Diagnostics of Amyotrophic Lateral Sclerosis: Up to Date
Abstract
:1. Introduction
2. Definition
3. Classification
4. Prognosis
5. Incidence and Prevalence
6. Aetiology
7. Clinical Manifestation
8. Diagnostics
- (1)
- Symptoms of functional impairment of a certain area of the body;
- (2)
- Presence of manifestations of central and peripheral motor neuron involvement in one or more segmental anatomical areas;
- (3)
- Progression of functional impairment.
8.1. Electromyography
8.2. Transcranial Magnetic Stimulation
8.3. Biomarkers
8.4. Management
9. Conclusions
Funding
Conflicts of Interest
References
- Brown, R.H.; Al-Chalabi, A. Amyotrophic lateral sclerosis. N. Engl. J. Med. 2017, 377, 162–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathis, S.; Couratier, P.; Julian, A.; Corcia, P.; Le Masson, G. Current view and perspectives in amyotrophic lateral sclerosis. Neural. Regen. Res. 2017, 12, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, M.K. Selective vulnerability of motoneuron and perturbed mitochondrial calcium homeostasis in amyotrophic lateral sclerosis: Implications for motoneurons specific calcium dysregulation. Mol. Cell. Ther. 2014, 2, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Federico, A.; Cardaioli, E.; Da Pozzo, P.; Formichi, P.; Gallus, G.N.; Radi, E. Mitochondria, oxidative stress and neurodegeneration. J. Neurol. Sci. 2012, 322, 254–262. [Google Scholar] [CrossRef]
- Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E.M.; Logroscino, G.; Robberecht, W.; Shaw, P.J.; Simmons, Z.; van den Berg, L.H. Amyo-trophic lateral sclerosis. Nat. Rev. Dis. Prim. 2017, 3, 17071. [Google Scholar] [CrossRef]
- Masrori, P.; Van Damme, P. Amyotrophic lateral sclerosis: A clinical review. Eur. J. Neurol. 2020, 27, 1918–1929. [Google Scholar] [CrossRef]
- MacKenzie, I.R.; Rademakers, R.; Neumann, M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol. 2010, 9, 995–1007. [Google Scholar] [CrossRef]
- Ling, S.-C.; Polymenidou, M.; Cleveland, D.W. Converging mechanisms in ALS and FTD: Disrupted RNA and protein homeostasis. Neuron 2013, 79, 416–438. [Google Scholar] [CrossRef] [Green Version]
- Štětkářová, I.; Matěj, R.; Ehler, E. New insights in the diagnosis and treatment of amyotrophic lateral sclerosis. Česká Slov. Neurol. Neurochir. 2018, 81, 546–554. [Google Scholar] [CrossRef] [Green Version]
- Gentile, F.; Scarlino, S.; Falzone, Y.M.; Lunetta, C.; Tremolizzo, L.; Quattrini, A.; Riva, N. The peripheral nervous system in amyo-trophic lateral sclerosis: Opportunities for translational research. Front. Neurosci. 2019, 13, 601. [Google Scholar] [CrossRef]
- Suzuki, N.; Akiyama, T.; Warita, H.; Aoki, M. Omics approach to axonal dysfunction of motor neurons in Amyotrophic Lateral Sclerosis (ALS). Front. Neurosci. 2020, 14, 194. [Google Scholar] [CrossRef] [PubMed]
- Facco, E.; Micaglio, G.; Liviero, M.C.; Ceccato, M.B.; Toffoletto, F.; Martinuzzi, A.; Angelini, C. Sensory-motor conduction time in amy-otrophic lateral sclerosis. Riv. Neurol. 1989, 59, 108–112. [Google Scholar] [PubMed]
- Vucic, S.; Kiernan, M.C. Utility of transcranial magnetic stimulation in delineating amyotrophic lateral sclerosis pathophysiolo-gy. Handb. Clin. Neurol. 2013, 116, 561–575. [Google Scholar] [PubMed]
- Iglesias, C.; Sangari, S.; Mendili, M.M.E.; Benali, H.; Marchand-Pauvert, V.; Pradat, P.F. Electrophysiological and spinal imaging evidences for sensory dysfunction in amyotrophic lateral sclerosis. BMJ Open 2015, 5, e007659. [Google Scholar] [CrossRef] [Green Version]
- Nardone, R.; Golaszewski, S.; Thomschewski, A.; Sebastianelli, L.; Versace, V.; Brigo, F.; Orioli, A.; Saltuari, L.; Höller, Y.; Trinka, E. Disinhibition of sensory cortex in patients with amyotrophic lateral sclerosis. Neurosci. Lett. 2020, 722, 134860. [Google Scholar] [CrossRef]
- Shimizu, T.; Nakayama, Y.; Funai, A.; Morishima, R.; Hayashi, K.; Bokuda, K.; Nakata, Y.; Isozaki, E. Progressive deterioration of sensory cortex excitability in advanced amyotrophic lateral sclerosis with invasive ventilation. Amyotroph. Lateral Scler. Front. Degener. 2019, 21, 147–149. [Google Scholar] [CrossRef]
- Höffken, O.; Schmelz, A.; Lenz, M.; Gruhn, K.; Grehl, T.; Tegenthoff, M.; Sczesny-Kaiser, M. Excitability in somatosensory cortex correlates with motoric impairment in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Front. Degener. 2019, 20, 192–198. [Google Scholar] [CrossRef]
- Tao, Q.; Wei, Q.; Wu, Z.-Y. Sensory nerve disturbance in amyotrophic lateral sclerosis. Life Sci. 2018, 203, 242–245. [Google Scholar] [CrossRef]
- Riancho, J.; Paz-Fajardo, L.; López de Munaín, A. Clinical and preclinical evidence of somatosensory involvement in amyo-trophic lateral sclerosis. Br. J. Pharmacol. 2020, 1–12. [Google Scholar] [CrossRef]
- Strong, M.J.; Abrahams, S.; Goldstein, L.H.; Woolley, S.; Mclaughlin, P.; Snowden, J.; Mioshi, E.; Roberts-South, A.; Benatar, M.; Hor-tobáGyi, T.; et al. Amyotrophic lateral Sclerosis—Frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria. Amyotroph. Lateral Scler. Front. Degener. 2017, 18, 153–174. [Google Scholar] [CrossRef]
- Fang, T.; Jozsa, F.; Al-Chalabi, A. Nonmotor symptoms in amyotrophic lateral sclerosis: A systematic review. In International Review of Neurobiology; Elsevier BV: Amsterdam, The Netherlands, 2017; Volume 134, pp. 1409–1441. [Google Scholar]
- Zucchi, E.; Ticozzi, N.; Mandrioli, J. Psychiatric symptoms in amyotrophic lateral sclerosis: Beyond a motor neuron disorder. Front. Neurosci. 2019, 13, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, M.R.; Goldacre, R.; Talbot, K.; Goldacre, M.J. Psychiatric disorders prior to amyotrophic lateral sclerosis. Ann. Neurol. 2016, 80, 935–938. [Google Scholar] [CrossRef] [PubMed]
- Mantovan, M.C.; Baggio, L.; Dalla Barba, G.; Smith, P.; Pegoraro, E.; Soraru’, G.; Bonometto, P.; Angelini, C. Memory deficits and re-trieval processes in ALS. Eur. J. Neurol. 2003, 10, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Al-Chalabi, A.; Hardiman, O.; Kiernan, M.C.; Chiò, A.; Rix-Brooks, B.; Berg, L.H.V.D. Amyotrophic lateral sclerosis: Moving towards a new classification system. Lancet Neurol. 2016, 15, 1182–1194. [Google Scholar] [CrossRef]
- Chiò, A.; Logroscino, G.; Traynor, B.; Collins, J.; Simeone, J.; Goldstein, L.; White, L. Global epidemiology of amyotrophic lateral sclerosis: A systematic review of the published literature. Neuroepidemiology 2013, 41, 118–130. [Google Scholar] [CrossRef] [Green Version]
- Chipika, R.H.; Siah, W.F.; Shing, S.L.H.; Finegan, E.; McKenna, M.C.; Christidi, F.; Chang, K.M.; Karavasilis, E.; Vajda, A.; Hengeveld, J.C.; et al. MRI data confirm the selective involvement of thalamic and amygdalar nuclei in amyotrophic lateral sclerosis and primary lateral sclerosis. Data Brief. 2020, 32, 106246. [Google Scholar] [CrossRef]
- Shoesmith, C.L.; Findlater, K.; Rowe, A.; Strong, M.J. Prognosis of amyotrophic lateral sclerosis with respiratory onset. J. Neurol. Neurosurg. Psychiatry 2007, 78, 629–631. [Google Scholar] [CrossRef] [Green Version]
- Radunovic, A.; Annane, D.; Rafiq, M.K.; Brassington, R.; Mustfa, N. Mechanical ventilation for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst. Rev. 2017, 10, CD004427. [Google Scholar] [CrossRef]
- Geser, F.; Brandmeir, N.J.; Kwong, L.K. Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyo-trophic lateral sclerosis. Arch. Neurol. 2008, 65, 636–641. [Google Scholar] [CrossRef] [Green Version]
- Geser, F.; Martinez-Lage, M.; Robinson, J.; Uryu, K.; Neumann, M.; Brandmeir, N.J.; Xie, S.X.; Kwong, L.K.; Elman, L.; McCluskey, L.; et al. Clinical and pathological continuum of multisystem TDP-43 proteinopathies. Arch. Neurol. 2009, 66, 180–189. [Google Scholar] [CrossRef] [Green Version]
- Bräuer, S.; Zimyanin, V.; Hermann, A. Prion-like properties of disease-relevant proteins in amyotrophic lateral sclerosis. J. Neural. Transm. 2018, 125, 591–613. [Google Scholar] [CrossRef] [PubMed]
- Aulas, A.; Velde, C.V. Alterations in stress granule dynamics driven by TDP-43 and FUS: A link to pathological inclusions in ALS? Front. Cell. Neurosci. 2015, 9, 423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marin, B.; Couratier, P.; Arcuti, S.; Copetti, M.; Fontana, A.; Nicol, M.P.; Raymondeau, M.; Logroscino, G.; Preux, P.-M. Stratification of ALS patients’ survival: A population-based study. J. Neurol. 2015, 263, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Niedermeyer, S.; Murn, M.; Choi, P.J. Respiratory failure in amyotrophic lateral sclerosis. Chest 2019, 155, 401–408. [Google Scholar] [CrossRef]
- Zoccolella, S.; Beghi, E.; Palagano, G.; Fraddosio, A.; Guerra, V.; Samarelli, V.; Lepore, V.; Simone, I.L.; Lamberti, P.; Serlenga, L.; et al. Predictors of long survival in amyotrophic lateral sclerosis: A population-based study. J. Neurol. Sci. 2008, 268, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Millul, A.; Beghi, E.; Logroscino, G.; Micheli, A.; Vitelli, E.; Zardi, A. Survival of patients with amyotrophic lateral sclerosis in a population-based registry. Neuroepidemiology 2005, 25, 114–119. [Google Scholar] [CrossRef]
- Ahmed, R.M.; Devenney, E.M.; Strikwerda-Brown, C.; Hodges, J.R.; Piguet, O.; Kiernan, M.C. COG-01 Phenotypic variation in ALS-FTD and effect on survival. Amyotroph. Lateral Scler. Front. Degener. 2019, 20 (Suppl. S1), 301–308. [Google Scholar]
- Ahmed, R.M.; Devenney, E.M.; Strikwerda-Brown, C.; Hodges, J.R.; Piguet, O.; Kiernan, M.C. Phenotypic variability in ALS-FTD and effect on survival. Neurology 2020, 94, e2005–e2013. [Google Scholar] [CrossRef]
- Steyn, F.J.; Ioannides, Z.A.; Van Eijk, R.P.; Heggie, S.; Thorpe, K.A.; Ceslis, A.; Heshmat, S.; Henders, A.K.; Wray, N.R.; Berg, L.H.V.D.; et al. Hypermetabolism in ALS is associated with greater functional decline and shorter survival. J. Neurol. Neurosurg. Psychiatry 2018, 89, 1016–1023. [Google Scholar] [CrossRef] [Green Version]
- Burkhardt, C.; Neuwirth, C.; Sommacal, A.; Andersen, P.M.; Weber, M. Is survival improved by the use of NIV and PEG in amyo-trophic lateral sclerosis (ALS)? A post-mortem study of 80 ALS patients. PLoS ONE. 2017, 12, e0177555. [Google Scholar] [CrossRef]
- Govaarts, R.; Beeldman, E.; Kampelmacher, M.J.; Van Tol, M.-J.; Berg, L.H.V.D.; Van Der Kooi, A.J.; Wijkstra, P.J.; Zijnen-Suyker, M.; Cobben, N.A.M.; Schmand, B.A.; et al. The frontotemporal syndrome of ALS is associated with poor survival. J. Neurol. 2016, 263, 2476–2483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, P.; Kaye, W.; Raymond, J.; Punjani, R.; Larson, T.; Cohen, J.; Muravov, O.; Horton, K. Prevalence of amyotrophic lateral sclerosis—United States, 2014. MMWR. Morb. Mortal. Wkly. Rep. 2018, 67, 1285–1289. [Google Scholar] [CrossRef] [PubMed]
- Logroscino, G.; Piccininni, M. Amyotrophic lateral sclerosis descriptive epidemiology: The origin of geographic difference. Neuroepidemiology 2019, 52, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Marin, B.; Boumédiene, F.; Logroscino, G.; Couratier, P.; Babron, M.-C.; Leutenegger, A.L.; Copetti, M.; Preux, P.-M.; Beghi, E. Variation in worldwide incidence of amyotrophic lateral sclerosis: A meta-analysis. Int. J. Epidemiol. 2016, 46, 57–74. [Google Scholar] [CrossRef] [Green Version]
- Doi, Y.; Atsuta, N.; Sobue, G.; Morita, M.; Nakano, I. Prevalence and incidence of amyotrophic lateral sclerosis in Japan. J. Epidemiol. 2014, 24, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Sajjadi, M.; Etemadifar, M.; Nemati, A.; Ghazavi, H.; Basiri, K.; Khoundabi, B.; Mousavi, S.A.; Kabiri, P.; Maghzi, A.-H. Epidemiology of amyotrophic lateral sclerosis in Isfahan, Iran. Eur. J. Neurol. 2010, 17, 984–989. [Google Scholar] [CrossRef]
- Longinetti, E.; Fang, F. Epidemiology of amyotrophic lateral sclerosis: An update of recent literature. Curr. Opin. Neurol. 2019, 32, 771–776. [Google Scholar] [CrossRef]
- Talbott, E.; Malek, A.; Lacomis, D. The Epidemiology of Amyotrophic Lateral Sclerosis; Elsevier: Amsterdam, The Netherlands, 2016; Volume 138, pp. 225–238. [Google Scholar]
- Zhan, Y.; Fang, F. Smoking and amyotrophic lateral sclerosis: A mendelian randomization study. Ann. Neurol. 2019, 85, 482–484. [Google Scholar] [CrossRef]
- Zeng, P.; Zhou, X. Causal effects of blood lipids on amyotrophic lateral sclerosis: A Mendelian randomization study. Hum. Mol. Genet. 2019, 28, 688–697. [Google Scholar] [CrossRef] [Green Version]
- Seals, R.M.; Hansen, J.; Gredal, O.; Weisskopf, M.G. Physical trauma and amyotrophic lateral sclerosis: A population-based study using Danish national registries. Am. J. Epidemiol. 2016, 183, 294–301. [Google Scholar] [CrossRef] [Green Version]
- McKee, A.C.; Cantu, R.C.; Nowinski, C.J.; Hedley-Whyte, E.T.; Gavett, B.E.; Budson, A.E.; Santini, V.E.; Lee, H.-S.; Kubilus, C.A.; Stern, R.A. Chronic traumatic encephalopathy in athletes: Progressive tauopathy after repetitive head injury. J. Neuropathol. Exp. Neurol. 2009, 68, 709–735. [Google Scholar] [CrossRef] [PubMed]
- Armon, C.; Nelson, L.M. Is head trauma a risk factor for amyotrophic lateral sclerosis? An evidence based review. Amyotroph. Lateral Scler. 2012, 13, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Majounie, E.; Renton, A.E.; Mok, K. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyo-trophic lateral sclerosis and frontotemporal dementia: A cross-sectional study. Lancet Neurol. 2012, 11, 323–330. [Google Scholar] [CrossRef]
- Boeve, B.F.; Boylan, K.B.; Graff-Radford, N.R.; DeJesus-Hernandez, M.; Knopman, D.S.; Pedraza, O.; Vemuri, P.; Jones, D.; Lowe, V.; Murray, M.E.; et al. Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF. Brain 2012, 135, 765–783. [Google Scholar] [CrossRef]
- Simón-Sánchez, J.; Dopper, E.G.; Cohn-Hokke, P.E.; Hukema, R.K.; Nicolaou, N.; Seelaar, H.; de Graaf, J.R.; de Koning, I.; van Schoor, N.M.; Deeg, D.J.; et al. The clinical and pathological phenotype of C9ORF72 hexanu-cleotide repeat expansions. Brain 2012, 135 Pt 3, 723–735. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.H.; Fallini, C.; Ticozzi, N.; Keagle, P.J.; Sapp, P.C.; Piotrowska, K.; Lowe, P.; Koppers, M.; McKenna-Yasek, D.; Baron, D.M.; et al. Mutations in the profilin 1 gene cause familial amyo-trophic lateral sclerosis. Nature 2012, 488, 499–503. [Google Scholar] [CrossRef]
- Corcia, P.; Gordon, P.H.; Camdessanché, J.-P. Is there a paraneoplastic ALS? Amyotroph. Lateral Scler. Front. Degener. 2014, 16, 252–257. [Google Scholar] [CrossRef]
- Gorges, M.; Vercruysse, P.; Müller, H.-P.; Huppertz, H.-J.; Rosenbohm, A.; Nagel, G.; Weydt, P.; Petersén, Å.; Ludolph, A.C.; Kassubek, J.; et al. Hypothalamic atrophy is related to body mass index and age at onset in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 2017, 88, 1033–1041. [Google Scholar] [CrossRef]
- Eisen, A.; Braak, H.; Del Tredici, K.; Lemon, R.; Ludolph, A.C.; Kiernan, M.C. Cortical influences drive amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 2017, 88, 917–924. [Google Scholar] [CrossRef]
- Traynor, B.J.; Codd, M.B.; Corr, B.; Forde, C.; Frost, E.; Hardiman, O. Amyotrophic lateral sclerosis mimic syndromes: A population-based study. Arch. Neurol. 2000, 57, 109–113. [Google Scholar] [CrossRef] [Green Version]
- Amato, A.A.; Russell, J.A. Neuromuscular Disorders; Mc Graw Gill: New York, NY, USA, 2008. [Google Scholar]
- Oskarsson, B.; Gendron, T.F.; Staff, N.P. Amyotrophic Lateral Sclerosis: An Update for 2018. Mayo Clin. Proc. 2018, 93, 1617–1628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Carvalho, M. Electrodiagnosis of amyotrophic lateral sclerosis: A review of existing guidelines. J. Clin. Neurophysiol. 2020, 37, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, X.; Ding, X.; Song, M.; Sui, K. Analysis of clinical and electrophysiological characteristics of 150 patients with amyotrophic lateral sclerosis in China. Neurol. Sci. 2018, 40, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Menon, P.; Kiernan, M.C.; Yiannikas, C.; Stroud, J.; Vucic, S. Split-hand index for the diagnosis of amyotrophic lateral sclerosis. Clin. Neurophysiol. 2013, 124, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Kiernan, M.C.; Vucic, S.; Cheah, B.C.; Turner, M.R.; Eisen, A.; Hardiman, O.; Burrell, J.R.; Zoing, M.C. Amyotrophic lateral sclerosis. Lancet 2011, 377, 942–955. [Google Scholar] [CrossRef] [Green Version]
- De Carvalho, M.; Dengler, R.; Eisen, A.; England, J.D.; Kaji, R.; Kimura, J.; Mills, K.; Mitsumoto, H.; Nodera, H.; Shefne, J.; et al. Electrodiagnostic criteria for diagnosis of ALS. Clin. Neurophysiol. 2008, 119, 497–503. [Google Scholar] [CrossRef]
- Jenkins, T.M.; Alix, J.P.; Kandler, R.H.; Shaw, P.; McDermott, C.J. The role of cranial and thoracic electromyography within diagnostic criteria for amyotrophic lateral sclerosis. Muscle Nerve 2016, 64, 378–385. [Google Scholar] [CrossRef] [Green Version]
- De Carvalho, M.; Swash, M. Fasciculation potentials and earliest changes in motor unit physiology in ALS. J. Neurol. Neurosugery Psychiatry 2013, 84, 963–968. [Google Scholar] [CrossRef]
- Nandedkar, S.D.; Barkhaus, P.E.; Stålberg, E.V. Form factor analysis of the surface electromyographic interference pattern. Muscle Nerve 2020, 62, 233–238. [Google Scholar] [CrossRef]
- Schrooten, M.; Smetcoren, C.; Robberecht, W.; Van Damme, P. Benefit of the Awaji diagnostic algorithm for amyotrophic lateral sclerosis: A prospective study. Ann. Neurol. 2011, 70, 79–83. [Google Scholar] [CrossRef]
- Vucic, S.; Kiernan, M.C. Transcranial magnetic stimulation for the assessment of neurodegenerative disease. Neurotherapeutics 2017, 14, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Cengiz, B.; Fidanci, H.; Kiyak Keçeli, Y.; Baltaci, H.; Kuruoglu, R. Impaired short- and long-latency afferent inhibition in amyo-trophic lateral sclerosis. Muscle Nerve 2019, 59, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Van den Bos, M.A.J.; Higashihara, M.; Geevasinga, N.; Menon, P.; Kiernan, M.C.; Vucic, S. Pathophysiological associations of trans-callosal dysfunction in ALS. Eur. J. Neurol. 2020. [Google Scholar] [CrossRef]
- Vucic, S.; van den Bos, M.; Menon, P.; Howells, J.; Dharmadasa, T.; Kiernan, M.C. Utility of threshold tracking transcranial magnet-ic stimulation in ALS. Clin. Neurophysiol. Pract. 2018, 3, 164–172. [Google Scholar] [CrossRef]
- Vucic, S.; Rutkove, S.B. Neurophysiological biomarkers in amyotrophic lateral sclerosis. Curr. Opin. Neurol. 2018, 31, 640–647. [Google Scholar] [CrossRef]
- Pradat, P.; El Mendili, M.-M. Neuroimaging to investigate multisystem involvement and provide biomarkers in amyotrophic lateral sclerosis. BioMed Res. Int. 2014, 2014, 1–10. [Google Scholar] [CrossRef]
- Wang, S.; Melhem, E.R. Amyotrophic lateral sclerosis and primary lateral sclerosis: The role of diffusion tensor imaging and other advanced mr-based techniques as objective upper motor neuron markers. Ann. N. Y. Acad. Sci. 2005, 1064, 61–77. [Google Scholar] [CrossRef]
- Rocha, A.J.; Maia Júnior, A.C. Is magnetic resonance imaging a plausible biomarker for upper motor neuron degeneration in amyotrophic lateral sclerosis/primary lateral sclerosis or merely a useful paraclinical tool to exclude mimic syndromes? A crit-ical review of imaging applicability in clinical routine. Arq. Neuropsiquiatr. 2012, 70, 532–539. [Google Scholar]
- Baldaranov, D.; Khomenko, A.; Kobor, I.; Bogdahn, U.; Gorges, M.; Kassubek, J.; Müller, H.-P. Longitudinal diffusion tensor imaging-based assessment of tract alterations: An application to amyotrophic lateral sclerosis. Front. Hum. Neurosci. 2017, 11, 567. [Google Scholar] [CrossRef] [Green Version]
- Grolez, G.; Moreau, C.; Danel-Brunaud, V.; Delmaire, C.; Lopes, R.; Pradat, P.; El Mendili, M.M.; Defebvre, L.; Devos, D. The value of magnetic resonance imaging as a biomarker for amyotrophic lateral sclerosis: A systematic review. BMC Neurol. 2016, 16, 1–17. [Google Scholar] [CrossRef]
- Kasai, T.; Kojima, Y.; Ohmichi, T.; Tatebe, H.; Tsuji, Y.; Noto, Y.; Kitani-Morii, F.; Shinomoto, M.; Allsop, D.; Mizuno, T.; et al. Combined use of CSF NfL and CSF TDP-43 improves diagnostic performance in ALS. Ann. Clin. Transl. Neurol. 2019, 6, 2489–2502. [Google Scholar] [CrossRef]
- Scarafino, A.; D’Errico, E.; Introna, A.; Fraddosio, A.; Distaso, E.; Tempesta, I.; Morea, A.; Mastronardi, A.; Leante, R.; Ruggieri, M.; et al. Diagnostic and prognostic power of CSF Tau in amyotrophic lateral sclerosis. J. Neurol. 2018, 265, 2353–2362. [Google Scholar] [CrossRef]
- González De Aguilar, J.L. Lipid biomarkers for amyotrophic lateral sclerosis. Front. Neurol. 2019, 10, 284. [Google Scholar] [CrossRef]
- Poesen, K.; Van Damme, P. Diagnostic and prognostic performance of neurofilaments in ALS. Front. Neurol. 2019, 9, 1167. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Martínez, L.; Calvo, A.C.; Muñoz, M.J.; Osta, R. Are circulating cytokines reliable biomarkers for amyotrophic lateral sclerosis? Int. J. Mol. Sci. 2019, 20, 2759. [Google Scholar] [CrossRef] [Green Version]
- Tasca, E.; Pegoraro, V.; Merico, A.; Angelini, C. Circulating microRNAs as biomarkers of muscle differentiation and atrophy in ALS. Clin. Neuropathol. 2016, 35, 22–30. [Google Scholar] [CrossRef]
- Pegoraro, V.; Merico, A.; Angelini, C. Micro-RNAs in ALS muscle: Differences in gender, age at onset and disease duration. J. Neurol. Sci. 2017, 380, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Pegoraro, V.; Marozzo, R.; Angelini, C. MicroRNAs and HDAC4 protein expression in the skeletal muscle of ALS patients. Clin. Neuropathol. 2020, 39, 105–114. [Google Scholar] [CrossRef]
- Ferreira, G.D.; Costa, A.C.; Plentz, R.D.; Coronel, C.C.; Sbruzzi, G. Respiratory training improved ventilatory function and respirato-ry muscle strength in patients with multiple sclerosis and lateral amyotrophic sclerosis: Systematic review and meta-analysis. Physiotherapy 2016, 102, 221–228. [Google Scholar] [CrossRef]
- Rosa Silva, J.P.; Santiago Júnior, J.B.; Dos Santos, E.L.; de Carvalho, F.O.; de França Costa, I.M.P.; Mendonça, D.M.F. Quality of life and functional independence in amyotrophic lateral sclerosis: A systematic review. Neurosci. Biobehav. Rev. 2020, 111, 1–11. [Google Scholar] [CrossRef]
- Dalbello-Haas, V.; Florence, J.M.; Krivickas, L.S. Therapeutic exercise for people with amyotrophic lateral sclerosis or motor neu-ron disease. Cochrane Database Syst. Rev. 2013, 2013, CD005229. [Google Scholar]
- Epton, J.; Harris, R.; Jenkinson, C. Quality of life in amyotrophic lateral sclerosis/motor neuron disease: A structured review. Amyotroph. Lateral Scler. 2009, 10, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, C.; Fitzpatrick, R.; Brennan, C.; Bromberg, M.; Swash, M. Development and validation of a short measure of health status for individuals with amyotrophic lateral sclerosis/motor neurone disease: The ALSAQ-40. J. Neurol. 1999, 246 (Suppl. S3), III16–III21. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, A.; Sorarù, G.; Lombardi, L.; D’Ascenzo, C.; Baggio, L.; Ermani, M.; Pegoraro, E.; Angelini, C. Quality of life and motor im-pairment in ALS: Italian validation of ALSAQ. Neurol. Res. 2010, 32, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Maessen, M.; Post, M.W.M.; Maillé, R.; Lindeman, E.; Mooij, R.; Veldink, J.H.; Berg, L.H.V.D. Validity of the Dutch version of the Amyotrophic Lateral Sclerosis Assessment Questionnaire, ALSAQ-40, ALSAQ-5. Amyotroph. Lateral Scler. 2007, 8, 96–100. [Google Scholar] [CrossRef]
- Salas, T.; Mora, J.; Esteban, J.; Rodríguez, F.; Díaz-Lobato, S.; Fajardo, M. Spanish adaptation of the Amyotrophic Lateral Sclerosis Questionnaire ALSAQ-40 for ALS patients. Amyotroph. Lateral Scler. 2008, 9, 168–172. [Google Scholar] [CrossRef]
- Hobson, E.V.; McDermott, C.J. Supportive and symptomatic management of amyotrophic lateral sclerosis. Nat. Rev. Neurol. 2016, 12, 526–538. [Google Scholar] [CrossRef]
Disease | Differences Compared to ALS |
---|---|
Multifocal motor neuropathy | There is no involvement of bulbar muscles, conduction studies—conduction blocks |
Spinal muscular atrophy | Only affects LMN, age-related incidence, SMN detection (genetic testing) |
Primary lateral sclerosis | Only affects UMN, slower course, survival over 10 years, MEP—no cortical response |
Spinal and bulbar muscular atrophy | It develops in middle age, men, fasciculation of the tongue and in the perioral region, gynaecomastia, X chromosome, expansion in the androgen receptor gene |
Hereditary spastic paraplegia | Lower limb spasticity, gait with pelvic rotation, minimal upper limb symptoms, familial occurrence, genetic confirmation |
Myogenic lesions (PM, IBM) | Myopathic syndrome, proximal weakness, laboratory findings (CK), muscle MRI, muscle biopsy |
Myasthenia gravis | Fatigue, localisation of impairment (ocular, bulbar, head posture), repetitive stimulation, antibodies |
Spondylogenic cervical myelopathy | Symptoms—including sensory disorders, sphincter disorders, no bulbar symptoms, MRI finding |
Lumbar spinal stenosis | Symptoms of lower extremities only, including sensory or sphincter disorders, fatigue—claudications, MRI findings |
Other forms of ALS-like (inflammatory, radiology-induced, paraneoplastic) | Demonstration of the underlying process (tumour, radiology-induced, postpolio syndrome, retrovirus), not continually progressive course, rarely fasciculations; possible sensory neuropathy in the paraneoplastic form, which is very rare |
Region | Muscles |
---|---|
Upper limb, lower limb | Demonstration of changes in one proximal and one distal muscle innervated by different peripheral nerves and from another spinal cord segment |
Thoracic area | Changes in one muscle are sufficient. Paraspinal muscles (T5–6) or rectus abdominis is suitable. T11–12 segments are not recommended |
Bulbar region | Evidence of changes in one muscle (tongue, masseter, sternocleidomastoid muscle, mimic muscles) is sufficient |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Štětkářová, I.; Ehler, E. Diagnostics of Amyotrophic Lateral Sclerosis: Up to Date. Diagnostics 2021, 11, 231. https://doi.org/10.3390/diagnostics11020231
Štětkářová I, Ehler E. Diagnostics of Amyotrophic Lateral Sclerosis: Up to Date. Diagnostics. 2021; 11(2):231. https://doi.org/10.3390/diagnostics11020231
Chicago/Turabian StyleŠtětkářová, Ivana, and Edvard Ehler. 2021. "Diagnostics of Amyotrophic Lateral Sclerosis: Up to Date" Diagnostics 11, no. 2: 231. https://doi.org/10.3390/diagnostics11020231
APA StyleŠtětkářová, I., & Ehler, E. (2021). Diagnostics of Amyotrophic Lateral Sclerosis: Up to Date. Diagnostics, 11(2), 231. https://doi.org/10.3390/diagnostics11020231