Forensic Value of Genetic Variants Associated with Anti-Social Behavior
Abstract
:1. Introduction
2. Cases
2.1. Case 1
2.1.1. Toxicology Testing
2.1.2. Clinical and Neuroradiological Evaluation
2.2. Case 2
Clinical Evaluation and Genetic Testing
3. Literature Review Methodology
4. Discussion
4.1. MAOA
4.2. 5-HTT
4.3. COMT
4.4. DAT-1
4.5. DRD2 and DRD4
4.6. GABBR2
4.7. BDNF
4.8. NOS-1
4.9. Y Chromosome and Androgens
4.10. ZNF
4.11. Other Genes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farahany, N.A. Neuroscience and behavioral genetics in US criminal law: An empirical analysis. J. Law Biosci. 2016, 2, 485–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, S.; Umbach, R.; Raine, A. Biological explanations of criminal behavior. Psychol. Crime Law 2019, 25, 626–640. [Google Scholar] [CrossRef]
- Choy, O.; Raine, A.; Hamilton, R.H. Stimulation of the Prefrontal Cortex Reduces Intentions to Commit Aggression: A Randomized, Double-Blind, Placebo-Controlled, Stratified, Parallel-Group Trial. J. Neurosci. 2018, 38, 6505–6512. [Google Scholar] [CrossRef] [PubMed]
- Gregory, S.; Ffytche, D.; Simmons, A.; Kumari, V.; Howard, M.; Hodgins, S.; Blackwood, N. The Antisocial Brain: Psychopathy Matters: A structural mri investigation of antisocial male violent offenders. Arch. Gen. Psychiatry 2012, 69, 962–972. [Google Scholar] [CrossRef] [Green Version]
- Pardini, D.A.; Raine, A.; Erickson, K.; Loeber, R. Lower Amygdala Volume in Men is Associated with Childhood Aggression, Early Psychopathic Traits, and Future Violence. Biol. Psychiatry 2014, 75, 73–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.-F.; Menard, S. The Interplay of MAOA and Peer Influences in Predicting Adult Criminal Behavior. Psychiatr. Q. 2017, 88, 115–128. [Google Scholar] [CrossRef]
- Caspi, A.; McClay, J.; Moffitt, T.E.; Mill, J.; Martin-Moreno, L.; Craig, I.W.; Taylor, A.; Poulton, R. Role of Genotype in the Cycle of Violence in Maltreated Children. Science 2002, 297, 851–854. [Google Scholar] [CrossRef]
- González-Tapia, M.I.; Obsuth, I. “Bad genes” & criminal responsibility. Int. J. Law Psychiatry 2015, 39, 60–71. [Google Scholar] [CrossRef]
- Ferguson, C.J. Genetic Contributions to Antisocial Personality and Behavior: A Meta-Analytic Review from an Evolutionary Perspective. J. Soc. Psychol. 2010, 150, 160–180. [Google Scholar] [CrossRef]
- Gard, A.M.; Dotterer, H.L.; Hyde, L.W. Genetic influences on antisocial behavior: Recent advances and future directions. Curr. Opin. Psychol. 2019, 27, 46–55. [Google Scholar] [CrossRef]
- Nilsson, K.W.; Åslund, C.; Comasco, E.; Oreland, L. Gene–environment interaction of monoamine oxidase A in relation to antisocial behaviour: Current and future directions. J. Neural Transm. 2018, 125, 1601–1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segal, J.B. Inherited proclivity: When should neurogenetics mitigate moral culpability for purposes of sentencing? J. Law Biosci. 2016, 3, 227–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McSwiggan, S.; Elger, B.; Appelbaum, P.S. The forensic use of behavioral genetics in criminal proceedings: Case of the MAOA-L genotype. Int. J. Law Psychiatry 2017, 50, 17–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatello, M.; Appelbaum, P.S. Behavioral Genetics in Criminal and Civil Courts. Harv. Rev. Psychiatry 2017, 25, 289–301. [Google Scholar] [CrossRef]
- Scurich, N.; Appelbaum, P.S. Behavioral Genetics in Criminal Court Nicholas. Physiol. Behav. 2017, 176, 139–148. [Google Scholar] [CrossRef]
- Boutwell, B.B.; Beaver, K.M.; Barnes, J.C.; Vaske, J. The developmental origins of externalizing behavioral problems: Parental disengagement and the role of gene–environment interplay. Psychiatry Res. 2012, 197, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Young, S.E.; Smolen, A.; Hewitt, J.K.; Haberstick, B.C.; Stallings, M.C.; Corley, R.P.; Crowley, T.J. Interaction Between MAO-A Genotype and Maltreatment in the Risk for Conduct Disorder: Failure to Confirm in Adolescent Patients. Am. J. Psychiatry 2006, 163, 1019–1025. [Google Scholar] [CrossRef]
- Terranova, C.; Tucci, M.; Sartore, D.; Cavarzeran, F.; Di Pietra, L.; Barzon, L.; Palù, G.; Ferrara, S.D. GABA Receptors, Alcohol Dependence and Criminal Behavior. J. Forensic Sci. 2013, 58, 1227–1232. [Google Scholar] [CrossRef]
- Beaver, K.M. Genetic Influences on Being Processed Through the Criminal Justice System: Results from a Sample of Adoptees. Biol. Psychiatry 2011, 69, 282–287. [Google Scholar] [CrossRef]
- Kendler, K.S.; Lönn, S.L.; Morris, N.A.; Sundquist, J.; Långström, N. A Swedish national adoption study of criminality. Psychol. Med. 2014, 44, 1913–1925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wertz, J.; Caspi, A.; Belsky, D.W.; Beckley, A.; Arseneault, L.; Barnes, J.C.; Corcoran, D.L.; Hogan, S.; Houts, R.; Morgan, N.; et al. Genetics and Crime: Integrating New Genomic Discoveries Into Psychological Research About Antisocial Behavior. Psychol. Sci. 2018, 29, 791–803. [Google Scholar] [CrossRef] [PubMed]
- Hunter, P. The psycho gene. EMBO Rep. 2010, 11, 667–669. [Google Scholar] [CrossRef]
- Kravic, N.; Dzananovic, E.S.; Umihanic, M.M.; Kulenovic, A.D.; Sinanovic, O.; Jakovljevic, M.; Babic, D.; Kucukalic, A.; Agani, F.; Kucukalic, S.; et al. Association Analysis of Maoa And Slc6a4 Gene Variation in South East European War Related Posttraumatic Stress Disorder. Psychiatr. Danub. 2019, 31, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Konar, A.; Rastogi, M.; Bhambri, A. Brain region specific methylation and Sirt1 binding changes in MAOA promoter is associated with sexual dimorphism in early life stress induced aggressive behavior. Neurochem. Int. 2019, 129, 104510. [Google Scholar] [CrossRef] [PubMed]
- Stetler, D.A.; Davis, C.; Leavitt, K.; Schriger, I.; Benson, K.; Bhakta, S.; Wang, L.C.; Oben, C.; Watters, M.; Haghnegahdar, T.; et al. Crime in Incarcerated Offenders. J. Psychiatr. Res. 2014, 58, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Sjöberg, R.L.; Nilsson, K.W.; Wargelius, H.-L.; Leppert, J.; Lindström, L.; Oreland, L. Adolescent girls and criminal activity: Role of MAOA-LPR genotype and psychosocial factors. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2007, 144B, 159–164. [Google Scholar] [CrossRef]
- Rigoni, D.; Pellegrini, S.; Mariotti, V.; Cozza, A.; Mechelli, A.; Ferrara, S.D.; Pietrini, P.; Sartori, G. How Neuroscience and Behavioral Genetics Improve Psychiatric Assessment: Report on a Violent Murder Case. Front. Behav. Neurosci. 2010, 4, 160. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, T.A.; Boutwell, B.B.; Flores, S.; Symonds, M.; Keller, S.; Gangitano, D.A. Monoamine oxidase A genotype, childhood adversity, and criminal behavior in an incarcerated sample. Psychiatr. Genet. 2014, 24, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Beaver, K.M.; DeLisi, M.; Vaughn, M.G.; Barnes, J. Monoamine oxidase A genotype is associated with gang membership and weapon use. Compr. Psychiatry 2010, 51, 130–134. [Google Scholar] [CrossRef]
- Fergusson, D.M.; Boden, J.M.; Horwood, L.J.; Miller, A.; Kennedy, M.A. Moderating role of the MAOA genotype in antisocial behaviour. Br. J. Psychiatry 2012, 200, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Beaver, K.M.; Barnes, J.C.; Boutwell, B.B. The 2-Repeat Allele of the MAOA Gene Confers an Increased Risk for Shooting and Stabbing Behaviors. Psychiatr. Q. 2014, 85, 257–265. [Google Scholar] [CrossRef]
- Bosari, S.; Bussandri, M.; Moi, A.; Brambilla, F.; Mameli, A.; Pizzamiglio, M.; Donnini, C.; Moi, G.; Gerra, G.; Garofano, L.; et al. Analysis of monoamine oxidase A (MAO-A) promoter polymorphism in male heroin-dependent subjects: Behavioural and personality correlates. J. Neural Transm. 2004, 111, 611–621. [Google Scholar] [CrossRef]
- Beaver, K.M.; Holtfreter, K. Biosocial Influences on Fraudulent Behaviors. J. Genet. Psychol. 2009, 170, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Lagoa, A.; Santos, A.; Pinheiro, M.F.; Magalhães, T. Genetics and criminal behaviour: Recent accomplishments. Med. Sci. Law 2009, 49, 274–282. [Google Scholar] [CrossRef]
- Toshchakova, V.A.; Bakhtiari, Y.; Kulikov, A.V.; Gusev, S.I.; Trofimova, M.V.; Fedorenko, O.Y.; Mikhalitskaya, E.V.; Popova, N.K.; Bokhan, N.; Hovens, J.E.; et al. Association of Polymorphisms of Serotonin Transporter (5HTTLPR) and 5-HT2C Receptor Genes with Criminal Behavior in Russian Criminal Offenders. Neuropsychobiology 2018, 75, 200–210. [Google Scholar] [CrossRef]
- Liao, D.-L.; Hong, C.-J.; Shih, H.-L.; Tsai, S.-J. Possible Association between Serotonin Transporter Promoter Region Polymorphism and Extremely Violent Crime in Chinese Males. Neuropsychobiology 2004, 50, 284–287. [Google Scholar] [CrossRef]
- Vaske, J.; Newsome, J.; Wright, J.P. Interaction of serotonin transporter linked polymorphic region and childhood neglect on criminal behavior and substance use for males and females. Dev. Psychopathol. 2012, 24, 181–193. [Google Scholar] [CrossRef]
- Tatarelli, R.; Del Casale, A.; Tatarelli, C.; Serata, D.; Rapinesi, C.; Sani, G.; Kotzalidis, G.D.; Girardi, P. Behavioral genetics and criminal responsibility at the courtroom. Forensic Sci. Int. 2014, 237, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Gerra, G.; Garofano, L.; Santoro, G.; Bosari, S.; Pellegrini, C.; Zaimovic, A.; Moi, G.; Bussandri, M.; Moi, A.; Brambilla, F.; et al. Association between low-activity serotonin transporter genotype and heroin dependence: Behavioral and personality correlates. Am. J. Med. Genet. 2004, 126B, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Azeredo, A.; Moreira, D.; Figueiredo, P.; Barbosa, F. Delinquent Behavior: Systematic Review of Genetic and Environmental Risk Factors. Clin. Child Fam. Psychol. Rev. 2019, 22, 502–526. [Google Scholar] [CrossRef]
- Berggård, C.; Damberg, M.; Longato-Stadler, E.; Hallman, J.; Oreland, L.; Garpenstrand, H. The serotonin 2A −1438 G/A receptor polymorphism in a group of Swedish male criminals. Neurosci. Lett. 2003, 347, 196–198. [Google Scholar] [CrossRef]
- Hoyer, D.; Hannon, J.P.; Martin, G.R. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav. 2002, 71, 533–554. [Google Scholar] [CrossRef]
- Pauwels, P.J. 5-HT1BD receptor antagonists. Gen. Pharmacol. Vasc. Syst. 1997, 29, 293–303. [Google Scholar] [CrossRef]
- Jensen, K.P.; Covault, J.; Conner, T.S.; Tennen, H.; Kranzler, H.R.; Furneaux, H.M. A common polymorphism in serotonin receptor 1B mRNA moderates regulation by miR-96 and associates with aggressive human behaviors. Mol. Psychiatry 2009, 14, 381–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conner, T.S.; Jensen, K.P.; Tennen, H.; Furneaux, H.M.; Kranzler, H.R.; Covault, J. Functional polymorphisms in the serotonin 1B receptor gene (HTR1B) predict self-reported anger and hostility among young men. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2010, 9999B, 67–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pigoni, A.; Lazzaretti, M.; Mandolini, G.; Delvecchio, G.; Altamura, A.; Soares, J.C.; Brambilla, P. The impact of COMT polymorphisms on cognition in Bipolar Disorder: A review. J. Affect. Disord. 2019, 243, 545–551. [Google Scholar] [CrossRef]
- Fallon, S.J.; Williams-Gray, C.H.; Barker, R.A.; Owen, A.M.; Hampshire, A. Prefrontal Dopamine Levels Determine the Balance between Cognitive Stability and Flexibility. Cereb. Cortex 2013, 23, 361–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caspi, A.; Langley, K.; Milne, B.; Moffitt, T.E.; O’Donovan, M.; Owen, M.J.; Tomas, M.P.; Poulton, R.; Rutter, M.; Taylor, A.; et al. A Replicated Molecular Genetic Basis for Subtyping Antisocial Behavior in Children with Attention-Deficit/Hyperactivity Disorder. Arch. Gen. Psychiatry 2008, 65, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.P.; Volavka, J.; Czobor, P.; Van Dorn, R.A. A Meta-Analysis of the Val158Met COMT Polymorphism and Violent Behavior in Schizophrenia. PLoS ONE 2012, 7, e43423. [Google Scholar] [CrossRef] [Green Version]
- Qadeer, M.I.; Amar, A.; Mann, J.J.; Hasnain, S. Polymorphisms in dopaminergic system genes; association with criminal behavior and self-reported aggression in violent prison inmates from Pakistan. PLoS ONE 2017, 12, e0173571. [Google Scholar] [CrossRef]
- Beaver, K.M.; Wright, J.P.; DeLisi, M. Delinquent Peer Group Formation: Evidence of a Gene X Environment Correlation. J. Genet. Psychol. 2008, 169, 227–244. [Google Scholar] [CrossRef]
- Schwartz, J.A.; Beaver, K.M. Exploring whether genetic differences between siblings explain sibling differences in criminal justice outcomes. Compr. Psychiatry 2014, 55, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Gerra, G.; Garofano, L.; Pellegrini, C.; Bosari, S.; Zaimovic, A.; Moi, G.; Avanzini, P.; Talarico, E.; Gardini, F.; Donnini, C. Allelic association of a dopamine transporter gene polymorphism with antisocial behaviour in heroin-dependent patients. Addict. Biol. 2005, 10, 275–281. [Google Scholar] [CrossRef]
- Vaske, J.; Beaver, K.M.; Wright, J.P.; Boisvert, D.; Schnupp, R. An interaction between DAT1 and having an alcoholic father predicts serious alcohol problems in a sample of males. Drug Alcohol Depend. 2009, 104, 17–22. [Google Scholar] [CrossRef]
- Watts, S.J.; McNulty, T.L. Genes, Parenting, Self-Control, and Criminal Behavior. Int. J. Offender Ther. Comp. Criminol. 2016, 60, 469–491. [Google Scholar] [CrossRef]
- Beaver, K.M.; Wright, J.P.; Walsh, A. A gene-based evolutionary explanation for the association between criminal involvement and number of sex partners. Biodemogr. Soc. Biol. 2008, 54, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Abrahams, S.; McFie, S.; Lacerda, M.; Patricios, J.; Suter, J.; September, A.V.; Posthumus, M. Unravelling the interaction between theDRD2andDRD4genes, personality traits and concussion risk. BMJ Open Sport Exerc. Med. 2019, 5, e000465. [Google Scholar] [CrossRef] [Green Version]
- Beaver, K.M.; Wright, J.P.; DeLisi, M.; Walsh, A.; Vaughn, M.G.; Boisvert, D.; Vaske, J. A gene × gene interaction between DRD2 and DRD4 is associated with conduct disorder and antisocial behavior in males. Behav. Brain Funct. 2007, 3, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaver, K.M.; Gibson, C.L.; Jennings, W.G.; Ward, J.T. A gene X environment interaction between DRD2 and religiosity in the prediction of adolescent delinquent involvement in a sample of males. Biodemogr. Soc. Biol. 2009, 55, 71–81. [Google Scholar] [CrossRef]
- Boutwell, B.B.; Menard, S.; Barnes, J.; Beaver, K.M.; Armstrong, T.A.; Boisvert, D. The role of gene–gene interaction in the prediction of criminal behavior. Compr. Psychiatry 2014, 55, 483–488. [Google Scholar] [CrossRef]
- Boutwell, B.B.; Beaver, K.M. A biosocial explanation of delinquency abstention. Crim. Behav. Ment. Health 2008, 18, 59–74. [Google Scholar] [CrossRef]
- Cherepkova, E.V.; Maksimov, V.N.; Kushnarev, A.P.; Shakhmatov, I.I.; Aftanas, L.I. The polymorphism of dopamine receptor D4 (DRD4) and dopamine transporter (DAT) genes in the men with antisocial behaviour and mixed martial arts fighters. World J. Biol. Psychiatry 2019, 20, 402–415. [Google Scholar] [CrossRef] [PubMed]
- Petroff, O.A.C. GABA and glutamate in the human brain. Neuroscientist 2002, 8, 562–573. [Google Scholar] [CrossRef]
- Lu, B.; Nagappan, G.; Lu, Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb. Exp. Pharmacol. 2015, 220, 223–250. [Google Scholar] [CrossRef]
- Tsai, S.J.; Liao, D.L.; Yu, Y.W.Y.; Chen, T.J.; Wu, H.C.; Lin, C.H.; Cheng, C.Y.; Hong, C.J. A study of the association of (Val66Met) polymorphism in the Brain-derived Neurotrophic Factor gene with alcohol dependence and extreme violence in Chinese males. Neurosci. Lett. 2005, 381, 340–343. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, S.; Kimura, M.; Miyakawa, T.; Yoshino, A.; Murayama, M.; Masaki, T.; Higuchi, S. Association study of brain-derived neurotrophic factor gene polymorphism and alcoholism. Alcohol. Clin. Exp. Res. 2004, 28, 1609–1612. [Google Scholar] [CrossRef]
- Bresin, K.; Sima Finy, M.; Verona, E. Childhood emotional environment and self-injurious behaviors: The moderating role of the BDNF Val66Met polymorphism. J. Affect. Disord. 2013, 150, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Duma, D.; Fernandes, D.; Bonini, M.G.; Stadler, K.; Mason, R.P.; Assreuy, J. NOS-1-derived NO is an essential triggering signal for the development of systemic inflammatory responses. Eur. J. Pharmacol. 2011, 668, 285–292. [Google Scholar] [CrossRef] [Green Version]
- Retz, W.; Reif, A.; Freitag, C.M.; Retz-Junginger, P.; Rösler, M. Association of a functional variant of neuronal nitric oxide synthase gene with self-reported impulsiveness, venturesomeness and empathy in male offenders. J. Neural Transm. 2010, 117, 321–324. [Google Scholar] [CrossRef]
- Reif, A.; Jacob, C.P.; Rujescu, D.; Herterich, S.; Lang, S.; Gutknecht, L.; Baehne, C.G.; Strobel, A.; Freitag, C.M.; Giegling, I.; et al. Influence of functional variant of neuronal nitric oxide synthase on impulsive behaviors in humans. Arch. Gen. Psychiatry 2009, 66, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Ba, H.; Zhang, W.; Zhang, S.; Zhao, H.; Yu, H.; Gao, Z.; Wang, B. The association of 22 Y chromosome short tandem repeat loci with initiative–aggressive behavior. Gene 2018, 654, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Hong, C.J.; Liao, D.L.; Tsai, S.J. Association study of androgen receptor CAG repeat polymorphism and male violent criminal activity. Psychoneuroendocrinology 2006, 31, 548–552. [Google Scholar] [CrossRef]
- Sjöberg, R.L.; Ducci, F.; Barr, C.S.; Newman, T.K.; Dell’Osso, L.; Virkkunen, M.; Goldman, D. A non-additive interaction of a functional MAO-A VNTR and testosterone predicts antisocial behavior. Neuropsychopharmacology 2008, 33, 425–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hancock, D.B.; Levy, J.L.; Gaddis, N.C.; Glasheen, C.; Saccone, N.L.; Page, G.P.; Bierut, L.J.; Kral, A.H.; Johnson, E.O. Replication of ZNF804A gene variant associations with risk of heroin addiction. Genes Brain Behav. 2015, 14, 635–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiihonen, J.; Koskuvi, M.; Lähteenvuo, M.; Virtanen, P.L.J.; Ojansuu, I.; Vaurio, O.; Gao, Y.; Hyötyläinen, I.; Puttonen, K.A.; Repo-Tiihonen, E.; et al. Neurobiological roots of psychopathy. Mol. Psychiatry 2020, 25, 3432–3441. [Google Scholar] [CrossRef] [PubMed]
- Annerbrink, K.; Jönsson, E.G.; Olsson, M.; Nilsson, S.; Sedvall, G.C.; Anckarsäter, H.; Eriksson, E. Associations between the angiotensin-converting enzyme insertion/deletion polymorphism and monoamine metabolite concentrations in cerebrospinal fluid. Psychiatry Res. 2010, 179, 231–234. [Google Scholar] [CrossRef]
- Mahon, P.B.; Zandi, P.P.; Potash, J.B.; Nestadt, G.; Wand, G.S. Genetic association of FKBP5 and CRHR1 with cortisol response to acute psychosocial stress in healthy adults. Psychopharmacology 2013, 227, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Gu, T.; Ma, B.; Zheng, G.; Ke, B.; Zhang, X.; Zhang, L.; Wang, Y.; Hu, L.; Chen, Y.; et al. The CRHR1 gene contributes to genetic susceptibility of aggressive behavior towards others in Chinese southwest han population. J. Mol. Neurosci. 2014, 52, 481–486. [Google Scholar] [CrossRef]
- Tang, L.; Chen, Y.; Xiang, Q.; Xiang, J.; Tang, Y.; Li, J. The GCAG Haplotype of the CRHBP Gene May Decrease the Risk for Robbery Behavior among the Han Chinese. Genet. Test. Mol. Biomark. 2020, 24, 436–442. [Google Scholar] [CrossRef]
- Palumbo, S.; Mariotti, V.; Iofrida, C.; Pellegrini, S. Genes and Aggressive Behavior: Epigenetic Mechanisms Underlying Individual Susceptibility to Aversive Environments. Front. Behav. Neurosci. 2018, 12, 117. [Google Scholar] [CrossRef]
- Iofrida, C.; Palumbo, S.; Pellegrini, S.; Iofrida, C.; Palumbo, S.; Pellegrini, S. Experimental Biology and Medicine Molecular genetics and antisocial behavior: Where do we stand? Exp. Biol. Med. 2014, 239, 1514–1523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillen Gonzalez, D.; Bittlinger, M.; Erk, S.; Müller, S. Neuroscientific and Genetic Evidence in Criminal Cases: A Double-Edged Sword in Germany but Not in the United States? Front. Psychol. 2019, 10, 2343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Mahony, C.; de Paor, A. The use of behavioural genetics in the criminal justice system: A disability & human rights perspective. Int. J. Law Psychiatry 2017, 54, 16–25. [Google Scholar] [CrossRef]
- Brunner, H.G. MAOA deficiency and abnormal behaviour: Perspectives on an association. Ciba Found Symp. 1996, 194, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Scurich, N.; Appelbaum, P.S. State v. Yepez: Admissibility and Relevance of Behavioral Genetic Evidence in a Criminal Trial. Psychiatr. Serv. 2021, 72, 853–855. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliva, A.; Grassi, S.; Zedda, M.; Molinari, M.; Ferracuti, S. Forensic Value of Genetic Variants Associated with Anti-Social Behavior. Diagnostics 2021, 11, 2386. https://doi.org/10.3390/diagnostics11122386
Oliva A, Grassi S, Zedda M, Molinari M, Ferracuti S. Forensic Value of Genetic Variants Associated with Anti-Social Behavior. Diagnostics. 2021; 11(12):2386. https://doi.org/10.3390/diagnostics11122386
Chicago/Turabian StyleOliva, Antonio, Simone Grassi, Massimo Zedda, Marco Molinari, and Stefano Ferracuti. 2021. "Forensic Value of Genetic Variants Associated with Anti-Social Behavior" Diagnostics 11, no. 12: 2386. https://doi.org/10.3390/diagnostics11122386
APA StyleOliva, A., Grassi, S., Zedda, M., Molinari, M., & Ferracuti, S. (2021). Forensic Value of Genetic Variants Associated with Anti-Social Behavior. Diagnostics, 11(12), 2386. https://doi.org/10.3390/diagnostics11122386