Men (n = 9, 45%) | p Value * | |
---|---|---|---|---|
Age (years) | 33.9 ± 11.2 | 32.1 ± 10.0 | 36.1 ± 12.7 | 0.440 |
LVEDV (mL/m2) | 75.6 ± 17.7 | 66.7 ± 8.4 | 75.6 ± 17.7 | 0.160 |
LVESV (mL/m2) | 30.6 ± 10.6 | 23.1 ± 3.7 | 30.6 ± 10.6 | 0.040 |
LVMM (g/m2) | 58.4 ± 7.1 | 44.0 ± 10.1 | 58.4 ± 7.1 | 0.002 |
LVEF (%) | 60.6 ± 6.1 | 65.1 ± 5.3 | 60.6 ± 6.1 | 0.090 |
T2 | 1.3 ± 0.3 | 1.2 ± 0.2 | 1.3 ± 0.3 | 0.550 |
T1 Estimates | Overall Population | Women | Men | p Value * |
---|---|---|---|---|
Global (ms) | 1124.9 ± 55.2 | 1163.4 ± 30.5 | 1077.9 ± 39.5 | <0.001 |
Base (ms) | 1133.0 ± 49.1 | 1161.9 ± 35.8 | 1097.6 ± 39.4 | 0.001 |
Midventricular (ms) | 1119.5 ± 62.0 | 1160.0 ± 35.2 | 1069.9 ± 50.4 | <0.001 |
Apex (ms) | 1125.9 ± 64.5 | 1168.3 ± 37.0 | 1067.8 ± 45.3 | <0.001 |
Study | n | Native T1 | Tolerance Interval (80% Confidence to Include 95% of the Population) |
---|---|---|---|
Teixeira et al. [7] Siemens | 9 | 1208 ± 18 ms | 1170.8–1245.0 |
Dong et al. [25] Siemens | 69 | 1202 ± 45 ms | 1150.4–1253.6 |
Granitz et al. [22] Philips | 58 | 1184 ± 38 ms | 1139.4–1228.6 |
Tribuna et al. Canon | 20 | 1125 ± 55 ms | 1042.4–1207.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tribuna, L.; Oliveira, P.B.; Iruela, A.; Marques, J.; Santos, P.; Teixeira, T. Reference Values of Native T1 at 3T Cardiac Magnetic Resonance—Standardization Considerations between Different Vendors. Diagnostics 2021, 11, 2334. https://doi.org/10.3390/diagnostics11122334
Tribuna L, Oliveira PB, Iruela A, Marques J, Santos P, Teixeira T. Reference Values of Native T1 at 3T Cardiac Magnetic Resonance—Standardization Considerations between Different Vendors. Diagnostics. 2021; 11(12):2334. https://doi.org/10.3390/diagnostics11122334
Chicago/Turabian StyleTribuna, Liliana, Pedro Belo Oliveira, Alba Iruela, João Marques, Paulo Santos, and Tiago Teixeira. 2021. "Reference Values of Native T1 at 3T Cardiac Magnetic Resonance—Standardization Considerations between Different Vendors" Diagnostics 11, no. 12: 2334. https://doi.org/10.3390/diagnostics11122334
APA StyleTribuna, L., Oliveira, P. B., Iruela, A., Marques, J., Santos, P., & Teixeira, T. (2021). Reference Values of Native T1 at 3T Cardiac Magnetic Resonance—Standardization Considerations between Different Vendors. Diagnostics, 11(12), 2334. https://doi.org/10.3390/diagnostics11122334