Increased SERPINA3 Level Is Associated with Ulcerative Colitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microarray Data
2.2. Identification of Differentially Expressed Genes (DEGs) in UC
2.3. Gene Enrichment Analysis
2.4. Candidate Gene Validation
2.5. Establishment of the Mouse Model of Colitis
2.6. Colitis Assessment
2.7. Cell Culture
2.8. SERPINA3 Gene Silencing
2.9. RNA Isolation and qRT-PCR
2.10. Western Blotting
2.11. Statistical Analysis
3. Results
3.1. DEGs between UC and Health Control
3.2. SERPINA3 Is Significantly Increased in UC Patients
3.3. SERPINA3 Is a Potential Biomarker for the Active UC
3.4. Verification of SERPINA3 Function in Mice Model
3.5. Silencing SERPINA3 Attenuated Inflammation Status in an In-Vitro Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xavier, R.J.; Podolsky, D.K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007, 448, 427–434. [Google Scholar] [CrossRef]
- Dubinsky, M.C.; DiBonaventura, M.; Fan, H.; Bushmakin, A.G.; Cappelleri, J.C.; Maller, E.; Thorpe, A.J.; Salese, L.; Panés, J. Tofacitinib in Patients with Ulcerative Colitis: Inflammatory Bowel Disease Questionnaire Items in Phase 3 Randomized Controlled Induction Studies. Inflamm. Bowel Dis. 2021, 27, 983–993. [Google Scholar] [CrossRef]
- Danese, S.; Fiocchi, C. Ulcerative colitis. N. Engl. J. Med. 2011, 365, 1713–1725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.Y.; Chan, F.K.L.; et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet 2017, 390, 2769–2778. [Google Scholar] [CrossRef]
- Haritunians, T.; Taylor, K.D.; Targan, S.R.; Dubinsky, M.; Ippoliti, A.; Kwon, S.; Guo, X.; Melmed, G.Y.; Berel, D.; Mengesha, E.; et al. Genetic predictors of medically refractory ulcerative colitis. Inflamm. Bowel Dis. 2010, 16, 1830–1840. [Google Scholar] [CrossRef] [Green Version]
- Van Assche, G.; Vermeire, S.; Rutgeerts, P. Treatment of severe steroid refractory ulcerative colitis. World J. Gastroenterol. 2008, 14, 5508–5511. [Google Scholar] [CrossRef]
- Ben-Horin, S.; Andrews, J.M.; Katsanos, K.H.; Rieder, F.; Steinwurz, F.; Karmiris, K.; Cheon, J.H.; Moran, G.W.; Cesarini, M.; Stone, C.D.; et al. Combination of corticosteroids and 5-aminosalicylates or corticosteroids alone for patients with moderate-severe active ulcerative colitis: A global survey of physicians’ practice. World J. Gastroenterol. 2017, 23, 2995–3002. [Google Scholar] [CrossRef]
- Wang, Y.; Parker, C.E.; Bhanji, T.; Feagan, B.G.; MacDonald, J.K. Oral 5-aminosalicylic acid for induction of remission in ulcerative colitis. Cochrane Database Syst. Rev. 2016, 4, Cd000543. [Google Scholar] [CrossRef] [PubMed]
- Pithadia, A.B.; Jain, S. Treatment of inflammatory bowel disease (IBD). Pharmacol. Rep. 2011, 63, 629–642. [Google Scholar] [CrossRef]
- Magro, F.; Cordeiro, G.; Dias, A.M.; Estevinho, M.M. Inflammatory Bowel Disease-Non-biological treatment. Pharmacol. Res. 2020, 160, 105075. [Google Scholar] [CrossRef] [PubMed]
- Salice, M.; Rizzello, F.; Calabrese, C.; Calandrini, L.; Gionchetti, P. A current overview of corticosteroid use in active ulcerative colitis. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 557–561. [Google Scholar] [CrossRef] [PubMed]
- Barreiro-Alonso, E.; Saro-Gismera, C.; Sánchez, M. Outcomes and prediction of corticosteroid therapy after successive courses of ulcerative colitis treatments. Expert Rev. Gastroenterol. Hepatol. 2018, 12, 733–741. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, A.; Osterman, M.T. Biologic Therapy for Ulcerative Colitis. Gastroenterol. Clin. N. Am. 2020, 49, 717–729. [Google Scholar] [CrossRef] [PubMed]
- Colombel, J.F.; Sandborn, W.J.; Rutgeerts, P.; Enns, R.; Hanauer, S.B.; Panaccione, R.; Schreiber, S.; Byczkowski, D.; Li, J.; Kent, J.D.; et al. Adalimumab for maintenance of clinical response and remission in patients with Crohn’s disease: The CHARM trial. Gastroenterology 2007, 132, 52–65. [Google Scholar] [CrossRef] [Green Version]
- Peyrin-Biroulet, L.; Deltenre, P.; de Suray, N.; Branche, J.; Sandborn, W.J.; Colombel, J.F. Efficacy and safety of tumor necrosis factor antagonists in Crohn’s disease: Meta-analysis of placebo-controlled trials. Clin. Gastroenterol. Hepatol. 2008, 6, 644–653. [Google Scholar] [CrossRef]
- Schreiber, S.; Rutgeerts, P.; Fedorak, R.N.; Khaliq-Kareemi, M.; Kamm, M.A.; Boivin, M.; Bernstein, C.N.; Staun, M.; Thomsen, O.; Innes, A. A randomized, placebo-controlled trial of certolizumab pegol (CDP870) for treatment of Crohn’s disease. Gastroenterology 2005, 129, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Jean, L.; Audrey, M.; Beauchemin, C.; Consortium, O. Economic Evaluations of Treatments for Inflammatory Bowel Diseases: A Literature Review. Can. J. Gastroenterol. Hepatol. 2018, 2018, 7439730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobek, J.; Bartscherer, K.; Jacob, A.; Hoheisel, J.D.; Angenendt, P. Microarray technology as a universal tool for high-throughput analysis of biological systems. Comb. Chem. High Throughput Screen. 2006, 9, 365–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, S.H.; Siddle, K.J.; Park, D.J.; Sabeti, P.C. Benchmarking Metagenomics Tools for Taxonomic Classification. Cell 2019, 178, 779–794. [Google Scholar] [CrossRef] [PubMed]
- Petryszak, R.; Burdett, T.; Fiorelli, B.; Fonseca, N.A.; Gonzalez-Porta, M.; Hastings, E.; Huber, W.; Jupp, S.; Keays, M.; Kryvych, N.; et al. Expression Atlas update-a database of gene and transcript expression from microarray- and sequencing-based functional genomics experiments. Nucleic Acids Res. 2014, 42, D926–D932. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Shi, G. Lymphocyte infiltration and key differentially expressed genes in the ulcerative colitis. Medicine 2020, 99, e21997. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, X.; Xu, L.; Zhang, Z.; Wang, F.; Tang, X. Investigation of Potential Genetic Biomarkers and Molecular Mechanism of Ulcerative Colitis Utilizing Bioinformatics Analysis. BioMed Res. Int. 2020, 2020, 4921387. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Li, H.; Lai, L.; Feng, Q.; Shen, J. Identification of Common Differentially Expressed Genes and Potential Therapeutic Targets in Ulcerative Colitis and Rheumatoid Arthritis. Front. Genet. 2020, 11, 572194. [Google Scholar] [CrossRef]
- Xu, G.; Yan, X.; Chen, J.; Guo, X.; Guo, X.; Tang, Y.; Shi, Z. Bioinformatics Analysis of Key Candidate Genes and Pathways in Ulcerative Colitis. Biol. Pharm. Bull. 2020, 43, 1760–1766. [Google Scholar] [CrossRef]
- Baker, C.; Belbin, O.; Kalsheker, N.; Morgan, K. SERPINA3 (aka alpha-1-antichymotrypsin). Front. Biosci. 2007, 12, 2821–2835. [Google Scholar] [CrossRef]
- Vanni, S.; Colini Baldeschi, A.; Zattoni, M.; Legname, G. Brain aging: A Ianus-faced player between health and neurodegeneration. J. Neurosci. Res. 2020, 98, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Delrue, L.; Vanderheyden, M.; Beles, M.; Paolisso, P.; Di Gioia, G.; Dierckx, R.; Verstreken, S.; Goethals, M.; Heggermont, W.; Bartunek, J. Circulating SERPINA3 improves prognostic stratification in patients with a de novo or worsened heart failure. ESC Hear. Fail. 2021. [Google Scholar] [CrossRef]
- Sánchez-Navarro, A.; González-Soria, I.; Caldiño-Bohn, R.; Bobadilla, N.A. An integrative view of serpins in health and disease: The contribution of SerpinA3. Am. J. Physiol.-Cell Physiol. 2021, 320, C106–C118. [Google Scholar] [CrossRef] [PubMed]
- Dieleman, L.A.; Palmen, M.J.H.J.; Akol, H.; Bloemena, E.; Pena, A.S.; Meuwissen, S.G.M.; van Rees, E.P. Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin. Exp. Immunol. 1998, 114, 385–391. [Google Scholar] [CrossRef]
- Østvik, A.E.; Svendsen, T.D.; Granlund, A.V.B.; Doseth, B.; Skovdahl, H.K.; Bakke, I.; Thorsvik, S.; Afroz, W.; Walaas, G.A.; Mollnes, T.E.; et al. Intestinal Epithelial Cells Express Immunomodulatory ISG15 During Active Ulcerative Colitis and Crohn’s Disease. J. Crohns Colitis 2020, 14, 920–934. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, W.; Feng, N.; Jiang, X.; Zhu, S.; Chen, Y.Q. Ndufa6 regulates adipogenic differentiation via Scd1. Adipocyte 2021, 10, 646–657. [Google Scholar] [CrossRef]
- Molodecky, N.A.; Soon, I.S.; Rabi, D.M.; Ghali, W.A.; Ferris, M.; Chernoff, G.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Barkema, H.W.; et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 2012, 142, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Walsh, A.J.; Bryant, R.V.; Travis, S.P. Current best practice for disease activity assessment in IBD. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 567–579. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Navarro, A.; Mejía-Vilet, J.M.; Pérez-Villalva, R.; Carrillo-Pérez, D.L.; Marquina-Castillo, B.; Gamba, G.; Bobadilla, N.A. SerpinA3 in the Early Recognition of Acute Kidney Injury to Chronic Kidney Disease (CKD) transition in the rat and its Potentiality in the Recognition of Patients with CKD. Sci. Rep. 2019, 9, 10350. [Google Scholar] [CrossRef]
- Zhao, L.; Zheng, M.; Guo, Z.; Li, K.; Liu, Y.; Chen, M.; Yang, X. Circulating Serpina3 levels predict the major adverse cardiac events in patients with myocardial infarction. Int. J. Cardiol. 2020, 300, 34–38. [Google Scholar] [CrossRef]
- Uysal, P.; Uzun, H. Relationship Between Circulating Serpina3g, Matrix Metalloproteinase-9, and Tissue Inhibitor of Metalloproteinase-1 and -2 with Chronic Obstructive Pulmonary Disease Severity. Biomolecules 2019, 9, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.H.; Ahn, H.S.; Park, J.S.; Yeom, J.; Yu, J.; Kim, K.; Oh, Y.M. A Proteomics-Based Analysis of Blood Biomarkers for the Diagnosis of COPD Acute Exacerbation. Int. J. Chron. Obstruct. Pulmon. Dis. 2021, 16, 1497–1508. [Google Scholar] [CrossRef]
- Turnier, J.L.; Brunner, H.I.; Bennett, M.; Aleed, A.; Gulati, G.; Haffey, W.D.; Thornton, S.; Wagner, M.; Devarajan, P.; Witte, D.; et al. Discovery of SERPINA3 as a candidate urinary biomarker of lupus nephritis activity. Rheumatology 2019, 58, 321–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, G.C.; Song, S.R.; Xu, X.; Luo, Q.; Han, Q.; He, J.X.; Su, J. Serpina3n is closely associated with fibrotic procession and knockdown ameliorates bleomycin-induced pulmonary fibrosis. Biochem. Biophys. Res. Commun. 2020, 532, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Shiheido-Watanabe, Y.; Maejima, Y.; Kasama, T.; Tamura, N.; Nakagama, S.; Ito, Y.; Hirao, K.; Isobe, M.; Sasano, T. Linagliptin, A Xanthine-Based Dipeptidyl Peptidase-4 Inhibitor, Ameliorates Experimental Autoimmune Myocarditis. JACC Basic Transl. Sci. 2021, 6, 527–542. [Google Scholar] [CrossRef]
- Dignass, A.; Lindsay, J.O.; Sturm, A.; Windsor, A.; Colombel, J.F.; Allez, M.; D’Haens, G.; D’Hoore, A.; Mantzaris, G.; Novacek, G.; et al. Second European evidence-based consensus on the diagnosis and management of ulcerative colitis part 2: Current management. J. Crohns Colitis 2012, 6, 991–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanai, H.; Hanauer, S.B. Assessing response and loss of response to biological therapies in IBD. Am. J. Gastroenterol. 2011, 106, 685–698. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, D.; Felice, C.; Papa, A.; Gasbarrini, A.; Rapaccini, G.L.; Guidi, L.; Armuzzi, A. Anti TNF-α therapy for ulcerative colitis: Current status and prospects for the future. Expert Rev. Clin. Immunol. 2017, 13, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.M.; Haritunians, T.; Chhina, S.; Liu, Z.; Yang, S.; Landers, C.; Li, D.; Ye, B.D.; Shih, D.; Vasiliauskas, E.A.; et al. Colonic Phenotypes Are Associated with Poorer Response to Anti-TNF Therapies in Patients with IBD. Inflamm. Bowel Dis. 2017, 23, 1382–1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Up | ||||
Go Term | Description | −Log10P | Count | Genes |
GO:0031012 | extracellular matrix | 26.52245 | 47 | SERPINA3, AEBP1, AGT, ANXA5, AZGP1, SERPING1, CHI3L1, COL1A1, COL1A2, COL3A1, COL4A1, COL5A2, COL6A3, COL15A1, CPA3, CTSH, DMBT1, ECM1, F3, LAMC1, LGALS1, MMP1, MMP3, MMP7, MMP9, MMP10, MMP12, PCOLCE, PF4, PI3, HTRA1, S100A8, S100A9, SLPI, SPARC, TGFBI, TIMP1, WNT5A, PXDN, TFPI2, SPARCL1, SPON2, SULF1, ANGPTL2, MXRA5, GREM1, CTHRC1, CAV1, CTSK, SERPINB5, PRDX4, SPINK5, CSRP2, SPAG4, CLDN2, CLDN1, OLFM4 |
GO:0002237 | response to molecule of bacterial origin | 25.18266 | 38 | ASS1, C5AR1, CASP1, CSF2RB, CD55, DEFA5, DEFA6, DMBT1, FCGR2B, GJA1, CXCL1, CXCL3, HCK, IL1B, IL10RA, CXCL10, LCN2, LYN, CXCL9, NOS2, PF4, S100A8, S100A9, CXCL6, CXCL11, CXCL5, SELP, SLPI, SPARC, TLR2, WNT5A, CLDN1, LILRB2, SPON2, CXCL13, LY96, CD274, TNIP3, C3, C4BPA, C4BPB, CAV1, DEFB4A, IL7R, PI3, PLA2G2A, S100A12, SPINK5, REG4, IGLL5, COL1A1, SPP1, LRP8, RAMP3, AGT, CHI3L1, F3, MMP12, MNDA, POU2AF1, SLC7A5, SERPINB7, AIM2, SULF1, HEG1, IL33, BST2, CDH3, TRIB2 |
GO:0019221 | cytokine-mediated signalling pathway | 24.97113 | 42 | TNFRSF17, CASP1, CAV1, CSF2RB, ECM1, F3, CXCL1, CXCL3, HCK, IL1B, IL1RN, IL7R, CXCR2, IL10RA, IL13RA2, CXCL10, CXCL9, MMP12, PF4, ROBO1, CCL11, CCL18, CCL24, CXCL6, CXCL11, CXCL5, WNT5A, LRP8, PXDN, IFITM1, OSMR, AIM2, LILRB2, IFITM3, CXCL13, IFITM2, TNFSF13B, DUOX2, ACKR4, PLVAP, CCDC3, IL33, SERPING1, C1R, C3, C4BPA, C4BPB, CD55, DEFA5, DEFA6, DEFB4A, DMBT1, FCGR2B, CFI, REG3A, PI3, POU2AF1, REG1A, REG1B, S100A9, S100A12, SLPI, SPON2, SPINK5, SPNS2, IGLL5, C5AR1, LYN, MMP9, PECAM1, S100A8, SELL, SELP, THY1, PLA2G7, MADCAM1, OLFM4, GREM1, AGT, FPR1, GNA15, PNOC, ADA2, PROK2, MRAP2, CTHRC1, CDH5, ITGA5, SPP1, TFF1, TIMP1, MANF, GMFG, CHN1, PLAU |
Down | ||||
Go Term | Description | −Log10P | Count | Genes |
GO:0016324 | apical plasma membrane | 14.3201 | 25 | CA4, CEACAM7, SLC26A2, P2RY1, ABCB1, PRKG2, SCNN1B, SLC1A1, SLC16A1, SLC22A4, SLC22A5, STX3, PLPP1, ABCB11, ABCG2, SLC23A1, NAALADL1, SLC17A4, CLCA4, CDHR5, RAB17, CYP4F12, PDZD3, TRPM6, SLC6A19, AQP8, LIMA1, CNGA1, GABRA2, PDE6A, PHLPP2, PSD3, CDHR1 |
GO:1901615 | organic hydroxy compound metabolic process | 13.217 | 28 | ABAT, ADH1C, ADH6, CYP27A1, DDC, EPHX2, FMO5, HMGCS2, ITPKA, MAOA, P2RY1, PCK1, PRKG2, SCNN1B, SLC1A1, SULT1A2, VLDLR, PLPP1, ABCB11, OPN3, AMACR, NAAA, SULT1B1, LIMA1, RETSAT, CYP4F12, OSBPL1A, LDHD, CYP2B6, HSD17B2, DHRS11 |
GO:0032787 | monocarboxylic acid metabolic process | 11.2724 | 27 | ABAT, ACADM, ACADS, ADH1C, ADH6, ENTPD5, CPT1A, CYP2B6, CYP27A1, EDN1, ETFDH, HPGD, PCK1, PDK2, PPARG, ABCB11, SLC4A4, LIAS, AMACR, NAAA, CYP2S1, UGT1A10, CYP4F12, UGT2A3, ACSF2, OSBPL1A, LDHD, SULT1A2, APOBEC3B, DDAH2, SULT1B1, APOBEC3A, PLCD1, PRDX6, PLA2G12B, FMO4, FMO5, AIFM3, EPHX2, PLPP1, B4GALNT2, RETSAT |
Gene | log2FC | AveExpr | p-Value | adj. P Val. |
---|---|---|---|---|
SERPINA3 | 2.781464 | 5.339446 | 0.002387 | 0.014217 |
CTHRC1 | 2.752319 | 5.963112 | 0.000175 | 0.002244 |
COL4A1 | 2.062337 | 8.255427 | 0.00029 | 0.003163 |
SPINK5 | 1.807568 | 9.775712 | 0.002094 | 0.012913 |
TGFBI | 1.751269 | 10.09177 | 1.87 × 10−5 | 0.000504 |
SPAG4 | 1.619358 | 5.398344 | 0.001235 | 0.008798 |
SPON2 | 1.586121 | 6.648104 | 0.001681 | 0.011077 |
COL5A2 | 1.578861 | 7.339977 | 0.001568 | 0.010548 |
PXDN | 1.463779 | 6.636386 | 0.000362 | 0.003714 |
AZGP1 | 1.293119 | 5.853493 | 0.003716 | 0.019688 |
PCOLCE | 1.284043 | 6.823738 | 0.006083 | 0.028299 |
CTSH | 1.230996 | 9.696432 | 0.000707 | 0.005954 |
LAMC1 | 1.171772 | 7.556216 | 0.000159 | 0.002112 |
ANGPTL2 | 1.163704 | 5.229639 | 0.001209 | 0.008677 |
MXRA5 | 1.086506 | 8.460376 | 0.024482 | 0.080414 |
AEBP1 | 1.076301 | 7.03746 | 0.016754 | 0.0603 |
CSRP2 | 1.075397 | 7.034764 | 0.008392 | 0.036062 |
CPA3 | 1.063069 | 8.603432 | 0.031116 | 0.096113 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wang, W.; Zhu, S.; Chen, Y. Increased SERPINA3 Level Is Associated with Ulcerative Colitis. Diagnostics 2021, 11, 2371. https://doi.org/10.3390/diagnostics11122371
Zhang J, Wang W, Zhu S, Chen Y. Increased SERPINA3 Level Is Associated with Ulcerative Colitis. Diagnostics. 2021; 11(12):2371. https://doi.org/10.3390/diagnostics11122371
Chicago/Turabian StyleZhang, Jingwei, Wei Wang, Shenglong Zhu, and Yongquan Chen. 2021. "Increased SERPINA3 Level Is Associated with Ulcerative Colitis" Diagnostics 11, no. 12: 2371. https://doi.org/10.3390/diagnostics11122371
APA StyleZhang, J., Wang, W., Zhu, S., & Chen, Y. (2021). Increased SERPINA3 Level Is Associated with Ulcerative Colitis. Diagnostics, 11(12), 2371. https://doi.org/10.3390/diagnostics11122371