Optimal Halbach Configuration for Flow-through Immunomagnetic CTC Enrichment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modeled System
Forces
2.2. Magnetic Force
2.3. Magnetic Moment
2.4. Magnetic Gradient
2.5. Magnetic Force Calculation
- The particle is a perfect sphere with a uniform magnetization parallel to the external field.
- The surrounding liquid is non-magnetic.
- There are no unbound particles present.
2.6. Drag Force
2.7. Gravitational Force
2.8. COMSOL Model
2.9. Model Validation
2.10. Experimental Validation
- The optimized Halbach array with 12-mm-long, 1-mm-wide, N52 magnets with a height of 2 mm (horizonal magnetization) and 2.75 mm (vertical magnetization) (Risheng Magnets, Ningbo, China).
- A Halbach array consisting of three rows of commercially available 5 × 1 × 1.5 mm N45 stock magnets, (Supermagnete, Gottmadingen, Germany).
- A Halbach array consisting of commercially available 15 × 4 × 4 mm N45 stock magnets, (Supermagnete, Gottmadingen, Germany).
3. Results
3.1. Magnet Width Optimization
3.2. Magnet Height
3.3. Halbach versus Converntional Alternating Array
3.4. Halbach Array Comparison
3.5. Experimental Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Array (mm) | Moment (fAm2) | COMSOL (%) | Python (%) |
---|---|---|---|
1.0 × 2.8, 1.0 × 2.0 | 4 | 47 | 47 |
1.0 × 1.5, 1.0 × 1.5 | 6 | 52 | 50 |
4.0 × 4.0, 4.0 × 4.0 | 12 | 54 | 51 |
Appendix B
Vertically oriented magnet height (mm) | Horizontally Oriented Magnet Height (mm) | |||||||||||
mm | 0.5 | 0.75 | 1 | 1.25 | 1.5 | 1.75 | 2 | 2.25 | 2.5 | 2.75 | 3 | |
0.5 | 62% | 69% | 73% | 76% | 79% | 80% | 81% | 81% | 82% | 82% | 83% | |
0.75 | 69% | 75% | 80% | 83% | 85% | 86% | 87% | 88% | 88% | 88% | 88% | |
1 | 73% | 80% | 84% | 87% | 89% | 90% | 91% | 91% | 92% | 92% | 92% | |
1.25 | 77% | 83% | 87% | 90% | 91% | 92% | 93% | 94% | 94% | 94% | 95% | |
1.5 | 79% | 85% | 89% | 91% | 93% | 94% | 95% | 95% | 96% | 96% | 96% | |
1.75 | 80% | 86% | 90% | 92% | 94% | 95% | 96% | 96% | 97% | 97% | 97% | |
2 | 81% | 87% | 91% | 93% | 95% | 96% | 97% | 97% | 97% | 98% | 98% | |
2.25 | 81% | 88% | 91% | 94% | 95% | 97% | 97% | 98% | 98% | 98% | 98% | |
2.5 | 82% | 88% | 92% | 94% | 96% | 97% | 97% | 98% | 98% | 99% | 99% | |
2.75 | 82% | 88% | 92% | 94% | 96% | 97% | 98% | 98% | 99% | 99% | 99% | |
3 | 82% | 88% | 92% | 95% | 96% | 97% | 98% | 98% | 99% | 99% | 99% |
Appendix C
References
- Coumans, F.A.W.; Ligthart, S.T.; Uhr, J.W.; Terstappen, L.W.M.M. Challenges in the Enumeration and Phenotyping of CTC. Clin. Cancer Res. 2012, 18, 5711–5718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, J.C.; Niederacher, D.; Topp, S.A.; Honisch, E.; Schumacher, S.; Schmitz, N.; Fohrding, L.Z.; Vay, C.; Hoffmann, I.; Kasprowicz, N.S.; et al. Diagnostic leukapheresis enables reliable detection of circulating tumor cells of nonmetastatic cancer patients. Proc. Natl. Acad. Sci. USA 2013, 110, 16580–16585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andree, K.C.; Mentink, A.; Zeune, L.L.; Terstappen, L.W.; Stoecklein, N.H.; Neves, R.P.; Driemel, C.; Lampignano, R.; Yang, L.; Neubauer, H.; et al. Toward a real liquid biopsy in metastatic breast and prostate cancer: Diagnostic LeukApheresis increases CTC yields in a European prospective multicenter study (CTCTrap). Int. J. Cancer 2018, 143, 2584–2591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fehm, T.N.; Meier-Stiegen, F.; Driemel, C.; Jäger, B.; Reinhardt, F.; Naskou, J.; Franken, A.; Neubauer, H.; Neves, R.P.; Dalum, G.; et al. Diagnostic leukapheresis for CTC analysis in breast cancer patients: CTC frequency, clinical experiences and recommendations for standardized reporting. Cytom. Part A 2018, 93, 1213–1219. [Google Scholar] [CrossRef] [Green Version]
- Stoecklein, N.H.; Fischer, J.C.; Niederacher, D.; Terstappen, L.W.M.M. Challenges for CTC-based liquid biopsies: Low CTC frequency and diagnostic leukapheresis as a potential solution. Expert Rev. Mol. Diagn. 2015, 16, 147–164. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Krause, S.; Tobin, H.; Mammoto, A.; Kanapathipillai, M.; Ingber, D.E. A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells. Lab Chip 2012, 12, 2175–2181. [Google Scholar] [CrossRef]
- Chang, C.-L.; Huang, W.; Jalal, S.I.; Chan, B.-D.; Mahmood, A.; Shahda, S.; O’Neil, B.H.; Matei, D.; Savran, C.A. Circulating tumor cell detection using a parallel flow micro-aperture chip system. Lab Chip 2015, 15, 1677–1688. [Google Scholar] [CrossRef]
- Chen, P.; Huang, Y.-Y.; Hoshino, K.; Zhang, J.X. Microscale magnetic field modulation for enhanced capture and distribution of rare circulating tumor cells. Sci. Rep. 2015, 5, 8745. [Google Scholar] [CrossRef] [Green Version]
- Hoshino, K.; Huang, Y.Y.; Lane, N.; Huebschman, M.; Uhr, J.W.; Frenkel, E.P.; Zhang, X. Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip 2011, 11, 3449–3457. [Google Scholar] [CrossRef]
- Jung, S.H.; Hahn, Y.K.; Oh, S.; Kwon, S.; Um, E.; Choi, S.; Kang, J.H. Advection Flows-Enhanced Magnetic Separation for High-Throughput Bacteria Separation from Undiluted Whole Blood. Small 2018, 14, e1801731. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Xiang, A.; Guo, Y.; Wang, L.; Wang, R.; Wang, W.; Ji, G.; Lu, Z. Dynamic Halbach array magnet integrated microfluidic system for the continuous-flow separation of rare tumor cells. RSC Adv. 2019, 9, 38496–38504. [Google Scholar] [CrossRef] [Green Version]
- Tang, M.; Xia, H.-F.; Xu, C.-M.; Feng, J.; Ren, J.-G.; Miao, F.; Wu, M.; Wu, L.-L.; Pang, D.-W.; Chen, G.; et al. Magnetic Chip Based Extracorporeal Circulation: A New Tool for Circulating Tumor Cell in Vivo Detection. Anal. Chem. 2019, 91, 15260–15266. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Jonkheijm, P.; Terstappen, L.W.M.M.; Stevens, M. Magnetic particles for ctc enrichment. Cancers 2020, 12, 3525. [Google Scholar] [CrossRef] [PubMed]
- Masud, M.K.; Na, J.; Younus, M.; Hossain, S.A.; Bando, Y.; Shiddiky, M.J.A.; Yamauchi, Y. Superparamagnetic nanoarchitectures for disease-specific biomarker detection. Chem. Soc. Rev. 2019, 48, 5717–5751. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Driscoll, H.; Super, M.; Ingber, D.E. Application of a Halbach magnetic array for long-range cell and particle separations in biological samples. Appl. Phys. Lett. 2016, 108, 213702. [Google Scholar] [CrossRef]
- Hoyos, M.; Moore, L.; Williams, P.S.; Zborowski, M. The use of a linear Halbach array combined with a step-SPLITT channel for continuous sorting of magnetic species. J. Magn. Magn. Mater. 2011, 323, 1384–1388. [Google Scholar] [CrossRef] [Green Version]
- Shiriny, A.; Bayareh, M. On magnetophoretic separation of blood cells using Halbach array of magnets. Meccanica 2020, 55, 1903–1916. [Google Scholar] [CrossRef]
- Gijs, M.A.M. Magnetic bead handling on-chip: New opportunities for analytical applications. Microfluid. Nanofluidics 2004, 1, 22–40. [Google Scholar] [CrossRef] [Green Version]
- Ozkumur, E.; Shah, A.M.; Ciciliano, J.C.; Emmink, B.L.; Miyamoto, D.T.; Brachtel, E.; Yu, M.; Chen, P.-I.; Morgan, B.; Trautwein, J.; et al. Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci. Transl. Med. 2013, 5, 179ra47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.; Huang, Y.-Y.; Hoshino, K.; Zhang, X. Multiscale immunomagnetic enrichment of circulating tumor cells: From tubes to microchips. Lab Chip 2014, 14, 446–458. [Google Scholar] [CrossRef] [PubMed]
- Furlani, E.P.; Sahoo, Y. Analytical model for the magnetic field and force in a magnetophoretic microsystem. J. Phys. D Appl. Phys. 2006, 39, 1724–1732. [Google Scholar] [CrossRef]
- Joshi, P.; Williams, P.S.; Moore, L.R.; Caralla, T.; Boehm, C.; Muschler, G.; Zborowski, M. Circular Halbach Array for Fast Magnetic Separation of Hyaluronan-Expressing Tissue Progenitors. Anal. Chem. 2015, 87, 9908–9915. [Google Scholar] [CrossRef] [Green Version]
- Shevkoplyas, S.S.; Siegel, A.C.; Westervelt, R.M.; Prentiss, M.G.; Whitesides, G.M. The force acting on a superparamagnetic bead due to an applied magnetic field. Lab Chip 2007, 7, 1294–1302. [Google Scholar] [CrossRef]
- Richel, D.J.; Johnsen, H.E.; Canon, J.; Guillaume, T.; Schaafsma, M.R.; Schenkeveld, C.; Hansen, S.W.; McNiece, I.; Gringeri, A.J.; Briddell, R.; et al. Highly purified CD34+ cells isolated using magnetically activated cell selection provide rapid engraftment following high-dose chemotherapy in breast cancer patients. Bone Marrow Transplant. 2000, 25, 243–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brugger, W.; Bross, K.; Glatt, M.; Weber, F.; Mertelsmann, R.; Kanz, L. Mobilization of tumor cells and hematopoietic progenitor cells into peripheral blood of patients with solid tumors. Blood 1994, 83, 636–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, A.A. Minimal residual disease in solid tumor malignancies: A review. J. Hematother. 1998, 7, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Spyridonidis, A.; Bernhardt, W.; Fetscher, S.; Behringer, D.; Mertelsmann, R.; Henschler, R. Minimal residual disease in autologous hematopoietic harvests from breast cancer patients. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 1998, 9, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Mangan, K.F.; Leonardo, J.; Mullaney, M.T.; Terstappen, L.W.; Rao, C.; Liberti, P. A rapid two-step method for elimination of bcl-2/IgH positive non-Hodgkin’s lymphoma cells from human blood or marrow stem cells, employing immunomagnetic purging with streptavidin-coated ferrofluids. Cytotherapy 1999, 1, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Gross, H.J.; Verwer, B.; Houck, D.; Hoffman, R.A.; Recktenwald, D. Model study detecting breast cancer cells in peripheral blood mononuclear cells at frequencies as low as 10(-7). Proc. Natl. Acad. Sci. USA 1995, 92, 537–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Racila, E.; Euhus, D.; Weiss, A.J.; Rao, C.; McConnell, J.; Terstappen, L.W.M.M.; Uhr, J.W. Detection and characterization of carcinoma cells in the blood. Proc. Natl. Acad. Sci. USA 1998, 95, 4589–4594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pecora, A.L.; Lazarus, H.M.; Jennis, A.A.; Preti, R.; Goldberg, S.L.; Rowley, S.D.; Cantwell, S.; Cooper, B.W.; Copelan, E.A.; Herzig, R.H.; et al. Breast cancer cell contamination of blood stem cell products in patients with metastatic breast cancer: Predictors and clinical relevance. Biol. Blood Marrow Transplant. 2002, 8, 536–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eifler, R.L.; Lind, J.; Falkenhagen, D.; Weber, V.; Fischer, M.B.; Zeillinger, R. Enrichment of circulating tumor cells from a large blood volume using leukapheresis and elutriation: Proof of concept. Cytom. Part B Clin. Cytom. 2010, 80, 100–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, C.; Hassanisaber, H.; Yu, R.; Ma, S.; Verbridge, S.S.; Lu, C. Paramagnetic Structures within a Microfluidic Channel for Enhanced Immunomagnetic Isolation and Surface Patterning of Cells. Sci. Rep. 2016, 6, 29407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osman, O.; Toru, S.; Dempsey, N.M. Microfluidic immunomagnetic cell separation using integrated permanent micromagnets. Biomicrofluidics 2013, 7, 054115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.Y.; Chen, P.; Wu, C.H.; Hoshino, K.; Sokolov, K.; Lane, N.; Liu, H.; Huebschman, M.; Frenkel, E.; Zhang, J.X.J. Screening and Molecular Analysis of Single Circulating Tumor Cells Using Micromagnet Array. Sci. Rep. 2015, 5, 16047. [Google Scholar] [CrossRef] [PubMed]
- Rao, G.C.; Chianese, D.; Doyle, V.G.; Craig, M.M.; Russell, T.; Sanders, A.R.; Terstappen, L.W.M.M. Expression of epithelial cell adhesion molecule in carcinoma cells present in blood and primary and metastatic tumors. Int. J. Oncol. 2005, 27, 49–57. [Google Scholar] [CrossRef]
- Liberti, P.A.; Rao, G.C.; Terstappen, L.W.M.M. Increased Separation Efficiency via Controlled Aggregation of Magnetic Nanoparticles. U.S. Patent 6,551,843 B1, 23 September 2003. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stevens, M.; Liu, P.; Niessink, T.; Mentink, A.; Abelmann, L.; Terstappen, L. Optimal Halbach Configuration for Flow-through Immunomagnetic CTC Enrichment. Diagnostics 2021, 11, 1020. https://doi.org/10.3390/diagnostics11061020
Stevens M, Liu P, Niessink T, Mentink A, Abelmann L, Terstappen L. Optimal Halbach Configuration for Flow-through Immunomagnetic CTC Enrichment. Diagnostics. 2021; 11(6):1020. https://doi.org/10.3390/diagnostics11061020
Chicago/Turabian StyleStevens, Michiel, Peng Liu, Tom Niessink, Anouk Mentink, Leon Abelmann, and Leon Terstappen. 2021. "Optimal Halbach Configuration for Flow-through Immunomagnetic CTC Enrichment" Diagnostics 11, no. 6: 1020. https://doi.org/10.3390/diagnostics11061020
APA StyleStevens, M., Liu, P., Niessink, T., Mentink, A., Abelmann, L., & Terstappen, L. (2021). Optimal Halbach Configuration for Flow-through Immunomagnetic CTC Enrichment. Diagnostics, 11(6), 1020. https://doi.org/10.3390/diagnostics11061020