ACO (Asthma–COPD Overlap) Is Independent from COPD, a Case in Favor: A Systematic Review
Abstract
:1. Introduction
1.1. Background of Asthma and Chronic Obstructive Pulmonary Disesase
1.2. Safety Issues of ICS for Airway Infection of Patients with COPD
1.3. Needs for Considering Patients with Clinical Features of Both Asthma and COPD
2. Methods
2.1. Search Strategy and Eligibility Criteria
2.2. Data Collection and Risk of Bias Assessment
3. Results
3.1. Characteristics of Selected Studies and Risk of Bias
3.2. Possible Diagnostic Biomarkers for ACO: The Role of Fractional Exhaled Nitric Oxide, FeNO and IgE for the Detection of Asthmatic Features of COPD Patients
3.2.1. FeNO as a Potential Biomarker for Type 2 Inflammation for Optimal Diagnosis and to Predict the Treatment Response in Asthma.
3.2.2. How Can Feno Be Adopted to Discern ICS-Responsive, Asthmatic Phenotypes in COPD?
3.2.3. Serum IgE Elevation and Atopic Background for COPD and ACO
3.2.4. Combination of Type 2 Inflammation-Related Biomarkers to Define ACO
3.3. Possible Biomarkers Relevant to Eosinophilic and Neutrophilic Inflammation in ACO
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vos, T.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulkader, R.S.; Abdulle, A.M.; Abebo, T.A.; Abera, S.F.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the global burden of disease study 2016. Lancet 2017, 390, 1211–1259. [Google Scholar] [CrossRef] [Green Version]
- Barnes, P.J. Immunology of asthma and chronic obstructive pulmonary disease. Nat. Rev. Immunol. 2008, 8, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Targeting cytokines to treat asthma and chronic obstructive pulmonary disease. Nat. Rev. Immunol. 2018, 18, 454–466. [Google Scholar] [CrossRef] [PubMed]
- Smolonska, J.; Koppelman, G.H.; Wijmenga, C.; Vonk, J.M.; Zanen, P.; Bruinenberg, M.; Curjuric, I.; Imboden, M.; Thun, G.-A.; Franke, L.; et al. Common genes underlying asthma and COPD? Genome-Wide analysis on the dutch hypothesis. Eur. Respir. J. 2014, 44, 860–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenzel, S.E. Asthma phenotypes: The evolution from clinical to molecular approaches. Nat. Med. 2012, 18, 716–725. [Google Scholar] [CrossRef]
- Lambrecht, B.N.; Hammad, H.; Fahy, J.V. The cytokines of asthma. Immunity 2019, 50, 975–991. [Google Scholar] [CrossRef]
- Woodruff, P.G.; Modrek, B.; Choy, D.F.; Jia, G.; Abbas, A.R.; Ellwanger, A.; Arron, J.R.; Koth, L.L.; Fahy, J.V. T-Helper type 2–driven inflammation defines major subphenotypes of asthma. Am. J. Resp. Crit. Care Med. 2009, 180, 388–395. [Google Scholar] [CrossRef]
- O’Byrne, P.M.; Barnes, P.J.; Rodriguez-Roisin, R.; Runnerstrom, E.; Sandstrom, T.; Svensson, K.; Tattersfield, A. Low dose inhaled budesonide and formoterol in mild persistent asthma. Am. J. Resp. Crit. Care Med. 2001, 164, 1392–1397. [Google Scholar] [CrossRef]
- Pauwels, R.A.; Pedersen, S.; Busse, W.W.; Tan, W.C.; Chen, Y.-Z.; Ohlsson, S.V.; Ullman, A.; Lamm, C.J.; O’Byrne, P.M. Early intervention with budesonide in mild persistent asthma: A randomised, double-blind trial. Lancet 2003, 361, 1071–1076. [Google Scholar] [CrossRef]
- Suissa, S.; Ernst, P.; Benayoun, S.; Baltzan, M.; Cai, B. Low-Dose inhaled corticosteroids and the prevention of death from asthma. N. Engl. J. Med. 2000, 343, 332–336. [Google Scholar] [CrossRef]
- Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for the Diagnosis, Management and Prevention of COPD. 2020. Available online: https://goldcopd.org/wp-content/uploads/2019/12/GOLD-2020-FINAL-ver1.2-03Dec19_WMV.pdf (accessed on 1 March 2021).
- Kohansal, R.; Martinez-Camblor, P.; Agustí, A.; Buist, A.S.; Mannino, D.M.; Soriano, J.B. The natural history of chronic airflow obstruction revisited. Am. J. Resp. Crit. Care Med. 2009, 180, 3–10. [Google Scholar] [CrossRef]
- Hunninghake, G.M.; Cho, M.H.; Tesfaigzi, Y.; Soto-Quiros, M.E.; Avila, L.; Lasky-Su, J.; Stidley, C.; Melén, E.; Söderhäll, C.; Hallberg, J.; et al. MMP12, lung function, and COPD in high-risk populations. N. Engl. J. Med. 2009, 361, 2599–2608. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Wang, K.; Li, J.; Tan, Q.; Tan, W.; Guo, G. Association between glutathione s-transferase gene M1 and T1 polymorphisms and chronic obstructive pulmonary disease risk: A meta-analysis. Clin. Genet. 2019, 95, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Lange, P.; Celli, B.; Agusti, A.; Jensen, G.B.; Divo, M.; Faner, R.; Guerra, S.; Marott, J.L.; Martinez, F.D.; Martinez-Camblor, P.; et al. Lung-Function trajectories leading to chronic obstructive pulmonary disease. N. Engl. J. Med. 2015, 373, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Cosio, M.G.; Saetta, M.; Agusti, A. Immunologic aspects of chronic obstructive pulmonary disease. N. Engl. J. Med. 2009, 360, 2445–2454. [Google Scholar] [CrossRef]
- Barnes, P.J. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2016, 138, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Tanno, A.; Fujino, N.; Yamada, M.; Sugiura, H.; Hirano, T.; Tanaka, R.; Sano, H.; Suzuki, S.; Okada, Y.; Ichinose, M. Decreased expression of a phagocytic receptor siglec-1 on alveolar macrophages in chronic obstructive pulmonary disease. Respir. Res. 2020, 21, 30. [Google Scholar] [CrossRef]
- Belchamber, K.B.R.; Singh, R.; Batista, C.M.; Whyte, M.K.; Dockrell, D.H.; Kilty, I.; Robinson, M.J.; Wedzicha, J.A.; Barnes, P.J.; Donnelly, L.E.; et al. Defective bacterial phagocytosis is associated with dysfunctional mitochondria in COPD macrophages. Eur. Respir. J. 2019, 54, 1802244. [Google Scholar] [CrossRef]
- Bewley, M.A.; Preston, J.A.; Mohasin, M.; Marriott, H.M.; Budd, R.C.; Swales, J.; Collini, P.; Greaves, D.R.; Craig, R.W.; Brightling, C.E.; et al. Impaired mitochondrial microbicidal responses in chronic obstructive pulmonary disease macrophages. Am. J. Resp. Crit. Care Med. 2017, 196, 845–855. [Google Scholar] [CrossRef]
- Bewley, M.A.; Budd, R.C.; Ryan, E.; Cole, J.; Collini, P.; Marshall, J.; Kolsum, U.; Beech, G.; Emes, R.D.; Tcherniaeva, I.; et al. Opsonic phagocytosis in chronic obstructive pulmonary disease is enhanced by nrf2 agonists. Am. J. Resp. Crit. Care Med. 2018, 198, 739–750. [Google Scholar] [CrossRef]
- Hogg, J.C.; Chu, F.; Utokaparch, S.; Woods, R.; Elliott, W.M.; Buzatu, L.; Cherniack, R.M.; Rogers, R.M.; Sciurba, F.C.; Coxson, H.O.; et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med. 2004, 350, 2645–2653. [Google Scholar] [CrossRef]
- McDonough, J.E.; Yuan, R.; Suzuki, M.; Seyednejad, N.; Elliott, W.M.; Sanchez, P.G.; Wright, A.C.; Gefter, W.B.; Litzky, L.; Coxson, H.O.; et al. Small-Airway obstruction and emphysema in chronic obstructive pulmonary disease. N. Engl. J. Med. 2011, 365, 1567–1575. [Google Scholar] [CrossRef] [Green Version]
- Fujino, N.; Brand, O.J.; Morgan, D.J.; Fujimori, T.; Grabiec, A.M.; Jagger, C.P.; Maciewicz, R.A.; Yamada, M.; Itakura, K.; Sugiura, H.; et al. Sensing of apoptotic cells through axl causes lung basal cell proliferation in inflammatory diseases. J. Exp. Med. 2019, 216, 2184–2201. [Google Scholar] [CrossRef] [Green Version]
- Volckaert, T.; Yuan, T.; Chao, C.-M.; Bell, H.; Sitaula, A.; Szimmtenings, L.; Agha, E.E.; Chanda, D.; Majka, S.; Bellusci, S.; et al. Fgf10-Hippo epithelial-mesenchymal crosstalk maintains and recruits lung basal stem cells. Dev. Cell 2017, 43, 48–59.e5. [Google Scholar] [CrossRef] [Green Version]
- Ofir, D.; Laveneziana, P.; Webb, K.A.; Lam, Y.-M.; O’Donnell, D.E. Mechanisms of dyspnea during cycle exercise in symptomatic patients with GOLD stage I chronic obstructive pulmonary disease. Am. J. Resp. Crit. Care Med. 2008, 177, 622–629. [Google Scholar] [CrossRef] [Green Version]
- Elbehairy, A.F.; Ciavaglia, C.E.; Webb, K.A.; Guenette, J.A.; Jensen, D.; Mourad, S.M.; Neder, J.A.; O’Donnell, D.E.; Network, C.R.R. Pulmonary gas exchange abnormalities in mild chronic obstructive pulmonary disease. implications for dyspnea and exercise intolerance. Am. J. Resp. Crit. Care Med. 2015, 191, 1384–1394. [Google Scholar] [CrossRef]
- O’Donnell, D.E.; Flüge, T.; Gerken, F.; Hamilton, A.; Webb, K.; Aguilaniu, B.; Make, B.; Magnussen, H. Effects of tiotropium on lung hyperinflation, dyspnoea and exercise tolerance in COPD. Eur. Respir. J. 2004, 23, 832–840. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, D.E.; Sciurba, F.; Celli, B.; Mahler, D.A.; Webb, K.A.; Kalberg, C.J.; Knobil, K. Effect of fluticasone propionate/salmeterol on lung hyperinflation and exercise endurance in COPD. Chest 2006, 130, 647–656. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.W.; Donohue, J.F.; Nedelman, J.; Pascoe, S.; Pinault, G.; Lassen, C. Correlating changes in lung function with patient outcomes in chronic obstructive pulmonary disease: A pooled analysis. Respir. Res. 2012, 12, 161. [Google Scholar] [CrossRef] [Green Version]
- Koarai, A.; Sugiura, H.; Yamada, M.; Ichikawa, T.; Fujino, N.; Kawayama, T.; Ichinose, M. Treatment with LABA versus LAMA for stable COPD: A systematic review and meta-analysis. BMC Pulm. Med. 2020, 20, 111. [Google Scholar] [CrossRef]
- Almirall, J.; Bolíbar, I.; Serra-Prat, M.; Roig, J.; Hospital, I.; Carandell, E.; Agustí, M.; Ayuso, P.; Estela, A.; Torres, A.; et al. New evidence of risk factors for community-acquired pneumonia: A population-based study. Eur. Respir. J. 2008, 31, 1274–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ernst, P.; Gonzalez, A.V.; Brassard, P.; Suissa, S. Inhaled corticosteroid use in chronic obstructive pulmonary disease and the risk of hospitalization for pneumonia. Am. J. Resp. Crit. Care Med. 2007, 176, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Garcia, M.A.; Faner, R.; Oscullo, G.; de La Rosa, D.; Soler-Cataluña, J.-J.; Ballester, M.; Agusti, A. Inhaled steroids, circulating eosinophils, chronic airway infection, and pneumonia risk in chronic obstructive pulmonary disease. A network analysis. Am. J. Resp. Crit. Care Med. 2020, 201, 1078–1085. [Google Scholar] [CrossRef] [PubMed]
- Brassard, P.; Suissa, S.; Kezouh, A.; Ernst, P. Inhaled corticosteroids and risk of tuberculosis in patients with respiratory diseases. Am. J. Resp. Crit. Care Med. 2012, 183, 675–678. [Google Scholar] [CrossRef]
- Lee, C.-H.; Kim, K.; Hyun, M.K.; Jang, E.J.; Lee, N.R.; Yim, J.-J. Use of inhaled corticosteroids and the risk of tuberculosis. Thorax 2013, 68, 1105. [Google Scholar] [CrossRef] [Green Version]
- Van Schayck, C.P.; Levy, M.L.; Chen, J.C.; Isonaka, S.; Halbert, R.J. Coordinated diagnostic approach for adult obstructive lung disease in primary care. Prim. Care Resp. J. 2004, 13, 218–221. [Google Scholar] [CrossRef] [Green Version]
- Guerra, S.; Sherrill, D.L.; Kurzius-Spencer, M.; Venker, C.; Halonen, M.; Quan, S.F.; Martinez, F.D. The course of persistent airflow limitation in subjects with and without asthma. Resp. Med. 2008, 102, 1473–1482. [Google Scholar] [CrossRef] [Green Version]
- O’denis, D.E.; Shawn, A.; Jean, B.; Paul, H.; Marciniuk, D.D.; Meyer, B.; Gordon, F.; Andre, G.; Roger, G.; Rick, H.; et al. Canadian thoracic society recommendations for management of chronic obstructive pulmonary disease—2007 update. Can. Respir. J. 2007, 14, 5B–32B. [Google Scholar] [CrossRef]
- Gibson, P.G.; Simpson, J.L. The overlap syndrome of asthma and COPD: What are its features and how important is it? Thorax 2009, 64, 728. [Google Scholar] [CrossRef] [Green Version]
- Miravitlles, M.; Soriano, J.B.; Ancochea, J.; Muñoz, L.; Duran-Tauleria, E.; Sánchez, G.; Sobradillo, V.; García-Río, F. Characterisation of the overlap COPD–Asthma phenotype. Focus on physical activity and health status. Resp. Med. 2013, 107, 1053–1060. [Google Scholar] [CrossRef] [Green Version]
- Menezes, A.M.B.; de Oca, M.M.; Pérez-Padilla, R.; Nadeau, G.; Wehrmeister, F.C.; Lopez-Varela, M.V.; Muiño, A.; Jardim, J.R.B.; Valdivia, G.; Tálamo, C.; et al. Increased risk of exacerbation and hospitalization in subjects with an overlap phenotype COPD-Asthma. Chest 2014, 145, 297–304. [Google Scholar] [CrossRef]
- Silva, G.E.; Sherrill, D.L.; Guerra, S.; Barbee, R.A. Asthma as a risk factor for COPD in a longitudinal study. Chest 2004, 126, 59–65. [Google Scholar] [CrossRef]
- Zeki, A.A.; Schivo, M.; Chan, A.; Albertson, T.E.; Louie, S. The Asthma-COPD overlap syndrome: A common clinical problem in the elderly. J. Allergy 2011, 2011, 861926. [Google Scholar] [CrossRef] [Green Version]
- Miravitlles, M.; Soler-Cataluña, J.J.; Calle, M.; Soriano, J.B. Treatment of COPD by clinical phenotypes: Putting old evidence into clinical practice. Eur. Respir. J. 2012, 41, 1252–1256. [Google Scholar] [CrossRef] [Green Version]
- Louie, S.; Zeki, A.A.; Schivo, M.; Chan, A.L.; Yoneda, K.Y.; Avdalovic, M.; Morrissey, B.M.; Albertson, T.E. The asthma–chronic obstructive pulmonary disease overlap syndrome: Pharmacotherapeutic considerations. Expert Rev. Clin. Phar. 2014, 6, 197–219. [Google Scholar] [CrossRef]
- Global Initiative for Asthma; Global Initiative for Chronic Obstructive Lung Disease. Diagnosis of Diseases of Chronic Airflow Limitation: Asthma, COPD, and Asthma-COPD Overlap Syndrome (ACOS). Updated 2015. Available online: http://goldcopd.org/asthma-copd-asthma-copd-overlap-synd (accessed on 1 March 2021).
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. Updated 2017. Available online: http://ginasthma.org/2017-gina-report-globalstrategy-for-asthma-management-andprevention/ (accessed on 1 March 2021).
- Sin, D.D.; Miravitlles, M.; Mannino, D.M.; Soriano, J.B.; Price, D.; Celli, B.R.; Leung, J.M.; Nakano, Y.; Park, H.Y.; Wark, P.A.; et al. What Is asthma−COPD overlap syndrome? Towards a consensus definition from a round table discussion. Eur. Respir. J. 2016, 48, 664–673. [Google Scholar] [CrossRef] [Green Version]
- Plaza, V.; Álvarez, F.; Calle, M.; Casanova, C.; Cosío, B.G.; López-Viña, A.; de Llano, L.P.; Quirce, S.; Román-Rodríguez, M.; Soler-Cataluña, J.J.; et al. Consensus on the Asthma–COPD Overlap (ACO) Between the Spanish COPD Guidelines (GesEPOC) and the Spanish Guidelines on the Management of Asthma (GEMA). Arch. Bronconeumol. Engl. Ed. 2017, 53, 443–449. [Google Scholar] [CrossRef]
- Yanagisawa, S.; Ichinose, M. Definition and diagnosis of asthma–COPD overlap (ACO). Allergol. Int. 2018, 67, 172–178. [Google Scholar] [CrossRef]
- Miravitlles, M. Asthma-COPD Overlap (ACO) PRO-CON debate. ACO: Call me by my name. Chronic Obstr. Pulm. Dis. 2020, 17, 471–473. [Google Scholar] [CrossRef]
- Papi, A. Asthma COPD Overlap PRO-CON Debate. ACO: The mistaken term. Chronic Obstr. Pulm Dis. 2020, 17, 474–476. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, T.P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alving, K.; Malinovschi, A. Basic aspects of exhaled nitric oxide. Eur. Resir. Mon. 2010, 49, 1–31. [Google Scholar]
- Alving, K.; Weitzberg, E.; Lundberg, J.M. Increased amount of nitric oxide in exhaled air of asthmatics. Eur. Respir. J. 1993, 6, 1368–1370. [Google Scholar] [PubMed]
- Çolak, Y.; Afzal, S.; Nordestgaard, B.G.; Marott, J.L.; Lange, P. Combined value of exhaled nitric oxide and blood eosinophils in chronic airway disease: The copenhagen general population study. Eur. Respir. J. 2018, 52, 1800616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strunk, R.C.; Szefler, S.J.; Phillips, B.R.; Zeiger, R.S.; Chinchilli, V.M.; Larsen, G.; Hodgdon, K.; Morgan, W.; Sorkness, C.A.; Lemanske, R.F.; et al. Relationship of exhaled nitric oxide to clinical and inflammatory markers of persistent asthma in children. J. Allergy Clin. Immunol. 2003, 112, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Hamid, Q.; Springall, D.R.; Polak, J.; Riveros-Moreno, V.; Chanez, P.; Bousquet, J.; Godard, P.; Holgate, S.; Howarth, P.; Redington, A. Induction of nitric oxide synthase in asthma. Lancet 1993, 342, 1510–1513. [Google Scholar] [CrossRef]
- Ichinose, M.; Sugiura, H.; Yamagata, S.; Koarai, A.; Shirato, K. Increase in reactive nitrogen species production in chronic obstructive pulmonary disease airways. Am. J. Resp. Crit. Care Med. 2000, 162, 701–706. [Google Scholar] [CrossRef]
- Guo, F.H.; Comhair, S.A.A.; Zheng, S.; Dweik, R.A.; Eissa, N.T.; Thomassen, M.J.; Calhoun, W.; Erzurum, S.C. molecular mechanisms of increased Nitric Oxide (NO) in asthma: Evidence for transcriptional and post-translational regulation of NO synthesis. J. Immunol. 2000, 164, 5970–5980. [Google Scholar] [CrossRef] [Green Version]
- Redington, A.E.; Meng, Q.H.; Springall, D.R.; Evans, T.J.; Créminon, C.; Maclouf, J.; Holgate, S.T.; Howarth, P.H.; Polak, J.M. Increased expression of inducible nitric oxide synthase and cyclo-oxygenase-2 in the airway epithelium of asthmatic subjects and regulation by corticosteroid treatment. Thorax 2001, 56, 351–357. [Google Scholar] [CrossRef] [Green Version]
- Hansel, T.T.; Kharitonov, S.A.; Donnelly, L.E.; Erin, E.M.; Currie, M.G.; Moore, W.M.; Manning, P.T.; Recker, D.P.; Barnes, P.J. A selective inhibitor of inducible nitric oxide synthase inhibits exhaled breath nitric oxide in healthy volunteers and asthmatics. FASEB J. 2003, 17, 1298–1300. [Google Scholar] [CrossRef]
- Berlyne, G.S.; Parameswaran, K.; Kamada, D.; Efthimiadis, A.; Hargreave, F.E. A comparison of exhaled nitric oxide and induced sputum as markers of airway inflammation. J. Allergy Clin. Immunol. 2000, 106, 638–644. [Google Scholar] [CrossRef]
- Payne, D.N.; Adcock, I.M.; Wilson, N.M.; Oates, T.; Scallan, M.; Bush, A. Relationship between exhaled nitric oxide and mucosal eosinophilic inflammation in children with difficult asthma, after treatment with oral prednisolone. Am. J. Resp. Crit. Care Med. 2001, 164, 1376–1381. [Google Scholar] [CrossRef]
- Warke, T.J.; Fitch, P.S.; Brown, V.; Taylor, R.; Lyons, J.D.M.; Ennis, M.; Shields, M.D. Exhaled nitric oxide correlates with airway eosinophils in childhood asthma. Thorax 2002, 57, 383–387. [Google Scholar] [CrossRef] [Green Version]
- Ichinose, M.; Takahashi, T.; Sugiura, H.; Endoh, N.; Miura, M.; Mashito, Y.; Shirato, K. Baseline airway hyperresponsiveness and its reversible component: Role of airway inflammation and airway calibre. Eur. Respir. J. 2000, 15, 248–253. [Google Scholar] [CrossRef]
- Suresh, V.; Mih, J.D.; George, S.C. Measurement of IL-13–Induced INOS-Derived gas phase nitric oxide in human bronchial epithelial cells. Am. J. Resp. Cell Mol. Biol. 2007, 37, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Chibana, K.; Trudeau, J.B.; Mustovich, A.T.; Mustovitch, A.T.; Hu, H.; Zhao, J.; Balzar, S.; Chu, H.W.; Wenzel, S.E. IL-13 induced increases in nitrite levels are primarily driven by increases in inducible nitric oxide synthase as compared with effects on arginases in human primary bronchial epithelial cells. Clin. Exp. Allergy 2008, 38, 936–946. [Google Scholar] [CrossRef]
- Borish, L.C.; Nelson, H.S.; Lanz, M.J.; Claussen, L.; Whitmore, J.B.; Agosti, J.M.; Garrison, L. Interleukin-4 receptor in moderate atopic asthma. Am. J. Resp. Crit. Care Med. 1999, 160, 1816–1823. [Google Scholar] [CrossRef]
- Wenzel, S.; Wilbraham, D.; Fuller, R.; Getz, E.B.; Longphre, M. Effect of an Interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: Results of two phase 2a studies. Lancet 2007, 370, 1422–1431. [Google Scholar] [CrossRef]
- Wenzel, S.; Ford, L.; Pearlman, D.; Spector, S.; Sher, L.; Skobieranda, F.; Wang, L.; Kirkesseli, S.; Rocklin, R.; Bock, B.; et al. Dupilumab in persistent asthma with elevated eosinophil levels. N. Engl. J. Med. 2013, 368, 2455–2466. [Google Scholar] [CrossRef]
- Agusti, A.; Bel, E.; Thomas, M.; Vogelmeier, C.; Brusselle, G.; Holgate, S.; Humbert, M.; Jones, P.; Gibson, P.G.; Vestbo, J.; et al. Treatable traits: Toward precision medicine of chronic airway diseases. Eur. Respir. J. 2016, 47, 410–419. [Google Scholar] [CrossRef] [Green Version]
- Brightling, C.E.; McKenna, S.; Hargadon, B.; Birring, S.; Green, R.; Siva, R.; Berry, M.; Parker, D.; Monteiro, W.; Pavord, I.D.; et al. Sputum eosinophilia and the short term response to inhaled mometasone in chronic obstructive pulmonary disease. Thorax 2005, 60, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Zietkowski, Z.; Kucharewicz, I.; Bodzenta-Lukaszyk, A. The influence of inhaled corticosteroids on exhaled nitric oxide in stable chronic obstructive pulmonary disease. Resp. Med. 2005, 99, 816–824. [Google Scholar] [CrossRef] [Green Version]
- Kunisaki, K.M.; Rice, K.L.; Janoff, E.N.; Rector, T.S.; Niewoehner, D.E. Exhaled nitric oxide, systemic inflammation, and the spirometric response to inhaled fluticasone propionate in severe chronic obstructive pulmonary disease: A prospective study. Ther Adv. Respir. Dis. 2008, 2, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Lehtimaki, L.; Kankaanranta, H.; Saarelainen, S.; Annila, I.; Aine, T.; Nieminen, R.; Moilanen, E. Bronchial nitric oxide is related to symptom relief during fluticasone treatment in COPD. Eur. Respir. J. 2009, 35, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Akamatsu, K.; Matsunaga, K.; Sugiura, H.; Koarai, A.; Hirano, T.; Minakata, Y.; Ichinose, M. Improvement of airflow limitation by fluticasone propionate/salmeterol in chronic obstructive pulmonary disease: What is the specific marker? Front. Pharmacol. 2011, 2, 36. [Google Scholar] [CrossRef] [Green Version]
- Yamaji, Y.; Oishi, K.; Hamada, K.; Ohteru, Y.; Chikumoto, A.; Murakawa, K.; Matsuda, K.; Suetake, R.; Murata, Y.; Ito, K.; et al. Detection of type2 biomarkers for response in COPD. J. Breath Res. 2020, 14, 026007. [Google Scholar] [CrossRef]
- Price, D.B.; Buhl, R.; Chan, A.; Freeman, D.; Gardener, E.; Godley, C.; Gruffydd-Jones, K.; McGarvey, L.; Ohta, K.; Ryan, D.; et al. Fractional exhaled nitric oxide as a predictor of response to inhaled corticosteroids in patients with non-specific respiratory symptoms and insignificant bronchodilator reversibility: A randomised controlled trial. Lancet Respir. Med. 2018, 6, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Mostafavi-Pour-Manshadi, S.-M.-Y.; Naderi, N.; Barrecheguren, M.; Dehghan, A.; Bourbeau, J. Investigating fractional exhaled nitric oxide in Chronic Obstructive Pulmonary Disease (COPD) and Asthma-COPD Overlap (ACO): A scoping review. Chronic Obstr. Pulm. Dis. 2018, 15, 1–15. [Google Scholar] [CrossRef]
- Alcázar-Navarrete, B.; Romero-Palacios, P.J.; Ruiz-Sancho, A.; Ruiz-Rodriguez, O. Diagnostic performance of the measurement of nitric oxide in exhaled air in the diagnosis of COPD phenotypes. Nitric Oxide 2016, 54, 67–72. [Google Scholar] [CrossRef]
- Goto, T.; Camargo, C.A.; Hasegawa, K. Fractional exhaled nitric oxide levels in asthma–COPD overlap syndrome: Analysis of the national health and nutrition examination survey, 2007–2012. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 2149–2155. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Huang, X.; Liu, Y.; Lin, G.; Xie, C. Importance of fractional exhaled nitric oxide in the differentiation of asthma–copd overlap syndrome, asthma, and COPD. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 2385–2390. [Google Scholar] [CrossRef] [Green Version]
- Takayama, Y.; Ohnishi, H.; Ogasawara, F.; Oyama, K.; Kubota, T.; Yokoyama, A. Clinical utility of fractional exhaled nitric oxide and blood eosinophils counts in the diagnosis of Asthma-COPD overlap. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 2525–2532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Hong, C.; Liu, Y.; Chen, H.; Huang, X.; Hong, M. Diagnostic value of fractional exhaled nitric oxide for asthma-chronic obstructive pulmonary disease overlap syndrome. Medicine 2018, 97, e10857. [Google Scholar] [CrossRef] [PubMed]
- Tamada, T.; Sugiura, H.; Takahashi, T.; Matsunaga, K.; Kimura, K.; Katsumata, U.; Takekoshi, D.; Kikuchi, T.; Ohta, K.; Ichinose, M. Biomarker-Based detection of asthma–COPD overlap syndrome in COPD populations. Int. J. Chronic Obstr. Pulm. Dis. 2015, 10, 2169–2176. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Hanagama, M.; Yamanda, S.; Ishida, M.; Yanai, M. Inflammatory biomarkers in Asthma-COPD overlap syndrome. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 2117–2123. [Google Scholar] [CrossRef] [Green Version]
- Carpagnano, G.E.; Lacedonia, D.; Malerba, M.; Palmiotti, G.A.; Cotugno, G.; Carone, M.; Foschino-Barbaro, M.P. Analysis of mitochondrial DNA alteration in new phenotype ACOS. BMC Pulm. Med. 2016, 16, 31. [Google Scholar] [CrossRef] [Green Version]
- Hirai, K.; Shirai, T.; Suzuki, M.; Akamatsu, T.; Suzuki, T.; Hayashi, I.; Yamamoto, A.; Akita, T.; Morita, S.; Asada, K.; et al. A clustering approach to identify and characterize the asthma and chronic obstructive pulmonary disease overlap phenotype. Clin. Exp. Allergy 2017, 47, 1374–1382. [Google Scholar] [CrossRef]
- De Llano, L.P.; Cosío, B.G.; Iglesias, A.; de Las Cuevas, N.; Soler-Cataluña, J.J.; Izquierdo, J.L.; López-Campos, J.L.; Calero, C.; Plaza, V.; Miravitlles, M.; et al. Mixed Th2 and Non-Th2 inflammatory pattern in the Asthma–COPD overlap: A network approach. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 591–601. [Google Scholar] [CrossRef] [Green Version]
- Jo, Y.S.; Kwon, S.O.; Kim, J.; Kim, W.J. Neutrophil gelatinase-associated lipocalin as a complementary biomarker for the asthma-chronic obstructive pulmonary disease overlap. J. Thorac. Dis. 2018, 10, 5047–5056. [Google Scholar] [CrossRef]
- Wang, J.; Lv, H.; Luo, Z.; Mou, S.; Liu, J.; Liu, C.; Deng, S.; Jiang, Y.; Lin, J.; Wu, C.; et al. Plasma YKL-40 and NGAL are useful in distinguishing ACO from asthma and COPD. Respir. Res. 2018, 19, 47. [Google Scholar] [CrossRef] [Green Version]
- Shirai, T.; Hirai, K.; Gon, Y.; Maruoka, S.; Mizumura, K.; Hikichi, M.; Holweg, C.; Itoh, K.; Inoue, H.; Hashimoto, S. Combined assessment of serum periostin and YKL-40 may identify Asthma-COPD overlap. J. Allergy Clin. Immunol. Pract. 2019, 7, 134–145.e1. [Google Scholar] [CrossRef]
- Cai, C.; Bian, X.; Xue, M.; Liu, X.; Hu, H.; Wang, J.; Zheng, S.G.; Sun, B.; Wu, J.-L. Eicosanoids metabolized through LOX Distinguish Asthma–COPD overlap from COPD by metabolomics study. Int. J. Chronic Obstr. Pulm. Dis. 2019, 14, 1769–1778. [Google Scholar] [CrossRef] [Green Version]
- Kubysheva, N.; Boldina, M.; Eliseeva, T.; Soodaeva, S.; Klimanov, I.; Khaletskaya, A.; Bayrasheva, V.; Solovyev, V.; Villa-Vargas, L.A.; Ramírez-Salinas, M.A.; et al. Relationship of serum levels of IL-17, IL-18, TNF-α, and lung function parameters in patients with COPD, Asthma-COPD overlap, and bronchial asthma. Mediat. Inflamm. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Oh, J.Y.; Lee, Y.S.; Min, K.H.; Hur, G.Y.; Lee, S.Y.; Kang, K.H.; Rhee, C.K.; Park, S.J.; Khan, A.; Na, J.; et al. Increased urinary l-histidine in patients with Asthma–COPD overlap: A pilot study. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 1809–1818. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Iwamoto, H.; Koskela, J.; Alenius, H.; Hattori, N.; Kohno, N.; Laitinen, T.; Mazur, W.; Pulkkinen, V. Characterization of sputum biomarkers for Asthma–COPD overlap syndrome. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 2457–2465. [Google Scholar] [CrossRef] [Green Version]
- Hamada, S.; Tatsumi, S.; Kobayashi, Y.; Matsumoto, H.; Yasuba, H. Radiographic evidence of sinonasal inflammation in asthma-chronic obstructive pulmonary disease overlap syndrome: An underrecognized association. J. Allergy Clin. Immunol. Pract. 2017, 5, 1657–1662. [Google Scholar] [CrossRef]
- Qu, Y.; Cao, Y.; Liao, M.; Lu, Z. Sagittal-Lung CT measurements in the evaluation of Asthma-COPD overlap syndrome: A distinctive phenotype from COPD Alone. Radiol. Med. 2017, 122, 487–494. [Google Scholar] [CrossRef]
- Karayama, M.; Inui, N.; Yasui, H.; Kono, M.; Hozumi, H.; Suzuki, Y.; Furuhashi, K.; Hashimoto, D.; Enomoto, N.; Fujisawa, T.; et al. Physiological and morphological differences of airways between COPD and Asthma–COPD overlap. Sci. Rep. 2019, 9, 7818. [Google Scholar] [CrossRef]
- Pollart, S.M.; Chapman, M.D.; Fiocco, G.P.; Rose, G.; Platts-Mills, T.A.E. Epidemiology of acute asthma: IgE antibodies to common inhalant allergens as a risk factor for emergency room visits. J. Allergy Clin. Immunol. 1989, 83, 875–882. [Google Scholar] [CrossRef]
- Gelber, L.E.; Seltzer, L.H.; Bouzoukis, J.K.; Pollart, S.M.; Chapman, M.D.; Platts-Mills, T.A.E. Sensitization and exposure to indoor allergens as risk factors for asthma among patients presenting to hospital. Am. Rev. Respir. Dis. 1993, 147, 573–578. [Google Scholar] [CrossRef]
- Postma, D.S.; Bleecker, E.R.; Amelung, P.J.; Holroyd, K.J.; Xu, J.; Panhuysen, C.I.M.; Meyers, D.A.; Levitt, R.C. Genetic susceptibility to asthma—bronchial hyperresponsiveness coinherited with a major gene for atopy. N. Engl. J. Med. 1995, 333, 894–900. [Google Scholar] [CrossRef] [PubMed]
- Sunyer, J.; Antó, J.M.; Castellsagué, J.; Soriano, J.B.; Roca, J. Total serum IgE is associated with asthma independently of specific IgE levels. Eur. Respir. J. 1996, 9, 1880–1884. [Google Scholar] [CrossRef] [PubMed]
- Asai, K.; Kitaura, J.; Kawakami, Y.; Yamagata, N.; Tsai, M.; Carbone, D.P.; Liu, F.-T.; Galli, S.J.; Kawakami, T. regulation of mast cell survival by IgE. Immunity 2001, 14, 791–800. [Google Scholar] [CrossRef] [Green Version]
- Kalinina, E.P.; Denisenko, Y.K.; Vitkina, T.I.; Lobanova, E.G.; Novgorodtseva, T.P.; Antonyuk, M.V.; Gvozdenko, T.A.; Knyshova, V.V.; Nazarenko, A.V. The mechanisms of the regulation of immune response in patients with comorbidity of chronic obstructive pulmonary disease and asthma. Can. Respir. J. 2016, 2016, 1–8. [Google Scholar] [CrossRef]
- Maltby, S.; Gibson, P.G.; Powell, H.; McDonald, V.M. Omalizumab treatment response in a population with severe allergic asthma and overlapping COPD. Chest 2017, 151, 78–89. [Google Scholar] [CrossRef]
- Hanania, N.A.; Chipps, B.E.; Griffin, N.M.; Yoo, B.; Iqbal, A.; Casale, T.B. Omalizumab effectiveness in asthma COPD overlap: Post hoc analysis of PROSPERO study. J. Allergy Clin. Immunol. 2018, 143, 1629–1633.e2. [Google Scholar] [CrossRef] [Green Version]
- Japanese Respiratory Society. The JRS Guidelines for the Management of ACO 2018; Medical Review: Tokyo, Japan, 2018. (In Japanese)
- Yamamura, K.; Hara, J.; Kobayashi, T.; Ohkura, N.; Abo, M.; Akasaki, K.; Nomura, S.; Yuasa, M.; Saeki, K.; Terada, N.; et al. The prevalence and clinical features of Asthma-COPD Overlap (ACO) definitively diagnosed according to the japanese respiratory society guidelines for the management of ACO 2018. J. Med. Investig. 2019, 66, 157–164. [Google Scholar] [CrossRef]
- Hirai, K.; Tanaka, A.; Homma, T.; Kawahara, T.; Oda, N.; Mikuni, H.; Uchida, Y.; Uno, T.; Miyata, Y.; Inoue, H.; et al. Prevalence and clinical features of Asthma-COPD overlap in patients with COPD not using inhaled corticosteroids. Allergol. Int. 2020, 70, 134–135. [Google Scholar] [CrossRef]
- Chatterjee, N.; Shi, J.; García-Closas, M. Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nat. Rev. Genet. 2016, 17, 392–406. [Google Scholar] [CrossRef]
- Torkamani, A.; Wineinger, N.E.; Topol, E.J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 2018, 19, 581–590. [Google Scholar] [CrossRef]
- Poss, A.M.; Maschek, J.A.; Cox, J.E.; Hauner, B.J.; Hopkins, P.N.; Hunt, S.C.; Holland, W.L.; Summers, S.A.; Playdon, M.C. Machine learning reveals serum sphingolipids as cholesterol-independent biomarkers of coronary artery disease. J. Clin. Investig. 2020, 130, 1363–1376. [Google Scholar] [CrossRef] [Green Version]
- Christenson, S.A.; Steiling, K.; van den Berge, M.; Hijazi, K.; Hiemstra, P.S.; Postma, D.S.; Lenburg, M.E.; Spira, A.; Woodruff, P.G. Asthma–COPD overlap. clinical relevance of genomic signatures of type 2 inflammation in chronic obstructive pulmonary disease. Am. J. Resp. Crit. Care Med. 2015, 191, 758–766. [Google Scholar] [CrossRef] [Green Version]
- Fulkerson, P.C.; Rothenberg, M.E. Targeting eosinophils in allergy, inflammation and beyond. Nat. Rev. Drug Discov. 2013, 12, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Gon, Y.; Ito, R.; Hattori, T.; Hiranuma, H.; Kumasawa, F.; Kozu, Y.; Endo, D.; Koyama, D.; Shintani, Y.; Eriko, T.; et al. Serum eosinophil-derived neurotoxin: Correlation with persistent airflow limitation in adults with house-dust mite allergic asthma. Allergy Asthma Proc. 2015, 36, 113–120. [Google Scholar] [CrossRef]
- Shirai, T.; Hirai, K.; Gon, Y.; Maruoka, S.; Mizumura, K.; Hikichi, M.; Itoh, K.; Hashimoto, S. Combined assessment of serum eosinophil-derived neurotoxin and YKL-40 may identify Asthma-COPD overlap. Allergol. Int. 2020, 70, 136–139. [Google Scholar] [CrossRef]
- James, A.J.; Reinius, L.E.; Verhoek, M.; Gomes, A.; Kupczyk, M.; Hammar, U.; Ono, J.; Ohta, S.; Izuhara, K.; Bel, E.; et al. Increased YKL-40 and chitotriosidase in asthma and chronic obstructive pulmonary disease. Am. J. Resp. Crit. Care Med. 2016, 193, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Gon, Y.; Maruoka, S.; Ito, R.; Mizumura, K.; Kozu, Y.; Hiranuma, H.; Hattori, T.; Takahashi, M.; Hikichi, M.; Hashimoto, S. Utility of serum YKL-40 levels for identification of patients with asthma and COPD. Allergol. Int. 2017, 66, 624–626. [Google Scholar] [CrossRef]
- Nasioudis, D.; Witkin, S.S. Neutrophil gelatinase-associated lipocalin and innate immune responses to bacterial infections. Med. Microbiol. Immun. 2015, 204, 471–479. [Google Scholar] [CrossRef]
- Keatings, V.M.; Barnes, P.J. Granulocyte activation markers in induced sputum: Comparison between chronic obstructive pulmonary disease, asthma, and normal subjects. Am. J. Resp. Crit. Care Med. 1997, 155, 449–453. [Google Scholar] [CrossRef]
- Eagan, T.M.; Damås, J.K.; Ueland, T.; Voll-Aanerud, M.; Mollnes, T.E.; Hardie, J.A.; Bakke, P.S.; Aukrust, P. Neutrophil gelatinase-associated lipocalin a biomarker in COPD. Chest 2010, 138, 888–895. [Google Scholar] [CrossRef]
- Betsuyaku, T.; Nishimura, M.; Takeyabu, K.; Tanino, M.; Venge, P.; Xu, S.; Kawakami, Y. Neutrophil granule proteins in bronchoalveolar lavage fluid from subjects with subclinical emphysema. Am. J. Resp. Crit. Care Med. 1999, 159, 1985–1991. [Google Scholar] [CrossRef]
- Ekberg-Jansson, A.; Andersson, B.; Bake, B.; Boijsen, M.; Enanden, I.; Rosengren, A.; Skoogh, B.-E.; Tylén, U.; Venge, P.; Löfdahl, C.-G. Neutrophil-Associated activation markers in healthy smokers relates to a fall in DLCO and to emphysematous changes on high resolution CT. Resp. Med. 2001, 95, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Borregaard, N.; Kjeldsen, L.; Moses, M.A. The high molecular weight urinary Matrix Metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and Neutrophil Gelatinase-Associated Lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. J. Biol. Chem. 2001, 276, 37258–37265. [Google Scholar] [CrossRef] [Green Version]
- Iwamoto, H.; Gao, J.; Koskela, J.; Kinnula, V.; Kobayashi, H.; Laitinen, T.; Mazur, W. Differences in plasma and sputum biomarkers between COPD and COPD-Asthma overlap. Eur. Respir. J. 2013, 43, 421–429. [Google Scholar] [CrossRef]
- Nuñez, A.; Sarasate, M.; Loeb, E.; Esquinas, C.; Miravitlles, M.; Barrecheguren, M. Practical guide to the identification and diagnosis of Asthma-COPD Overlap (ACO). Chronic Obstr. Pulm. Dis. 2019, 16, 1–7. [Google Scholar] [CrossRef]
- Hosseini, M.; Almasi-Hashiani, A.; Sepidarkish, M.; Maroufizadeh, S. Global prevalence of Asthma-COPD Overlap (ACO) in the general population: A systematic review and meta-analysis. Respir. Res. 2019, 20, 229. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, J.A.; Nibber, A.; Chisholm, A.; Price, D.; Bateman, E.D.; Bjermer, L.; van Boven, J.F.M.; Brusselle, G.; Costello, R.W.; Dandurand, R.J.; et al. Prevalence and characteristics of asthma–chronic obstructive pulmonary disease overlap in routine primary care practices. Ann. Am. Thorac Soc. 2019, 16, 1143–1150. [Google Scholar] [CrossRef]
- Baron, A.J.; Blok, B.M.F.; van Heijst, E.; Riemersma, R.A.; der Voort, A.M.S.; Metting, E.I.; Kocks, J.W. Prevalence of asthma characteristics in COPD patients in a dutch well-established asthma/COPD service for primary care. Int. J. Chronic Obstr. Pulm. Dis. 2020, 15, 1601–1611. [Google Scholar] [CrossRef]
- Hardin, M.; Cho, M.; McDonald, M.-L.; Beaty, T.; Ramsdell, J.; Bhatt, S.; van Beek, E.J.R.; Make, B.J.; Crapo, J.D.; Silverman, E.K.; et al. The clinical and genetic features of COPD-Asthma overlap syndrome. Eur. Respir. J. 2014, 44, 341–350. [Google Scholar] [CrossRef] [Green Version]
- Kottyan, L.C.; Collier, A.R.; Cao, K.H.; Niese, K.A.; Hedgebeth, M.; Radu, C.G.; Witte, O.N.; Hershey, G.K.K.; Rothenberg, M.E.; Zimmermann, N. Eosinophil viability is increased by acidic PH in a CAMP- and GPR65-Dependent manner. Blood 2009, 114, 2774–2782. [Google Scholar] [CrossRef] [Green Version]
- El-Husseini, Z.W.; Gosens, R.; Dekker, F.; Koppelman, G.H. The genetics of asthma and the promise of genomics-guided drug target discovery. Lancet Respir. Med. 2020, 8, 1045–1056. [Google Scholar] [CrossRef]
- Kyogoku, Y.; Sugiura, H.; Ichikawa, T.; Numakura, T.; Koarai, A.; Yamada, M.; Fujino, N.; Tojo, Y.; Onodera, K.; Tanaka, R.; et al. Nitrosative stress in patients with asthma–chronic obstructive pulmonary disease overlap. J. Allergy Clin. Immunol. 2019, 144, 972–983.e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, P.J. Nitrosative stress in patients with asthma-chronic obstructive pulmonary disease overlap. J. Allergy Clin. Immunol. 2019, 144, 928–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
References | Study Design | Subject Numbers | Severity of Airflow Limitation | Intervention or Measurement | Results |
---|---|---|---|---|---|
Studies reporting an association between baseline FeNO and improvement of airway obstruction by inhaled corticosteroid therapy | |||||
Zietkowski, et al. [75] | Prospective | COPD 47 (current smoker 28, ex-smoker 19) Healthy control 40 (current smoker 17, non-smoker 23) | Post-bronchodilator FEV1 47.07 ± 14.55% (smoking COPD), 48.9 ± 15.3% (ex-smoking COPD) | Budesoide 800 μg/day, 8 weeks | Initial FeNO was positively correlated with an increase in post-bronchodilator FEV1 after ICS therapy |
Kunisaki, et al. [76] | Single-arm, open-label, prospective | COPD 60 (ex-smokers) | Pre-bronchodilator FEV1 35.6 ± 10.6% | Fluticasone propionate 500 μg + Salmeterol 50 μg, twice daily, 4 weeks | ICS responders (increase in FEV1 > 200 mL after 4 weeks ICS) have higher baseline FeNO. |
Lehtimaki, et al. [77] | Single-arm, open-label, prospective | COPD 40 (current smoker 29, ex-smoker 11) | Post-bronchodilator FEV1 64.6 ± 2.7% (smoking COPD), 53.3 ± 4.8% (ex-smoking COPD) | Fluticasone propionate 500 μg/day, 4 weeks | Baseline FeNO was positively correlated with changes in FEV1/FVC |
Akamatsu, et al. [78] | Single-arm, open-label, prospective | COPD 14 with emphysema on high-resolution computed tomography (all ex-smokers) | Post-bronchodilator FEV1 57.6 ± 4.4% | Fluticasone propionate 250 μg + Salmeterol 50 μg, twice daily, 12 weeks | FeNO > 35 ppb and IgE positive was correlated with airway obstruction evaluated by FEV1 and ΔN2. |
Yamaji et al. [79] | Single-arm, open-label, prospective | COPD 44 (ex-smokers) | GOLD stage 1/2/3/4, n = 0/34/9/0 | Ciclesonide 400 μg/day, 12 weeks | Baseline FeNO was positively correlated with changes in FEV1 and correlated with improvement of COPD assessment test score. |
Studies reporting FeNO for ACO diagnosis | |||||
Alcazar-Navarrete B, et al. [82] | Cross-sectional | COPD 103 (22 ACO), never smoker 16, healthy smoker 30, asthma 43 | Postbronchodilator FEV1 95 ± 19% (never smoker), 96 ± 3% (healthy smoker), 90 ± 16% (asthma), 60 ± 21% (COPD) | FeNO | FeNO AUC 0.79 with an optimal-cut off 19 ppb (sensitivity 0.68, specificity 0.75) |
Goto, et al. [83] | Cross-sectional | COPD 197 (ACO 23%) | Post-bronchodilator FEV1 63% (95%CI, 59–67; ACO), 60% (95%CI, 60–67; COPD) | FeNO | AUC 0.63 (95% CI, 0.54–0.72) |
Chen, et al. [84] | Cross-sectional | COPD 132, asthma 500, ACO 57 | FEV1 50.1 ± 19.3% (COPD), 88.5 ± 19.4% (asthma), 50.1± 18.6% (ACO) | FeNO | AUC 0.78 (cut-off 22.5 ppb, sensitivity 70%, specificity 75%) |
Takayama, et al. [85] | Cross-sectional | COPD 65, ACO 56 | FEV1 69.7 ± 21.1% (COPD), 64.9 ± 17.6% (ACO) | FeNO | AUC 0.726 (FeNO cut-off level 25.0 ppb, with 60.6% sensitivity and 87.7% specificity for steroid-naïve patients) |
Guo, et al. [86] | Cross-sectional | COPD 53, ACO 53 | FEV1 56.0% (IQR, 48.3–66.9; ACO), 43.0% (IQR, 34.8–57.1; COPD) | FeNO | AUC 0.815 (FeNO cut-off level 25.5 ppb, sensitivity 74%, specificity 77% |
Studies reporting a combination of FeNO and IgE for ACO diagnosis | |||||
Tamada, et al. [87] | Cross-sectional | COPD 331 (never smoker 10, ex-smoker 257, current smoker 46, unknown 18) | FEV1 61.5 ± 20.8% | FeNO and serum IgE | 7.8% of participants considered as ACO (FeNO > 35 ppb + IgE > 173 IU/L). |
Kobayashi, et al. [88] | Cross-sectional | COPD 257 | FEV1 63.1 ± 32.9% | FeNO and serum IgE | AUC 0.74 (95%CI, 0.63–0.84; cut-off 23 ppb, sensitivity 73.0%, specificity 68.2%). Combination of FeNO > 23 ppb and IgE > 434 IU/mL showed 94.1% specificity and 37.8% sensitivity. |
Studies for blood biomarkers for ACO diagnosis | |||||
Carpagnano, et al. [89] | Cross-sectional | 10 ACO (Spanish guideline), 13 ACO (GINA guideline), 13 COPD, 14 asthma, 10 healthy subjects | FEV1 72.6 ± 23.4% (ACO-Spanish), 83.6 ± 22.8% (ACO-GINA), 46.9 ± 10.7% (COPD), 88.9 ± 17.7% (asthma), 91.0 ± 6.3% (healthy) | Mitochondrial and nuclear DNA in blood cells | ACO patients showed increased mitochondrial DNA in the blood cells. |
Hirai, et al. [90] | Cross-sectional | COPD 50, asthma 152 | FEV1 63.4% (95%CI, 43.1–82.7; COPD), 86.2% (95%CI, 69.3–97.1; asthma) | mRNA expression of TBX21, GATA3, RORC and FOXP3 in peripheral blood mononuclear cells | AUC 0.94 (95%CI, 0.90–0.98; total serum IgE level > 310 IU/mL, blood eosinophil counts > 280 cells/μL, a higher ratio of TBX21/GATA3, FEV1/FVC ratio < 0.67 and smoking > 10 pack-years |
Llano, et al. [91] | Cross-sectional | COPD 89, asthma 94, ACO 109 | Post-bronchodilator FEV1 55.1 ± 18.5% (COPD), 69.5 ± 18.9% (asthma), 58.9 ± 17.0% (ACO) | IL-6, IL-8, TNF-α, IL-13, IL-5, Periostin, IL-17, FeNO | A cutoff value of FeNO > 17 ppb showed better AUC (0.707 [0.642–0.772], p < 0.001) than the cytokines or periostin in blood |
Jo, et al. [92] | Cross-sectional | COPD 60, ACO 77 | Post-bronchodilator FEV1 71.1 ± 15.8% (COPD), 77.6 ± 16.6% (ACO) | NGAL | NGAL levels (odds ratio, 1.72; 95%CI, 0.69–4.28; ACO vs. COPD) |
Wang, et al. [93] | Cross-sectional | COPD 147, asthma 124, ACO 102, control 50 | Post-bronchodilator FEV1 59.0 ± 9.1% (COPD), 73.7 ± 5.5% (asthma), 70.1 ± 5.6% (ACO), 95.4 ± 7.7% (control) | YKL-40, NGAL, TSLP, periostin | YKL-40 AUC 0.71 (95%CI, 0.65–0.79), cut-off < 12.61 ng/mL, sensitivity 73.5%, specificity 67.7% for ACO vs. COPD NGAL AUC 0.75 (95%CI, 0.68–0.82), cut-off < 104.7 ng/mL, sensitivity 92.7%, specificity 58.8% for ACO vs. asthma |
Shirai, et al. [94] | Cross-sectional | COPD 61, asthma 177, ACO 115 | FEV1 66.5% (IQR, 35.8–76.3; COPD), 91.0 (78.3–102.8; asthma), 65.0 (49.0–71.5; ACO) | YKL-40, periostin, IgE, FeNO | YKL-40 AUC 0.71 (95%CI, 0.64–0.77), cut-off 61.3 ng/mL, sensitivity 60.9%, specificity 73.4% for ACO vs. asthma Periostin AUC 0.61 (95%CI, 0.53–0.70), cut-off 55.1 ng/mL, sensitivity 59.1%, specificity 62.3% |
Cai, et al. [95] | Cross-sectional | COPD 27, ACO 29, Healthy control 28 | FEV1 40.2 ± 6.4% (COPD), 40.6 ± 8.5% (ACO), 90.8 ± 4.6% (healthy) | Eicosanoids | 15(S)- hydroxyeicosatetraenoic acid, AUC 0.96 |
Kubysheva, et al. [96] | Cross-sectional | COPD 58, asthma 32, ACO 57 | Post-bronchodilator FEV1 55.3 ± 21.2% (COPD), 69.5 ± 18.9% (asthma), 58.9 ± 17.0% (ACO) | IL-17, IL-18, TNF-α | No cytokines that were able to distinguish ACO from COPD |
Studies for urine biomarkers for ACO | |||||
Oh, et al. [97] | Cross-sectional | COPD 38, asthma 32, ACO 37 | FEV1 68.1% (IQR, 48.8–85.5; COPD), 92.3% (IQR, 79.1–103; asthma), 70.0% (IQR, 51.7–85.0; ACO) | L-histidine (identified from urine metabolomics) | Urinary l-histidine levels were significantly higher in patients with ACO than in those with asthma or COPD |
Studies for biomarkers of induced sputum differentiating ACO from COPD | |||||
Gao, et al. [98] | Cross-sectional | Discovery cohort: 14 never smoker, 14 healthy smoker, 24 asthma, 20 COPD, 18 ACO. Replication cohort: 22 never smoker, 40 healthy smoker, 21 asthma, 35 COPD, 17 ACO | Post-bronchodilator FEV1 105.9 ± 10.6% (never smoker), 98.5 ± 15.5% (healthy smoker), 78.8 ± 14.0% (asthma), 58.3 ± 19.1% (COPD), 51.6 ± 13.7% (ACO) in the discovery cohort. | IL-13, MPO, NGAL, YKL-40, IL-6 protein levels in induced sputum | Only sputum NGAL levels could differentiate ACOS from asthma (p < 0.001 and p < 0.001) and COPD (p < 0.05 and p = 0.002) in the discovery and replication cohorts. |
Studies for radiographical analyses differentiating ACO from COPD | |||||
Hamada, et al. [99] | Retrospective | COPD 55, asthma 39, ACO 18 | FEV1 54.1 ± 12.1% (COPD), 70.0 ± 13.8% (asthma), 55.8 ± 12.4% (ACO) | Radiographical evidence of sinonasal inflammation (Lund-Mackay staging, LMS) | In patients with ACO and COPD, total and ethmoid LMS scores were significantly lower than those in patients with asthma. |
Qu, et al. [100] | Cross-sectional | COPD 123, ACO 106 | Post-bronchodilator FEV1 54.7 ± 20.8% (COPD), 64.4 ± 15.7% (ACO) | Sagittal-lung CT measurements before and after bronchodilator inhalation | Variations of all sagittal-lung CT measurements were significantly larger in patients with ACO than in patients with pure COPD (p values all < 0.001) |
Karatama, et al. [101] | Cross-sectional | COPD 86, ACO 43 | FEV1 70.3 ± 20.3% (COPD), 69.4 ± 19.0% (ACO) | 3 dimensional-CT | Patients with ACO had a greater wall thickness in third- to fourth-generation bronchi, smaller airway luminal area in fifth- to sixth-generation bronchi, and less emphysematous changes than did matched patients with COPD |
Fundamental Aspects: Over 40 Years of Age, Chronic Airway Obstruction Defined By < 70% of Post-Bronchodilator FEV1/FVC | |
---|---|
[Features of COPD] At least one positive features of the followings (1, 2, 3) | (Features of asthma) Two positive features of the following 1, 2, 3 items; or at least one positive features of 1, 2, 3 plus two positive features of 4 |
|
|
|
|
|
|
4-1 Comorbidity of perennial allergic rhinitis 4-2 Reversibility of airway obstruction (FEV1 > 12% and > 200 mL) 4-3 Blood eosinophil > 5% or > 300 cells/μL 4-4 Elevated serum IgE (total IgE or specific IgE for perennial inhaled allergens) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujino, N.; Sugiura, H. ACO (Asthma–COPD Overlap) Is Independent from COPD, a Case in Favor: A Systematic Review. Diagnostics 2021, 11, 859. https://doi.org/10.3390/diagnostics11050859
Fujino N, Sugiura H. ACO (Asthma–COPD Overlap) Is Independent from COPD, a Case in Favor: A Systematic Review. Diagnostics. 2021; 11(5):859. https://doi.org/10.3390/diagnostics11050859
Chicago/Turabian StyleFujino, Naoya, and Hisatoshi Sugiura. 2021. "ACO (Asthma–COPD Overlap) Is Independent from COPD, a Case in Favor: A Systematic Review" Diagnostics 11, no. 5: 859. https://doi.org/10.3390/diagnostics11050859
APA StyleFujino, N., & Sugiura, H. (2021). ACO (Asthma–COPD Overlap) Is Independent from COPD, a Case in Favor: A Systematic Review. Diagnostics, 11(5), 859. https://doi.org/10.3390/diagnostics11050859