Fat-Bone Relationship in Chronic Kidney Disease—Mineral Bone Disorders: Adiponectin Is Associated with Skeletal Events among Hemodialysis Patients
Abstract
:1. Introduction
2. Methods
2.1. Participants in the Cohort
2.2. Assessment of Exposures
2.3. Ascertainment of Outcomes
2.4. Statistical Analysis
3. Results
3.1. Adiponectin, NHALP, Phosphate, Calcium-Phosphate Product, and iPTH Levels Were Significantly Different between BF Event and Event-Free Groups
3.2. The Higher Concentration Group of Adiponectin Was Associated with an Incremental Risk of BF Events
3.3. In Multivariate Cox Regression Analysis, the Associations between the Highest Adiponectin Tertile and Risks of BF Events Remain Robust
3.4. ROC Curve Analysis of Serum Adiponectin Cutoff Point Concentration (18.15 ug/mL) for Prediction of BF Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ko, W.-C.; Choy, C.-S.; Lin, W.-N.; Chang, S.-W.; Liou, J.-C.; Tung, T.-H.; Hsieh, C.-Y.; Chang, J.-F. Galectin-3 Interacts with Vascular Cell Adhesion Molecule-1 to Increase Cardiovascular Mortality in Hemodialysis Patients. J. Clin. Med. 2018, 7, 300. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.-F.; Chou, Y.-S.; Wu, C.-C.; Chen, P.-C.; Ko, W.-C.; Liou, J.-C.; Hsieh, C.-Y.; Lin, W.-N.; Wen, L.-L.; Chang, S.-W.; et al. A Joint Evaluation of Neurohormone Vasopressin-Neurophysin II-Copeptin and Aortic Arch Calcification on Mortality Risks in Hemodialysis Patients. Front. Med. 2020, 7, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, K.C.; Chang, J.F.; Hsu, Y.H.; Hsieh, C.Y.; Wu, M.S.; Wu, M.Y.; Chiu, I.J.; Syu, R.S.; Wang, T.M.; Wu, C.C.; et al. Therapeutic Effect of Calcimimetics on Osteoclast-Osteoblast Crosslink in Chronic Kidney Disease and Mineral Bone Disease. Int. J. Mol. Sci. 2020, 21, 8712. [Google Scholar] [CrossRef]
- Fu, X.; Ma, X.; Lu, H.; He, W.; Wang, Z.; Zhu, S. Associations of fat mass and fat distribution with bone mineral density in pre-and postmenopausal Chinese women. Osteoporos. Int. 2011, 22, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.-J.; Liu, Y.-J.; Liu, P.-Y.; Hamilton, J.; Recker, R.R.; Deng, H.-W. Relationship of obesity with osteoporosis. J. Clin. Endocrinol. Metab. 2007, 92, 1640–1646. [Google Scholar] [CrossRef] [Green Version]
- Devlin, M.J.; Rosen, C.J. The bone–fat interface: Basic and clinical implications of marrow adiposity. Lancet Diabetes Endocrinol. 2015, 3, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, A.V.; Sigurdsson, S.; Hue, T.F.; Lang, T.F.; Harris, T.B.; Rosen, C.J.; Vittinghoff, E.; Siggeirsdottir, K.; Sigurdsson, G.; Oskarsdottir, D. Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults. J. Clin. Endocrinol. Metab. 2013, 98, 2294–2300. [Google Scholar] [CrossRef]
- Zaidi, M. Skeletal remodeling in health and disease. Nat. Med. 2007, 13, 791–801. [Google Scholar] [CrossRef]
- Naot, D.; Musson, D.S.; Cornish, J. The Activity of Adiponectin in Bone. Calcif. Tissue Int. 2017, 100, 486–499. [Google Scholar] [CrossRef] [PubMed]
- Veldhuis-Vlug, A.G.; Rosen, C.J. Clinical implications of bone marrow adiposity. J. Intern. Med. 2018, 283, 121–139. [Google Scholar] [CrossRef] [Green Version]
- Zaidi, M.; Buettner, C.; Sun, L.; Iqbal, J. Minireview: The link between fat and bone: Does mass beget mass? Endocrinology 2012, 153, 2070–2075. [Google Scholar] [CrossRef] [Green Version]
- Barbour, K.E.; Zmuda, J.M.; Boudreau, R.; Strotmeyer, E.S.; Horwitz, M.J.; Evans, R.W.; Kanaya, A.M.; Harris, T.B.; Bauer, D.C.; Cauley, J.A. Adipokines and the risk of fracture in older adults. J. Bone Min. Res. 2011, 26, 1568–1576. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y.; Nakano, M.; Suzuki, T.; Sato, J.; Kato, H.; Takahashi, J.; Shiraki, M. Two adipocytokines, leptin and adiponectin, independently predict osteoporotic fracture risk at different bone sites in postmenopausal women. Bone 2020, 137, 115404. [Google Scholar] [CrossRef]
- Yeh, J.C.; Wu, C.C.; Choy, C.S.; Chang, S.W.; Liou, J.C.; Chen, K.S.; Tung, T.H.; Lin, W.N.; Hsieh, C.Y.; Ho, C.T.; et al. Non-Hepatic Alkaline Phosphatase, hs-CRP and Progression of Vertebral Fracture in Patients with Rheumatoid Arthritis: A Population-Based Longitudinal Study. J. Clin. Med. 2018, 7, 439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, J.F.; Liu, S.H.; Lu, K.C.; Ka, S.M.; Hsieh, C.Y.; Ho, C.T.; Lin, W.N.; Wen, L.L.; Liou, J.C.; Chang, S.W.; et al. Uremic Vascular Calcification Is Correlated With Oxidative Elastic Lamina Injury, Contractile Smooth Muscle Cell Loss, Osteogenesis, and Apoptosis: The Human Pathobiological Evidence. Front. Med. 2020, 7, 78. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.-F.; Chen, P.-C.; Hsieh, C.-Y.; Liou, J.-C. A Growth Differentiation Factor 15-Based Risk Score Model to Predict Mortality in Hemodialysis Patients. Diagnostics 2021, 11, 286. [Google Scholar] [CrossRef]
- Pimentel, A.; Ureña-Torres, P.; Bover, J.; Luis Fernandez-Martín, J.; Cohen-Solal, M. Bone Fragility Fractures in CKD Patients. Calcif. Tissue Int. 2021, 108, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, A.; Bover, J.; Elder, G.; Cohen-Solal, M.; Ureña-Torres, P.A. The Use of Imaging Techniques in Chronic Kidney Disease-Mineral and Bone Disorders (CKD-MBD)-A Systematic Review. Diagnostics 2021, 11, 772. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, A.; Ureña-Torres, P.; Zillikens, M.C.; Bover, J.; Cohen-Solal, M. Fractures in patients with CKD-diagnosis, treatment, and prevention: A review by members of the European Calcified Tissue Society and the European Renal Association of Nephrology Dialysis and Transplantation. Kidney Int. 2017, 92, 1343–1355. [Google Scholar] [CrossRef] [Green Version]
- Tentori, F.; McCullough, K.; Kilpatrick, R.D.; Bradbury, B.D.; Robinson, B.M.; Kerr, P.G.; Pisoni, R.L. High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney Int. 2014, 85, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Naylor, K.L.; Garg, A.X.; Zou, G.; Langsetmo, L.; Leslie, W.D.; Fraser, L.A.; Adachi, J.D.; Morin, S.; Goltzman, D.; Lentle, B.; et al. Comparison of fracture risk prediction among individuals with reduced and normal kidney function. Clin. J. Am. Soc. Nephrol. 2015, 10, 646–653. [Google Scholar] [CrossRef] [Green Version]
- Janghorbani, M.; Feskanich, D.; Willett, W.C.; Hu, F. Prospective study of diabetes and risk of hip fracture: The Nurses’ Health Study. Diabetes Care 2006, 29, 1573–1578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bezerra de Carvalho, K.S.; Vasco, R.F.V.; Custodio, M.R.; Jorgetti, V.; Moysés, R.M.A.; Elias, R.M. Chronic kidney disease is associated with low BMD at the hip but not at the spine. Osteoporos. Int. 2019, 30, 1015–1023. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.Y.; Chen, L.R.; Chen, K.H. Osteoporosis in Patients with Chronic Kidney Diseases: A Systemic Review. Int. J. Mol. Sci. 2020, 21, 6846. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.F.; Shen, W.J.; Zhang, Z.H.; Wang, L.J.; Kraemer, F.B. Adipocytes decrease Runx2 expression in osteoblastic cells: Roles of PPARγ and adiponectin. J. Cell Physiol. 2010, 225, 837–845. [Google Scholar] [CrossRef]
- Wang, D.; Haile, A.; Jones, L.C. Rosiglitazone-induced adipogenesis in a bone marrow mesenchymal stem cell line—Biomed 2011. Biomed. Sci. Instrum. 2011, 47, 213–221. [Google Scholar]
Overall Population (n = 86) | BF Events (n = 13) | Event-Free Survivors (n = 73) | |
---|---|---|---|
Age (years) | 62.6 ± 10.3 | 66.8 ± 8.7 | 61.8 ± 10.4 |
Male, n (%) | 39 (45.3) | 3 (23.1) | 36 (49.3) |
Female, n (%) | 47 (54.7) | 10 (76.9) | 37 (50.7) |
Body weight (kg) | 60.1 ± 9.6 | 58.0 ± 7.3 | 60.5 ± 10.0 |
Body mass index (kg/m2) | 23.7 ± 2.9 | 23.7 ± 3.1 | 23.7 ± 2.9 |
Diabetes mellitus, n (%) | 37 (43.0) | 8 (61.5) | 29 (39.7) |
Hypertension, n (%) | 34 (39.5) | 4 (30.8) | 30 (41.1) |
Hemodialysis vintage (months) | 32.1 ± 26.7 | 36.8 ± 22.5 | 31.3 ± 27.4 |
Kt/V urea | 1.6 ± 0.3 | 1.5 ± 0.3 | 1.6 ± 0.3 |
Adiponectin (μg/mL) | 11.2 ± 7.8 | 17.3 ± 13.6 | 10.1 ± 5.8 |
NHALP (IU/L) | 76.9 ± 45.0 | 111.9 ± 92.7 | 70.7 ± 26.3 |
nPCR | 1.1 ± 0.3 | 1.0 ± 0.2 | 1.1 ± 0.2 |
Albumin (g/dL) | 3.9 ± 0.5 | 3.9 ± 0.2 | 3.9 ± 0.5 |
Aspartate aminotransferase (IU/L) | 16.0 ± 7.0 | 14.8 ± 3.6 | 16.2 ± 7.4 |
Alanine aminotransferase (IU/L) | 13.5 ± 10.2 | 11.5 ± 6.5 | 13.9 ± 10.7 |
Total cholesterol (mg/dL) | 192.5 ± 50.8 | 204.0 ± 42.5 | 190.5 ± 52.1 |
Triglyceride (mg/dL) | 209.0 ± 181.4 | 228.3 ± 224.5 | 205.6 ± 174.3 |
Blood glucose (mg/dL) | 143.2 ± 77.1 | 155.9 ± 100.9 | 140.9 ± 72.7 |
Blood urea nitrogen (mg/dL) | 65.5 ± 16.0 | 72.6 ± 18.8 | 64.3 ± 15.3 |
Creatinine (mg/dL) | 10.3 ± 1.7 | 11.2 ± 1.0 | 10.2 ± 1.7 |
eGFR (ml/min) | 4.2 ± 1.2 | 3.4 ± 0.6 | 4.4 ± 1.2 |
Uric acid (mg/dL) | 7.5 ± 1.3 | 7.6 ± 1.3 | 7.4 ± 1.3 |
Potassium (mmol L−1) | 4.6 ± 0.8 | 4.8 ± 0.8 | 4.5 ± 0.8 |
Calcium (mg/dL) | 9.3 ± 0.7 | 9.1 ± 0.7 | 9.3 ± 0.8 |
Phosphate (mg/dL) | 4.4 ± 1.5 | 5.9 ± 1.6 | 4.1 ± 1.3 |
Calcium-phosphate product | 40.3 ± 14.0 | 51.5 ± 15.9 | 38.3 ± 12.7 |
iPTH (pg/mL) | 168.9 ± 197.9 | 367.8 ± 359.2 | 133.5 ± 127.6 |
Hemoglobin (g/dL) | 10.7 ± 1.4 | 10.1 ± 1.4 | 10.8 ± 1.4 |
Hematocrit (%) | 32.0 ± 4.2 | 30.6 ± 4.2 | 32.3 ± 4.2 |
Platelet (k/μL) | 195.8 ± 65.4 | 197.2 ± 36.8 | 195.6 ± 69.4 |
High Concentration Group > 11.15 μg/mL | Low Concentration Group < 11.15 μg/mL | p-Value | |
---|---|---|---|
Patients, n (%) | 31 (36.0) | 55 (64.0) | |
BF events, n (%) | 8 (25.8) | 5 (9.1) | <0.05 |
Annual BF rates (%) | 12.9 | 4.6 | <0.05 |
Age (years) | 62.3 ± 10.4 | 62.7 ± 10.3 | 0.82 |
Male, n (%) | 13 (41.9) | 26 (47.3) | 0.64 |
Diabetes mellitus, n (%) | 13 (41.9) | 24 (43.6) | 0.88 |
Hypertension, n (%) | 14 (45.2) | 20 (36.4) | 0.43 |
Hemodialysis vintage (months) | 36.1 ± 26.5 | 29.9 ± 26.8 | 0.31 |
Adiponectin (μg/mL) | 18.9 ± 8.2 | 6.8 ± 2.5 | <0.01 |
Kt/V urea | 1.6 ± 0.3 | 1.6 ± 0.3 | 0.79 |
NHALP | 77.1 ± 60.3 | 76.8 ± 34.1 | 0.98 |
nPCR (g/kg/day) | 1.1 ± 0.3 | 1.1 ± 0.3 | 0.99 |
Albumin (g/dL) | 3.8 ± 0.5 | 3.9 ± 0.4 | 0.53 |
Blood urea nitrogen (mg/dL) | 66.5 ± 17.0 | 65.0 ± 15.6 | 0.68 |
Total cholesterol (mg/dL) | 190.2 ± 45.8 | 193.8 ± 53.7 | 0.76 |
Triglyceride (mg/dL) | 156.1 ± 121.1 | 238.8 ± 202.9 | <0.05 |
Blood glucose (mg/dL) | 124.2 ± 69.6 | 153.9 ± 79.6 | 0.09 |
Uric acid (mg/dL) | 7.4 ± 1.4 | 7.5 ± 1.2 | 0.88 |
Potassium (mmol L−1) | 4.6 ± 0.8 | 4.5 ± 0.8 | 0.57 |
Calcium (mg/dL) | 9.1 ± 0.7 | 9.3 ± 0.8 | 0.21 |
Phosphate (mg/dL) | 4.7 ± 1.7 | 4.2 ± 1.4 | 0.23 |
Calcium-phosphate product | 41.9 ± 15.7 | 39.3 ± 13.0 | 0.42 |
Intact parathyroid hormone (pg/mL) | 186.7 ± 237.2 | 158.9 ± 173.4 | 0.54 |
Hemoglobin (g/dL) | 10.9 ± 1.2 | 10.6 ± 1.6 | 0.30 |
Hematocrit (%) | 32.8 ± 3.7 | 31.6 ± 4.5 | 0.24 |
Platelet (k/μL) | 175.9 ± 55.4 | 207.0 ± 68.3 | <0.05 |
Model 1 | Model 2 | |||
---|---|---|---|---|
HR (95% CI) | p Valve | HR (95% CI) | p Valve | |
Age (per year increase) | 1.09 (1.02–1.17) | <0.01 | 1.20 (1.08–1.35) | <0.01 |
Gender (male vs. female) | 0.29 (0.08–1.04) | 0.06 | ||
Diabetes mellitus (yes vs. no) | 1.96 (0.64–6.01) | 0.24 | ||
Adiponectin (per unit increase) | 1.05 (1.01–1.09) | <0.01 | 1.08 (1.01–1.15) | <0.05 |
HD vintage (per month increase) | 1.01 (0.99–1.03) | 0.47 | ||
Kt/V urea (per unit increase) | 0.22 (0.04–1.31) | 0.10 | ||
Albumin (per unit increase) | 0.54 (0.12–2.44) | 0.42 | ||
NHALP (per unit increase) | 1.01 (1.00–1.02) | <0.01 | 1.00 (0.99–1.01) | 0.67 |
AST (per unit increase) | 0.99 (0.89–1.09) | 0.81 | ||
ALT (per unit increase) | 0.96 (0.89–1.04) | 0.36 | ||
Total cholesterol (per unit increase) | 1.00 (0.99–1.01) | 0.86 | ||
Triglyceride (per unit increase) | 1.00 (1.00–1.00) | 0.82 | ||
Blood glucose (per unit increase) | 1.00 (1.00–1.01) | 0.68 | ||
Blood urea nitrogen (per unit increase) | 1.03 (1.00–1.06) | 0.06 | ||
Uric acid (per unit increase) | 1.08 (0.73–1.60) | 0.71 | ||
Potassium (per unit increase) | 1.48 (0.76–2.90) | 0.25 | ||
Calcium (per unit increase) | 0.62 (0.27–1.45) | 0.27 | ||
Phosphate (per unit increase) | 1.73 (1.33–2.25) | <0.01 | 1.82 (1.21–2.72) | <0.01 |
iPTH (per 10 unit increase) | 1.03 (1.01–1.04) | <0.01 | 1.03 (1.00–1.06) | 0.11 |
Hemoglobin (per unit increase) | 0.69 (0.47–1.01) | 0.06 | ||
Hematocrit (per unit increase) | 0.90 (0.78–1.02) | 0.11 | ||
Platelet (per unit increase) | 1.00 (0.99–1.01) | 0.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.-C.; Chang, S.-W.; Hsieh, C.-Y.; Liou, J.-C.; Chang, J.-F.; Wang, T.-M. Fat-Bone Relationship in Chronic Kidney Disease—Mineral Bone Disorders: Adiponectin Is Associated with Skeletal Events among Hemodialysis Patients. Diagnostics 2021, 11, 1254. https://doi.org/10.3390/diagnostics11071254
Chen P-C, Chang S-W, Hsieh C-Y, Liou J-C, Chang J-F, Wang T-M. Fat-Bone Relationship in Chronic Kidney Disease—Mineral Bone Disorders: Adiponectin Is Associated with Skeletal Events among Hemodialysis Patients. Diagnostics. 2021; 11(7):1254. https://doi.org/10.3390/diagnostics11071254
Chicago/Turabian StyleChen, Po-Cheng, Shu-Wei Chang, Chih-Yu Hsieh, Jian-Chiun Liou, Jia-Feng Chang, and Ting-Ming Wang. 2021. "Fat-Bone Relationship in Chronic Kidney Disease—Mineral Bone Disorders: Adiponectin Is Associated with Skeletal Events among Hemodialysis Patients" Diagnostics 11, no. 7: 1254. https://doi.org/10.3390/diagnostics11071254
APA StyleChen, P. -C., Chang, S. -W., Hsieh, C. -Y., Liou, J. -C., Chang, J. -F., & Wang, T. -M. (2021). Fat-Bone Relationship in Chronic Kidney Disease—Mineral Bone Disorders: Adiponectin Is Associated with Skeletal Events among Hemodialysis Patients. Diagnostics, 11(7), 1254. https://doi.org/10.3390/diagnostics11071254