Quantitative Evaluation of COVID-19 Pneumonia Lung Extension by Specific Software and Correlation with Patient Clinical Outcome
Abstract
:1. Background
2. Methods
2.1. Ethical Standards
2.2. Patient Population
2.3. CT protocol, Images Reconstruction and Analysis
- Ground glass opacities (GGO),
- GGO distribution,
- Consolidations,
- Multilobe/subpleural involvement,
- Lower lobes involvement,
- Crazy paving
- Air bronchogram,
- Pleural effusion,
- Lymph nodes with short axis > 10 mm.
2.4. Statistical Analysis
3. Results
3.1. Demographic, Clinical and Laboratory Characteristics, Treatment
3.2. CT Features
3.3. Logistic Regression Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Ng, M.-Y.; Lee, E.Y.P.; Yang, J.; Yang, F.; Li, X.; Wang, H.; Lui, M.M.-S.; Lo, C.S.-Y.; Leung, B.; Khong, P.-L.; et al. Imaging profile of the COVID-19 infection: Radiologic findings and l iterature review. Radiol. Cardiothorac. Imaging 2020, 2, e200034. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chen, Y.; Qin, Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J. Med. Virol. 2020, 92, 568–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Xia, L. Coronavirus Disease 2019 (COVID-19): Role of Chest CT in Diagnosis and Management. AJR Am. J. Roentgenol. 2020, 214, 1280–1286. [Google Scholar] [CrossRef]
- Ye, Z.; Zhang, Y.; Wang, Y.; Huang, Z.; Song, B. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): A pictorial review. Eur. Radiol. 2020, 30, 4381–4389. [Google Scholar] [CrossRef] [Green Version]
- Ai, T.; Yang, Z.; Hou, H.; Zhan, C.; Chen, C.; Lv, W.; Tao, Q.; Sun, Z.; Xia, L. Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology 2020, 296, E32–E40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.; Zhong, Z.; Xie, X.; Yu, Q.; Liu, J. Relation Between Chest CT Findings and Clinical Conditions of coronavirus Disease (COVID-19) Pneumonia: A Multicenter Study. Am. J. Roentgenol. 2020, 214, 1072–1077. [Google Scholar] [CrossRef]
- Kirby, M.; Hatt, C.; Obuchowski, N.; Humphries, S.M.; Sieren, J.; Lynch, D.A.; Fain, S.B. QIBA Lung Density Committee. Inter- and intra-software reproducibility of computed tomography lung density measurements. Med. Phys. 2020, 47, 2962–2969. [Google Scholar] [CrossRef]
- Mascalchi, M.; Camiciottoli, G.; Diciotti, S. Lung densitometry: Why, how and when. J. Thorac. Dis. 2017, 9, 3319–3345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muehlematter, U.J.; Caviezel, C.; Martini, K.; Messerli, M.; Vokinger, K.N.; Wetzler, I.R.; Tutic-Horn, M.; Weder, W.; Frauenfelder, T. Applicability of color-coded computed tomography images in lung volume reduction surgery planning. J. Thorac. Dis. 2019, 11, 766–776. [Google Scholar] [CrossRef]
- Li, H.; Huang, J.B.; Pan, W.; Zhang, C.T.; Chang, X.Y.; Yang, B. Systemic Immune-Inflammatory Index predicts prognosis of patients with COVID-19: A retrospective study. Reseach Sq. 2020. [Google Scholar] [CrossRef]
- Ji, P.; Zhu, J.; Zhong, Z.; Li, H.; Pang, J.; Li, B.; Zhang, J. Association of elevated inflammatory markers and severe COVID-19: A meta-analysis. Medicine 2020, 99, e23315. [Google Scholar] [CrossRef]
- Li, K.; Wu, J.; Wu, F.; Guo, D.; Chen, L.; Fang, Z.; Li, C. The Clinical and Chest CT Features Associated With Severe and Critical COVID-19 Pneumonia. Investig. Radiol. 2020, 55, 327–331. [Google Scholar] [CrossRef]
- Ishiguro, T.; Kobayashi, Y.; Uozumi, R.; Takata, N.; Takaku, Y.; Kagiyama, N.; Kanauchi, T.; Shimizu, Y.; Takayanagi, N. Viral Pneumonia Requiring Differentiation from Acute and Progressive Diffuse Interstitial Lung Diseases. Intern. Med. 2019, 58, 3509–3519. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.; Yu, N.; Cai, S.; Zhou, J.; Sheng, J.; Liu, K.; Zhou, H.; Guo, Y.; Niu, G. Quantitative computed tomography analysis for stratifying the severity of Coronavirus Disease 2019. J. Pharm. Anal. 2020, 10, 123–129. [Google Scholar] [CrossRef]
- Tian, S.; Hu, W.; Niu, L.; Liu, H.; Xu, H.; Xiao, S.Y. Pulmonary Pathology of Early Phase SARS-COV-2 Pneumonia. J. Thorac. Oncol. 2020, 20, 30132–30135. [Google Scholar]
- Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020, 8, 420–422. [Google Scholar] [CrossRef]
- Afat, S.; Othman, A.E.; Nikolaou, K.; Gassenmaier, S. Dual-Energy Computed Tomography of the Lung in COVID-19 Patients: Mismatch of Perfusion Defects and Pulmonary Opacities. Diagnostics. 2020, 10, 870. [Google Scholar] [CrossRef]
- Lyu, P.; Liu, X.; Zhang, R.; Shi, L.; Gao, J. The performance of chest CT in evaluating the clinical severity of COVID-19 pneumonia: Identifying critical cases based on CT characteristics. Investig. Radiol. 2020, 55, 412–421. [Google Scholar]
- Koo, H.J.; Lim, S.; Choe, J.; Choi, S.H.; Sung, H.; Do, K.H. Radiographic and CT Features of Viral Pneumonia. Radiographics 2018, 38, 719–739. [Google Scholar] [CrossRef] [Green Version]
- Colombi, D.; Bodini, F.C.; Petrini, M.; Maffi, G.; Morelli, N.; Milanese, G.; Silva, M.; Sverzellati, N.; Michieletti, E. Well-aerated Lung on Admitting Chest CT to Predict Adverse Outcome in COVID-19 Pneumonia. Radiology 2020, 296, E86–E96. [Google Scholar] [CrossRef] [Green Version]
All Population (n = 76) | Ventilation + Death (n = 29) | p | |
---|---|---|---|
Clinical Features | |||
Age years (mean ± sd) | 66.0 ± 14.4 | 73.4 ± 10.8 | <0.05 |
Sex (M/F) | 45/31 | 19/10 | 0.2 |
BMI (kg/m2 (mean ± sd) | 26.4 ± 4.3 | 27.1 ± 4.4 | 0.2 |
Fever at admission | 42/76 | 11/29 | 0.06 |
Fatigue | 20/76 | 20/29 | 0.3 |
dyspnea | 47/76 | 25/29 | 0.5 |
Muscle joint pain | 25/76 | 8/29 | 0.06 |
Chest pain | 15/76 | 9/29 | 0.5 |
diarrhea | 6/76 | 2/29 | 0.5 |
Hypertension | 43/76 | 23/29 | 0.5 |
Dyslipidemia | 31/76 | 17/29 | 0.5 |
Diabetes | 20/76 | 13/29 | 0.5 |
Fam history | 17/76 | 9/29 | 0.5 |
Smoke | 11/76 | 6/29 | 0.5 |
CV disease | 40/76 | 23/29 | 0.001 |
Treatment during Hospitalization | |||
Acetaminophen | 19/76 | 12/29 | n.a |
Antibiotics | 41/76 | 23/29 | n.a |
Plaquenil | 31/76 | 9/29 | n.a |
antiviral | 26/76 | 0/29 | n.a |
Steroids | 8/76 | 3/29 | n.a |
anticoagulant | 29/76 | 6/29 | n.a |
Laboratory features | |||
Leucocytes (103/uL) (mean ± sd) | 8.6 ± 4.8 | 10.7 ± 5.1 | <0.05 |
Hemoglobin (g/dL) (mean ± sd) | 12.6 ± 2 | 12.08 ± 2.2 | <0.05 |
Linfocitopenia (y/n) | 46/76 | 21/29 | 0.07 |
Platelets (103/uL) (mean ± sd) | 241.1 ± 118.5 | 264.8 ± 162.5 | 0.06 |
e-GFR (ml/min/1.73m2) (mean ± sd) | 67.6 ± 27.4 | 52.5 ± 25.2 | 0.04 |
BNP (pg/mL) (mean ± sd) | 507.7 ± 706.03 | 786.9 ± 910.7 | <0.05 |
PCR (mg/L) (mean ± sd) | 49.9 ± 57.9 | 63.1 ± 58.3 | 0.05 |
PCT (ng/mL) (mean ± sd) | 0.23 ± 0.49 | 0.27 ± 0.29 | <0.05 |
Increased Troponin (n) | 9/76 | 7/29 | 0.6 |
Increased D-dimer (n) | 5/76 | 4/29 | 0.7 |
CT Features | |||
Total infected lung V% | 31.4 ± 26.3 | 41.4 ± 28.5 | 0.001 |
Normal lung V% | 68.5 ± 26.4 | 41.8 ± 45.0 | 0.001 |
GGO + consolidation | 34/76 | 17/29 | 0.004 |
Air bronchogram | 20/76 | 13/29 | 0.003 |
Vascular enlargement | 55/76 | 24/29 | 0.003 |
Crazy paving | 25/76 | 15/29 | 0.08 |
Peripheral distribution | 53/76 | 13/29 | 0.04 |
Multilobar involvement | 67/76 | 29/29 | 0.8 |
SII | 173.77 ± 93.17 | 196.48 ± 122.89 | 0.31 |
All Population (n = 76) | Ventilation + Death (n = 29) | p | |
---|---|---|---|
Clinical features | |||
Age | 1.06 (1.02–1.11) | 0.002 | |
Sex | 1.53 (0.58–3.99) | 0.381 | |
BMI | 1.01 (0.89–1.15) | 0.786 | |
Fever at admission | 0.26 (0.09–0.69) | 0.007 | |
Fatigue | 1.77 (0.49–6.34) | 0.378 | |
dyspnea | 11.9 (2.51–56.71) | 0.002 | |
Muscle joint pain | - | ||
Chest pain | 2.77 (0.86–8.91) | 0.086 | |
Diarrhea | - | ||
Hypertension | 5.75 (1.85–17.83) | 0.003 | |
Dyslipidemia | 3.42 (1.27–9.17) | 0.014 | |
Diabetes | 4.71 (1.57–14.08) | 0.006 | |
Fam history | 2.19 (0.72–6.59) | 0.162 | |
Smoke | 1.85 (0.53–6.48) | 0.331 | |
CV disease | 6.76 (2.30–19.87) | <0.001 | |
Acetaminophen | - | - | |
Atb | 6.76 (2.20–19.72) | <0.001 | |
Plaquenil | 0.55 (0.21–1.47) | 0.239 | |
antiviral | 0.67 (0.24–1.85) | 0.440 | |
Steroids | 4.68 (0.84–25.99) | 0.077 | |
anticoagulant | 4.13 (1.53–11.09) | 0.005 | |
Laboratory features | |||
Leucocytes | 1.16 (1.05–1.29) | 0.006 | |
Hemoglobin | 0.80 (0.62–1.02) | 0.079 | |
Linfocitopenia (y/n) | 2.31 (0.85–6.25) | 0.099 | |
Platelets | 1.00 (0.99–1.01) | 0.353 | |
e-GFR | 0.95 (0.93–0.98) | <0.001 | |
BNP | 1.01 (1.00–1.01) | 0.047 | |
PCR | 1.01 (0.99–1.02) | 0.052 | |
PCT | 51.42 (1.66–159.29) | 0.024 | |
Troponin | 1.00 (0.99–1.019) | 0.458 | |
D-dimer | 1.00 (0.99–1.01) | 0.181 | |
CT features | |||
Total lung vol % | 1.03 (1.01–1.05) | 0.006 | |
GGO + consolidation | 2.51 (0.96–6.459) | 0.058 | |
Bronchogram | 4.64 (1.56–13.76) | 0.006 | |
Vascular enlargement | 2.47 (0.79–7.72) | 0.117 | |
Crazy paving | 3.96 (1.44–10.87) | 0.007 | |
Peripheral distribution | 0.14 (0.04–0.42) | <0.001 |
Coefficient | OR (95% CI) | p Value | |
---|---|---|---|
CLINICAL SCORE (CLINICAL) | 1 | 1.75 (1.157–2.648) | 0.008 |
INFLAMMATORY INDEX (INFLA) | 1 | 1.003 (0.997–1.009) | 0.397 |
Total lung volume (VOLUME) | 1 | 1.025 (1.003–1.048) | 0.026 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Annoni, A.D.; Conte, E.; Mancini, M.E.; Gigante, C.; Agalbato, C.; Formenti, A.; Muscogiuri, G.; Mushtaq, S.; Guglielmo, M.; Baggiano, A.; et al. Quantitative Evaluation of COVID-19 Pneumonia Lung Extension by Specific Software and Correlation with Patient Clinical Outcome. Diagnostics 2021, 11, 265. https://doi.org/10.3390/diagnostics11020265
Annoni AD, Conte E, Mancini ME, Gigante C, Agalbato C, Formenti A, Muscogiuri G, Mushtaq S, Guglielmo M, Baggiano A, et al. Quantitative Evaluation of COVID-19 Pneumonia Lung Extension by Specific Software and Correlation with Patient Clinical Outcome. Diagnostics. 2021; 11(2):265. https://doi.org/10.3390/diagnostics11020265
Chicago/Turabian StyleAnnoni, Andrea Daniele, Edoardo Conte, Maria Elisabetta Mancini, Carlo Gigante, Cecilia Agalbato, Alberto Formenti, Giuseppe Muscogiuri, Saima Mushtaq, Marco Guglielmo, Andrea Baggiano, and et al. 2021. "Quantitative Evaluation of COVID-19 Pneumonia Lung Extension by Specific Software and Correlation with Patient Clinical Outcome" Diagnostics 11, no. 2: 265. https://doi.org/10.3390/diagnostics11020265
APA StyleAnnoni, A. D., Conte, E., Mancini, M. E., Gigante, C., Agalbato, C., Formenti, A., Muscogiuri, G., Mushtaq, S., Guglielmo, M., Baggiano, A., Bonomi, A., Pepi, M., Pontone, G., & Andreini, D. (2021). Quantitative Evaluation of COVID-19 Pneumonia Lung Extension by Specific Software and Correlation with Patient Clinical Outcome. Diagnostics, 11(2), 265. https://doi.org/10.3390/diagnostics11020265