Corneal Analysis with Swept Source Optical Coherence Tomography in Patients with Coexisting Cataract and Fuchs Endothelial Corneal Dystrophy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Corneal Shape Analysis
2.2. Corneal Thickness
2.3. Elevation Map
2.4. Fourier Analysis and Ectasia Screening Index (ESI)
2.5. Statistical Analysis
3. Results
3.1. Corneal Shape Analysis
3.2. Elevation Map
3.3. Fourier Analysis and ESI
3.4. Corneal Thickness and Anterior Chamber Depth
3.5. Corneal Morphology
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. World Report on Vision. 2019. Available online: https://www.who.int/publications/i/item/world-report-on-vision (accessed on 1 November 2020).
- Lundstrom, M.; Dickman, M.; Henry, Y.; Manning, S.; Rosen, P.; Tassignon, M.J.; Young, D.; Behndig, A.; Stenevi, U. Changing practice patterns in European cataract surgery as reflected in the European Registry of Quality Outcomes for Cataract and Refractive Surgery 2008–2017. J. Cataract Refract. Surg. 2020. [Google Scholar] [CrossRef] [PubMed]
- Lundstrom, M.; Dickman, M.; Henry, Y.; Manning, S.; Rosen, P.; Tassignon, M.J.; Young, D.; Stenevi, U. Risk factors for refractive error after cataract surgery: Analysis of 282,811 cataract extractions reported to the European Registry of Quality Outcomes for cataract and refractive surgery. J. Cataract Refract. Surg. 2018, 44, 447–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, D.D.; Ali, S.F.; Weikert, M.P.; Shirayama, M.; Jenkins, R.; Wang, L. Contribution of posterior corneal astigmatism to total corneal astigmatism. J. Cataract Refract. Surg. 2012, 38, 2080–2087. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.S.; Moller, H.U.; Aldave, A.J.; Seitz, B.; Bredrup, C.; Kivela, T.; Munier, F.L.; Rapuano, C.J.; Nischal, K.K.; Kim, E.K.; et al. IC3D classification of corneal dystrophies—Edition 2. Cornea 2015, 34, 117–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong Tone, S.; Kocaba, V.; Bohm, M.; Wylegala, A.; White, T.L.; Jurkunas, U.V. Fuchs endothelial corneal dystrophy: The vicious cycle of Fuchs pathogenesis. Prog. Retin. Eye Res. 2021, 80, 100863. [Google Scholar] [CrossRef] [PubMed]
- Gain, P.; Jullienne, R.; He, Z.; Aldossary, M.; Acquart, S.; Cognasse, F.; Thuret, G. Global Survey of Corneal Transplantation and Eye Banking. JAMA Ophthalmol. 2016, 134, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Zoega, G.M.; Fujisawa, A.; Sasaki, H.; Kubota, A.; Sasaki, K.; Kitagawa, K.; Jonasson, F. Prevalence and risk factors for cornea guttata in the Reykjavik Eye Study. Ophthalmology 2006, 113, 565–569. [Google Scholar] [CrossRef]
- Zoega, G.M.; Arnarsson, A.; Sasaki, H.; Soderberg, P.G.; Jonasson, F. The 7-year cumulative incidence of cornea guttata and morphological changes in the corneal endothelium in the Reykjavik Eye Study. Acta Ophthalmol. 2013, 91, 212–218. [Google Scholar] [CrossRef]
- Goar, E.L. Dystrophy of the Corneal Endothelium (Cornea Guttata), with Report of a Histologic Examination. Trans. Am. Ophthalmol. Soc. 1933, 31, 48–59. [Google Scholar]
- Lorenzetti, D.W.; Uotila, M.H.; Parikh, N.; Kaufman, H.E. Central cornea guttata. Incidence in the general population. Am. J. Ophthalmol. 1967, 64, 1155–1158. [Google Scholar] [CrossRef]
- Augustin, V.A.; Weller, J.M.; Kruse, F.E.; Tourtas, T. Influence of corneal guttae and nuclear cataract on contrast sensitivity. Br. J. Ophthalmol. 2020. [Google Scholar] [CrossRef]
- Seitzman, G.D.; Gottsch, J.D.; Stark, W.J. Cataract surgery in patients with Fuchs’ corneal dystrophy: Expanding recommendations for cataract surgery without simultaneous keratoplasty. Ophthalmology 2005, 112, 441–446. [Google Scholar] [CrossRef] [PubMed]
- van Cleynenbreugel, H.; Remeijer, L.; Hillenaar, T. Cataract surgery in patients with Fuchs’ endothelial corneal dystrophy: When to consider a triple procedure. Ophthalmology 2014, 121, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Shousha, M.A.; Perez, V.L.; Wang, J.; Ide, T.; Jiao, S.; Chen, Q.; Chang, V.; Buchser, N.; Dubovy, S.R.; Feuer, W.; et al. Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy. Ophthalmology 2010, 117, 1220–1227. [Google Scholar] [CrossRef] [Green Version]
- Brunette, I.; Sherknies, D.; Terry, M.A.; Chagnon, M.; Bourges, J.L.; Meunier, J. 3-D characterization of the corneal shape in Fuchs dystrophy and pseudophakic keratopathy. Investig. Ophthalmol. Vis. Sci. 2011, 52, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Repp, D.J.; Hodge, D.O.; Baratz, K.H.; McLaren, J.W.; Patel, S.V. Fuchs’ endothelial corneal dystrophy: Subjective grading versus objective grading based on the central-to-peripheral thickness ratio. Ophthalmology 2013, 120, 687–694. [Google Scholar] [CrossRef] [Green Version]
- Amin, S.R.; Baratz, K.H.; McLaren, J.W.; Patel, S.V. Corneal abnormalities early in the course of Fuchs’ endothelial dystrophy. Ophthalmology 2014, 121, 2325–2333. [Google Scholar] [CrossRef] [Green Version]
- Wacker, K.; McLaren, J.W.; Amin, S.R.; Baratz, K.H.; Patel, S.V. Corneal High-Order Aberrations and Backscatter in Fuchs’ Endothelial Corneal Dystrophy. Ophthalmology 2015, 122, 1645–1652. [Google Scholar] [CrossRef] [Green Version]
- Wacker, K.; McLaren, J.W.; Patel, S.V. Directional Posterior Corneal Profile Changes in Fuchs’ Endothelial Corneal Dystrophy. Investig. Ophthalmol. Vis. Sci. 2015, 56, 5904–5911. [Google Scholar] [CrossRef]
- Sun, S.Y.; Wacker, K.; Baratz, K.H.; Patel, S.V. Determining Subclinical Edema in Fuchs Endothelial Corneal Dystrophy: Revised Classification using Scheimpflug Tomography for Preoperative Assessment. Ophthalmology 2019, 126, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.V.; Hodge, D.O.; Treichel, E.J.; Spiegel, M.R.; Baratz, K.H. Predicting the Prognosis of Fuchs Endothelial Corneal Dystrophy by Using Scheimpflug Tomography. Ophthalmology 2020, 127, 315–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eleiwa, T.; Elsawy, A.; Tolba, M.; Feuer, W.; Yoo, S.; Shousha, M.A. Diagnostic Performance of 3-Dimensional Thickness of the Endothelium-Descemet Complex in Fuchs’ Endothelial Cell Corneal Dystrophy. Ophthalmology 2020, 127, 874–887. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.; Tearney, G.; de Boer, J.; Iftimia, N.; Bouma, B. High-speed optical frequency-domain imaging. Opt. Express 2003, 11, 2953–2963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khurana, R.N.; Li, Y.; Tang, M.; Lai, M.M.; Huang, D. High-speed optical coherence tomography of corneal opacities. Ophthalmology 2007, 114, 1278–1285. [Google Scholar] [CrossRef]
- Szalai, E.; Berta, A.; Hassan, Z.; Modis, L., Jr. Reliability and repeatability of swept-source Fourier-domain optical coherence tomography and Scheimpflug imaging in keratoconus. J. Cataract Refract. Surg. 2012, 38, 485–494. [Google Scholar] [CrossRef]
- Schroder, S.; Langenbucher, A.; Schrecker, J. Comparison of corneal elevation and pachymetry measurements made by two state of the art corneal tomographers with different measurement principles. PLoS ONE 2019, 14, e0223770. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Young, C.A.; Chen, A.; Jin, G.; Zheng, D. Comparison of a new anterior segment optical coherence tomography and Oculus Pentacam for measurement of anterior chamber depth and corneal thickness. Ann. Transl. Med. 2020, 8, 857. [Google Scholar] [CrossRef]
- Gali, H.E.; Sella, R.; Afshari, N.A. Cataract grading systems: A review of past and present. Curr. Opin. Ophthalmol. 2019, 30, 13–18. [Google Scholar] [CrossRef]
- Krachmer, J.H.; Purcell, J.J., Jr.; Young, C.W.; Bucher, K.D. Corneal endothelial dystrophy. A study of 64 families. Arch. Ophthalmol. 1978, 96, 2036–2039. [Google Scholar] [CrossRef]
- Louttit, M.D.; Kopplin, L.J.; Igo, R.P., Jr.; Fondran, J.R.; Tagliaferri, A.; Bardenstein, D.; Aldave, A.J.; Croasdale, C.R.; Price, M.O.; Rosenwasser, G.O.; et al. A multicenter study to map genes for Fuchs endothelial corneal dystrophy: Baseline characteristics and heritability. Cornea 2012, 31, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Holladay, J.T. Apparent chord mu and actual chord mu and their clinical value. J. Cataract Refract. Surg. 2019, 45, 1198–1199. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, T.B.; Ribeiro, P.; Ribeiro, F.J.; O’Neill, J.G. Comparison of Methodologies Using Estimated or Measured Values of Total Corneal Astigmatism for Toric Intraocular Lens Power Calculation. J. Refract. Surg. 2017, 33, 794–800. [Google Scholar] [CrossRef] [PubMed]
- Heydarian, S.; Hashemi, H.; Shokrollahzadeh, F.; Yekta, A.A.; Ostadimoghaddam, H.; Derakhshan, A.; Khabazkhoob, M. The normal distribution of corneal eccentricity and its determinants in two rural areas of north and south of Iran. J. Curr. Ophthalmol. 2018, 30, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.; Fry, K.; Hersh, P.S. Relationship of age and refraction to central corneal thickness. Cornea 2011, 30, 553–555. [Google Scholar] [CrossRef] [Green Version]
- Fritz, M.; Grewing, V.; Maier, P.; Lapp, T.; Bohringer, D.; Reinhard, T.; Wacker, K. Diurnal Variation in Corneal Edema in Fuchs Endothelial Corneal Dystrophy. Am. J. Ophthalmol. 2019, 207, 351–355. [Google Scholar] [CrossRef]
- Loreck, N.; Adler, W.; Siebelmann, S.; Rokohl, A.C.; Heindl, L.M.; Cursiefen, C.; Bachmann, B.O.; Matthaei, M. Morning Myopic Shift and Glare in Advanced Fuchs Endothelial Corneal Dystrophy. Am. J. Ophthalmol. 2020, 213, 69–75. [Google Scholar] [CrossRef]
- Iovino, C.; Fossarello, M.; Giannaccare, G.; Pellegrini, M.; Braghiroli, M.; Demarinis, G.; Napoli, P.E. Corneal endothelium features in Fuchs’ Endothelial Corneal Dystrophy: A preliminary 3D anterior segment optical coherence tomography study. PLoS ONE 2018, 13, e0207891. [Google Scholar] [CrossRef]
- Kaluzny, B.J.; Szkulmowska, A.; Szkulmowski, M.; Bajraszewski, T.; Kowalczyk, A.; Wojtkowski, M. Fuchs’ endothelial dystrophy in 830-nm spectral domain optical coherence tomography. Ophthalmic Surg. Lasers Imaging 2009, 40, 198–200. [Google Scholar] [CrossRef]
- Patel, S.V.; McLaren, J.W. In vivo confocal microscopy of Fuchs endothelial dystrophy before and after endothelial keratoplasty. JAMA Ophthalmol. 2013, 131, 611–618. [Google Scholar] [CrossRef] [Green Version]
- Dapena, I.; Yeh, R.Y.; Baydoun, L.; Cabrerizo, J.; van Dijk, K.; Ham, L.; Melles, G.R. Potential causes of incomplete visual rehabilitation at 6 months postoperative after descemet membrane endothelial keratoplasty. Am. J. Ophthalmol. 2013, 156, 780–788. [Google Scholar] [CrossRef]
- Epitropoulos, A.T.; Matossian, C.; Berdy, G.J.; Malhotra, R.P.; Potvin, R. Effect of tear osmolarity on repeatability of keratometry for cataract surgery planning. J. Cataract Refract. Surg. 2015, 41, 1672–1677. [Google Scholar] [CrossRef]
- Durr, G.M.; Auvinet, E.; Ong, J.; Meunier, J.; Brunette, I. Corneal Shape, Volume, and Interocular Symmetry: Parameters to Optimize the Design of Biosynthetic Corneal Substitutes. Investig. Ophthalmol. Vis. Sci. 2015, 56, 4275–4282. [Google Scholar] [CrossRef] [PubMed]
Age, Sex, and Cataract Grading | |||||||
---|---|---|---|---|---|---|---|
Control | FECD | ||||||
Age mean ± sd/ median/ range | 62.45 ± 6.89 63 46–74 | 64.72 ± 5.73 62 50–76 | |||||
Sex F/M (%) | 23/12 (65.71/34.28) | 22/13 (62.85/37.14) | |||||
Cataract (LOCS III) mean ± sd | NO/NC 2.36 ± 0.78 C 2.15 ± 0.97 P 2.11 ± 1.14 | NO/NC 2.28 ± 0.93 C 2.05 ± 0.86 P 2.01 ± 0.98 | |||||
FECD Severity Grade | |||||||
Krachmer scale [30] | grade 0 | Grade 1 1–12 corneal guttae | Grade 2 >12 corneal guttae | Grade 3 1–2 mm diameter | Grade 4 2–5 mm diameter | Grade 5 >5 mm diameter | Grade 6 >5 mm diameter edema |
Eyes | 70 | 3 | 6 | 13 | 12 | 17 | 19 |
Louttit, M.D. et al. [31] | Unaffected | Intermediately Affected (grades 1–3) | Affected (grades 4–6) | ||||
Eyes | 70 | 22 | 48 | ||||
cBCVA mean ± sd range | 0.5 ± 0.24 0.4–0.7 | 0.5 ± 0.31 0.3–0.8 | 0.3 ± 0.39 * 0.1–0.4 | ||||
Age mean ± sd/ median/ range | 62.45 ± 6.89 63 46–74 | 63.98 ± 7.22 61 50–74 | 65.02 ± 6.94 63 53–76 |
Parameter | Controls (n = 70) | FECD (n = 70) | Mean Difference (IC 95) | p | ||
---|---|---|---|---|---|---|
Mean ± sd | 95%CI Min–Max | Mean ± sd | 95%CI Min–Max | |||
kKs | 44.0 ± 1.85 | 43.55–44.44 40.8–46.5 | 44.41 ± 0.82 | 44.21–44.61 42.4–45.4 | −0.41 (−0.84 to 0.02) | 0.06 |
kKf | 43.0 ± 1.53 | 42.6–43.37 40.3–45.1 | 43.26 ± 0.73 | 43.08–43.43 41.7–44.5 | −0.25 (−0.55 to 0.04) | 0.09 |
kCYL | 1.03 ± 0.7 | 0.86–1.19 0.4–2.6 | 1.13 ± 0.54 | 0.99–1.26 0.6–2.1 | −0.09 (−0.13 to 0.11) | 0.36 |
kAvgK | 43.53 ± 1.67 | 43.13–43.93 40.6–45.4 | 43.78 ± 0.75 | 43.6–43.96 42.0–45.0 | −0.25 (−0.58 to 0.08) | 0.14 |
kEcc | 0.61 ± 0.08 | 0.58–0.62 0.49–0.75 | 0.61 ± 0.17 | 0.56–0.64 0.32–0.97 | −0.01 (−0.04 to 0.03) | 0.84 |
kAA | 96.03 ± 5.4 | 94.74–97.31 84.0–100.0 | 94.34 ± 4.81 | 93.19–95.48 89.3–100.0 | 1.69 (−0.07 to 3.45) | 0.06 |
kACCP | 43.51 ± 1.7 | 43.1–43.91 40.5–45.4 | 43.71 ± 0.73 | 43.53–43.88 42.0–44.9 | −0.2 (−0.53 to 0.13) | 0.23 |
pKs | −6.28 ± 0.31 | −6.35 to −6.21 −6.6 to −5.9 | −6.03 ± 0.24 | −6.09 to −5.97 −6.3 to −5.7 | −0.24 (−0.37 to −0.12) | 0.0001 |
pKf | −5.97 ± 0.22 | −6.03 to −5.92 −6.11 to −5.81 | −5.73 ± 0.18 | −5.77 to −5.68 −5.84 to −5.4 | −0.24 (−0.31 to −0.17) | <0.0001 |
pCYL | 0.31 ± 0.15 | 0.27–0.35 0.1–0.6 | 0.32 ± 0.16 | 0.26–0.34 0.1–0.7 | 0.01 (−0.01 to 0.02) | 0.97 |
pAvgK | −6.12 ± 0.24 | −6.17 to −6.06 −6.3 to −5.6 | −5.86 ± 0.24 | −5.92 to −5.8 −6.2 to −5.4 | −0.25 (−0.36 to −0.15) | <0.0001 |
pEcc | 0.56 ± 0.17 | 0.52–0.6 0.2–0.73 | 0.36 ± 0.42 | 0.26–0.47 0.06–0.85 | 0.19 (0.07–0.31) | 0.001 |
pAA | 95 ± 6.32 | 93.58–96.6 84–100.0 | 93.43 ± 5.33 | 92.16–94.71 86.1–100.0 | 1.57 (−0.26 to 3.57) | 0.09 |
rKs | 42.96 ± 1.84 | 42.52–43.41 39.9–45.3 | 42.48 ± 1.06 | 42.23–42.74 40.4–44.2 | 0.48 (0.05–0.9) | 0.05 |
rKf | 42.14 ± 1.57 | 41.77–42.52 39.5–44.2 | 42.45 ± 1.09 | 42.19–42.71 40.4–44.1 | −0.31 (−0.57 to −0.04) | 0.06 |
rCYL | 0.93 ± 0.61 | 0.78–1.07 0.3–2.3 | 1.13 ± 0.55 | 1.00–1.26 0.4–2.2 | −0.19 (−0.39 to −0.01) | 0.05 |
rAvgK | 42.86 ± 1.21 | 42.57–43.15 39.8–44.4 | 43.08 ± 0.91 | 42.86–43.3 40.9–44.8 | −0.22 (−0.5 to 0.06) | 0.12 |
rAA | 94.55 ± 7.83 | 94.39–96.99 85.0–100.0 | 92.78 ± 6.54 | 90.98–94.02 82.3–100.0 | 1.77 (−0.16 to 3.21) | 0.11 |
rACCP | 42.41 ± 1.69 | 42.11–42.92 39.6–44.4 | 42.98 ± 0.96 | 42.75–43.21 40.6–44.6 | −0.57 (−0.78 to −0.15) | 0.06 |
CAT | 536 ± 17.27 | 532.48–540.71 500.0–560.0 | 581 ± 45.68 | 570.36–592.09 510.0–648.0 | 45.0 (33.4–55.79) | <0.0001 |
CTT | 517 ± 12.83 | 514.52–520.64 497.0–537.0 | 561 ± 36.82 | 553.01–570.58 505.0–624.0 | 44.01 (34.76–53.63) | <0.0001 |
ACD | 3.14 ± 0.74 | 3.01–3.19 2.84–3.72 | 3.01 ± 0.83 | 2.97–3.43 2.75–3.41 | 0.13 (−0.12 to 0.54) | 0.89 |
chord µ | 0.35 ± 0.11 | 0.32–0.38 0.1–0.6 | 0.42 ± 0.1 | 0.4–0.44 0.2–0.6 | 0.07 (0.3–0.1) | <0.01 |
Study Group vs. Controls Keratometry, Pachymetry, and Anterior Chamber Data | ||||
---|---|---|---|---|
Mean ± sd; (95% CI) p | ||||
FECD Grade | Unaffected n = 70 | Intermediately Affected (Grades 1–3) n = 22 | Affected (Grades 4–6) n = 48 | |
pKs | −6.28 ± 0.31 (−6.35 to −6.21) | −6.11 ± 0.16 (−6.19 to −6.04) p = 0.14 | −5.96 ± 0.26 (−6.04 to −5.88) p < 0.0001 | |
pKf | −5.97 ± 0.22 (−6.03 to −5.92) | −5.84 ± 0.18 (−5.93 to −5.76) p = 0.14 | −5.66 ± 0.16 (−5.71 to −5.61) p < 0.0001 | |
pAvgK | −6.12 ± 0.24 (−6.17 to −6.06) | −5.99 ± 0.13 (−6.05 to −5.93) p = 0.15 | −5.77 ± 0.25 (−5.85 to −5.70) p < 0.0001 | |
pEcc | 0.56 ± 0.17 (0.52–0.6) | 0.54 ± 0.13 (0.52–0.7) p = 0.25 | 0.18 ± 0.42 (0.06–0.31) p < 0.0001 | |
CAT | 536 ± 17.27 (532.48–540.71) | 540.47 ± 20.25 (530.82–549.26) p = 0.39 | 608.52 ± 36.31 (597.83–619.21) p < 0.0001 | |
CTT | 517 ± 12.83 (514.52–520.64) | 530 ± 18.19 (522.95–539.23) p = 0.01 | 582 ± 30.27 (373.41–590.99) p < 0.0001 | |
chord µ | 0.35 ± 0.11 (0.32–0.38) | 0.42 ± 0.09 (0.39–0.44) p < 0.01 | 0.45 ± 0.1 (0.42–0.47) p < 0.0001 |
Parameter | Controls (n = 70) | FECD (n = 70) | Mean Difference (IC 95) | p | ||
---|---|---|---|---|---|---|
Mean ± sd | 95%CI Min–Max | Mean ± sd | 95%CI Min–Max | |||
3 mm k Spherical | 43.79 ± 1.43 | 43.44–44.14 40.3–45.6 | 43.69 ± 0.79 | 43.42–43.98 42.0–44.69 | 0.09 (−0.31 to 0.49) | 0.66 |
3 mm k Reg, Astigmatism | 0.53 ± 0.26 | 0.46–0.59 0.21–1.32 | 0.62 ± 0.39 | 0.49–0.61 0.31–1.55 | −0.09 (−0.18 to 0.03) | 0.18 |
3 mm k Asymmetry | 0.28 ± 0.14 | 0.24–0.31 0.09–0.58 | 0.69 ± 0.28 | 0.64–0.69 0.41–1.13 | −0.41 (−0.48 to −0.34) | p < 0.0001 |
3 mm k Higher Order | 0.14 ± 0.02 | 0.13–0.15 0.09–0.21 | 0.19 ± 0.03 | 0.18–0.22 0.14–0.22 | −0.05 (−0.06 to −0.04) | p < 0.001 |
6 mm k Spherical | 43.67 ± 1.37 | 43.34–43.99 40.41–45.5 | 43.52 ± 0.71 | 43.46–43.89 41.93–44.5 | 0.14 (−0.23 to 0.53) | 0.45 |
6 mm k Reg, Astigmatism | 0.48 ± 0.27 | 0.42–0.55 0.17–1.29 | 0.56 ± 0.36 | 0.43–0.81 0.27–1.46 | −0.08 (−0.18 to 0.02) | 0.13 |
6 mm k Asymmetry | 0.36 ± 0.19 | 0.31–0.40 0.14–0.81 | 0.87 ± 0.29 | 0.83–1.13 0.62–1.58 | −0.51 (−0.58 to −0.44) | p < 0.0001 |
6 mm k Higher Order | 0.15 ± 0.03 | 0.15–0.16 0.12–0.2 | 0.24 ± 0.04 | 0.21–0.27 0.13–0.45 | −0.09 (−0.11 to −0.06) | p < 0.0001 |
3 mm p Spherical | −6.15 ± 0.2 | −6.19 to −6.10 −6.33 to −5.61 | −5.86 ± 0.24 | −5.89 to −5.69 −6.26 to −5.52 | −0.29 (−0.36 to −0.21) | p < 0.0001 |
3 mm p Reg, Astigmatism | 0.15 ± 0.05 | 0.14–0.17 0.05–0.3 | 0.14 ± 0.09 | 0.13–0.17 0.07–0.41 | 0.01 (−0.02 to 0.02) | 0.96 |
3 mm p Asymmetry | 0.04 ± 0.02 | 0.03–0.05 0.01–0.1 | 0.28 ± 0.13 | 0.26–0.33 0.05–0.54 | −0.24 (−0.27 to −0.21) | p < 0.0001 |
3 mm p Higher Order | 0.02 ± 0.01 | 0.01–0.02 0.01–0.06 | 0.05 ± 0.01 | 0.04–0.06 0.03–0.11 | −0.03 (−0.03 to −0.02) | p < 0.0001 |
6 mm p Spherical | −6.13 ± 0.19 | −6.19 to −6.10 −6.36 to −5.92 | −5.78 ± 0.31 | −5.85 to −5.69 −6.3 to −5.56 | 0.35 (−0.38 to −0.24) | p < 0.0001 |
6 mm p Reg, Astigmatism | 0.16 ± 0.05 | 0.15–0.17 0.05–0.31 | 0.17 ± 0.12 | 0.11–0.24 0.08–0.51 | −0.01 (−0.04 to 0.02) | 0.47 |
6 mm p Asymmetry | 0.05 ± 0.03 | 0.04–0.06 0.02–0.11 | 0.3 ± 0.13 | 0.32–0.38 0.06–0.56 | −0.25 (−0.28 to −0.2) | p < 0.0001 |
6 mm p Higher Order | 0.03 ± 0.01 | 0.02–0.03 0.01–0.07 | 0.06 ± 0.02 | 0.05–0.07 0.03–0.12 | −0.03 (−0.03 to −0.02) | p < 0.0001 |
Study Group vs. Controls Fourier Indices | ||||
---|---|---|---|---|
Mean ± sd; (95% CI) p | ||||
FECD Grade | Unaffected n = 70 | Intermediately Affected (Grades 1–3) n = 22 | Affected (Grades 4–6) n = 48 | |
3 mm k Asymmetry | 0.28 ± 0.14 (0.24–0.31) | 0.49 ± 0.09 0.45–0.53 p < 0.0001 | 0.86 ± 0.26 0.78–0.95 p < 0.0001 | |
3 mm k Higher Order | 0.14 ± 0.02 0.13–0.15 | 0.18 ± 0.02 0.18–0.19 p < 0.05 | 0.19 ± 0.04 0.17–0.23 p < 0.0001 | |
6 mm k Asymmetry | 0.36 ± 0.19 0.31–0.40 | 0.66 ± 0.04 0.64–0.68 p < 0.0001 | 1.05 ± 0.29 0.96–1.14 p < 0.0001 | |
6 mm k Higher Order | 0.15 ± 0.03 0.15–0.16 | 0.23 ± 0.09 0.18–0.27 p < 0.0001 | 0.24 ± 0.07 0.22–0.24 p < 0.0001 | |
3 mm p Spherical | −6.15 ± 0.2 −6.19 to −6.10 | −6.01 ± 0.21 −6.11 to −5.93 p = 0.11 | −5.76 ± 0.27 −5.84 to −5.84 p < 0.0001 | |
3 mm p Asymmetry | 0.04 ± 0.02 0.03–0.05 | 0.2 ± 0.12 0.14–0.25 p < 0.0001 | 0.32 ± 0.13 0.32–0.28 p < 0.0001 | |
3 mm p Higher Order | 0.02 ± 0.01 0.01–0.02 | 0.04 ± 0.01 0.03–0.04 p < 0.0001 | 0.06 ± 0.02 0.05–0.07 p < 0.0001 | |
6 mm p Spherical | −6.13 ± 0.19 −6.19 to −6.10 | −5.99 ± 0.23 −6.09 to −5.92 p = 0.09 | −5.78 ± 0.26 −5.86 to −5.71 p < 0.0001 | |
6 mm p Asymmetry | 0.05 ± 0.03 0.04–0.06 | 0.22 ± 0.13 0.16–0.28 p < 0.0001 | 0.35 ± 0.1 0.33–0.39 p < 0.0001 | |
6 mm p Higher Order | 0.03 ± 0.01 0.02–0.03 | 0.04 ± 0.01 0.04–0.05 p = 0.0001 | 0.06 ± 0.02 0.05–0.07 p < 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowińska, A.; Chlasta-Twardzik, E.; Dembski, M.; Ulfik-Dembska, K.; Wylęgała, E. Corneal Analysis with Swept Source Optical Coherence Tomography in Patients with Coexisting Cataract and Fuchs Endothelial Corneal Dystrophy. Diagnostics 2021, 11, 223. https://doi.org/10.3390/diagnostics11020223
Nowińska A, Chlasta-Twardzik E, Dembski M, Ulfik-Dembska K, Wylęgała E. Corneal Analysis with Swept Source Optical Coherence Tomography in Patients with Coexisting Cataract and Fuchs Endothelial Corneal Dystrophy. Diagnostics. 2021; 11(2):223. https://doi.org/10.3390/diagnostics11020223
Chicago/Turabian StyleNowińska, Anna, Edyta Chlasta-Twardzik, Michał Dembski, Klaudia Ulfik-Dembska, and Edward Wylęgała. 2021. "Corneal Analysis with Swept Source Optical Coherence Tomography in Patients with Coexisting Cataract and Fuchs Endothelial Corneal Dystrophy" Diagnostics 11, no. 2: 223. https://doi.org/10.3390/diagnostics11020223
APA StyleNowińska, A., Chlasta-Twardzik, E., Dembski, M., Ulfik-Dembska, K., & Wylęgała, E. (2021). Corneal Analysis with Swept Source Optical Coherence Tomography in Patients with Coexisting Cataract and Fuchs Endothelial Corneal Dystrophy. Diagnostics, 11(2), 223. https://doi.org/10.3390/diagnostics11020223