Hand-Held Ultrasound of the Lung: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
- Problem: lung disease
- Intervention: hand-held (pocket-sized) ultrasound (US)
- Comparisons: X-ray OR conventional US OR computer tomography (CT)
- Outcome: accuracy
- Study design: any
2.2. Study Selection
- (1)
- non-English study;
- (2)
- impossible to obtain the full-text considering the university subscription to bibliographic databases or the request submitted to the first or the corresponding author, or payment for the full-text article;
- (3)
- article type (e.g., opinion of the experts, editorials, case reports, abstracts, commentary, book chapters, etc.);
- (4)
- not truly-portable ultrasound devices or portable US devices (at the size of a laptop);
- (5)
- no comparison of hand-held ultrasound examination with physical examination, biological testing or other imaging methods (e.g., X-ray, conventional US, computer tomography (CT), etc.);
- (6)
- lung ultrasound performed by non-doctors (e.g., medical students, nurses) or using portable US devices (small devices compared to the console-style ultrasound machines that can be carried out by hand);
- (7)
- the studies not applied to human subjects. Duplicated studies were excluded during the screening.
2.3. Data Extraction
- (1)
- study settings (e.g., when?, where?);
- (2)
- study design (e.g., target condition, index test, comparative test, methods to estimate the accuracy of the hand-held US, etc.);
- (3)
- study results (e.g., eligible subjects, evaluated subjects, characteristics of the evaluated patients, accuracy parameters).
2.4. Quality of Reporting Assessment
2.5. Presentation of the Findings
3. Results
4. Discussion
4.1. Main Findings
4.1.1. Hand-held Ultrasound and Physical Examination
4.1.2. Hand-Held Ultrasound and Thoracic Radiography
4.1.3. Hand-Held Ultrasound and Computed Tomography
4.1.4. Hand-Held Ultrasound and High-End Ultrasound
4.2. Lung Ultrasound in Systematic Reviews
4.3. Key Advantages of Hand-Held Ultrasound Devices for Lung Scanning
4.4. Technological Advancement in Lung Ultrasound
4.5. Downsides of Hand-Held Ultrasound Devices
- Battery life is reduced (2–3 h), and recharging takes approximately 6 h
- Inability to perform prolonged scanning because of overheating, with temperatures rising after 15–20 min, which freezes all imaging until the device has cooled down
- Inferior image quality reported by a majority of users
- It is impossible to perform a comprehensive ultrasound examination because of the lack of spectral Doppler, tissue Doppler and other specific measurements offered by fully-featured conventional devices. However, this is not necessarily applied for lung ultrasound, which does not usually require advanced US techniques.
4.6. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Lichtenstein, D.A.; Mezière, G.A. Relevance of Lung Ultrasound in the Diagnosis of Acute Respiratory Failure: The BLUE Protocol. Chest 2008, 134, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Lichtenstein, D.A.; Malbrain, M.L. Lung ultrasound in the critically ill (LUCI): A translational discipline. Anestezjol. Intens Ter. 2017, 49, 430–436. [Google Scholar] [CrossRef] [Green Version]
- Siemens Healthineers. White Paper: Lung Ultrasound in Patients with Coronavirus COVID-19 Disease. Dirk-André Clevert. Available online: https://www.siemens-healthineers.com/ro/ultrasound/lung-ultrasound-covid-19 (accessed on 19 September 2020).
- Volpicelli, G.; International Liaison Committee on Lung Ultrasound (ILC-LUS) for the International Consensus Conference on Lung Ultrasound (ICC-LUS); Elbarbary, M.; Blaivas, M.; Lichtenstein, D.A.; Mathis, G.; Kirkpatrick, A.W.; Melniker, L.; Gargani, L.; Noble, V.E.; et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensiv. Care Med. 2012, 38, 577–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buda, N.; Kosiak, W.; Radzikowska, E.; Olszewski, R.; Jassem, E.; Grabczak, E.M.; Pomiecko, A.; PiotrkowskI, J.; Piskunowicz, M.; Sołtysiak, M.; et al. Polish recommendations for lung ultrasound in internal medicine (POLLUS-IM). J. Ultrason. 2018, 18, 198–206. [Google Scholar] [CrossRef]
- Radzina, M.; Biederer, J. Ultrasonography of the Lung. RöFo 2019, 191, 909–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buda, N.; Kosiak, W.; Wełnicki, M.; Skoczylas, A.; Olszewski, R.; Piotrkowski, J.; Skoczyński, S.; Radzikowska, E.; Jassem, E.; Grabczak, E.M.; et al. Recommendations for Lung Ultrasound in Internal Medicine. Diagnostics 2020, 10, 597. [Google Scholar] [CrossRef]
- Peng, Q.-Y.; Chinese Critical Care Ultrasound Study Group (CCUSG); Wang, X.-T.; Zhang, L.-N. Findings of lung ultrasonography of novel corona virus pneumonia during the 2019–2020 epidemic. Intensiv. Care Med. 2020, 46, 849–850. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Wang, S.; Liu, Y.; Zhang, Y.; Zheng, C.; Zheng, Y.; Zhang, C.; Min, W.; Yu, M.; Hu, M. A Preliminary Study on the Ultrasonic Manifestations of Peripulmonary Lesions of Non-Critical Novel Coronavirus Pneumonia (COVID-19). SSRN Electron. J. 2020, 3544750. [Google Scholar] [CrossRef]
- Poggiali, E.; Dacrema, A.; Bastoni, D.; Tinelli, V.; Demichele, E.; Ramos, P.M.; Marcianò, T.; Silva, M.; Vercelli, A.; Magnacavallo, A. Can Lung US Help Critical Care Clinicians in the Early Diagnosis of Novel Coronavirus (COVID-19) Pneumonia? Radiology 2020, 295, E6. [Google Scholar] [CrossRef] [PubMed]
- Zorpette, G. Portable Ultrasound Proves a Potent Weapon in the Fight Against COVID-19. IEEE Spectrum. 2020. Available online: https://spectrum.ieee.org/the-human-os/biomedical/imaging/portable-ultrasound-proves-potent-weapon-fight-against-covid19 (accessed on 22 April 2021).
- Ong, S.; Tan, Y.K.; Chia, P.Y.; Lee, T.H.; Ng, O.T.; Wong, M.S.Y.; Marimuthu, K. Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) from a Symptomatic Patient. JAMA 2020, 323, 1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.J.; Jelic, T.; Woo, M.Y.; Heslop, C.; Olszynski, P. Just the Facts: Recommendations on point-of-care ultrasound use and machine infection control during the Coronavirus Disease 2019 pandemic. CJEM 2020, 22, 445–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buonsenso, D.; Piano, A.; Raffaelli, F.; Bonadia, N.; de Gaetano Donati, K.; Franceschi, F. Point-of-care lung ultrasound find-ings in novel coronavirus disease-19 pnemoniae: A case report and potential applications during COVID-19 outbreak. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 2776–2780. [Google Scholar] [CrossRef] [PubMed]
- Buonsenso, D.; Pata, D.; Chiaretti, A. COVID-19 outbreak: Less stethoscope, more ultrasound. Lancet Respir. Med. 2020, 8, e27. [Google Scholar] [CrossRef] [Green Version]
- Soldati, G.; Smargiassi, A.; Inchingolo, R.; Buonsenso, D.; Perrone, T.; Briganti, D.F.; Perlini, S.; Torri, E.; Mariani, A.; Mossolani, E.E.; et al. Proposal for International Standardization of the Use of Lung Ultrasound for Patients With COVID-19. J. Ultrasound Med. 2020, 39, 1413–1419. [Google Scholar] [CrossRef] [Green Version]
- Whiting, P.F.; Rutjes, A.W.S.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.G.; Sterne, J.A.C.; Bossuyt, P.M.M.; The QUADAS-2 Group. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Bedetti, G.; Gargani, L.; Corbisiero, A.; Frassi, F.; Poggianti, E.; Mottola, G. Evaluation of ultrasound lung comets by hand-held echocardiography. Cardiovasc. Ultrasound 2006, 4, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kajimoto, K.; Madeen, K.; Nakayama, T.; Tsudo, H.; Kuroda, T.; Abe, T. Rapid evaluation by lung-cardiac-inferior vena cava (LCI) integrated ultrasound for differentiating heart failure from pulmonary disease as the cause of acute dyspnea in the emergency setting. Cardiovasc. Ultrasound 2012, 10, 49. [Google Scholar] [CrossRef] [Green Version]
- Lisi, M.; Cameli, M.; Mondillo, S.; Luzzi, L.; Zacà, V.; Cameli, P.; Gotti, G.; Galderisi, M. Incremental value of pocket-sized imaging device for bedside diagnosis of unilateral pleural effusions and ultrasound-guided thoracentesis. Interact. Cardiovasc. Thorac. Surg. 2012, 15, 596–601. [Google Scholar] [CrossRef] [Green Version]
- Cogliati, C.; Antivalle, M.; Torzillo, D.; Birocchi, S.; Norsa, A.; Bianco, R.; Costantino, G.; Ditto, M.C.; Battellino, M.; Sarzi-Puttini, P.; et al. Standard and pocket-size lung ultrasound devices can detect interstitial lung disease in rheumatoid arthritis patients. Rheumatology 2014, 53, 1497–1503. [Google Scholar] [CrossRef] [Green Version]
- Filopei, J.; Siedenburg, H.; Rattner, P.; Fukaya, E.; Kory, P. Impact of pocket ultrasound use by internal medicine housestaff in the diagnosis of Dyspnea. J. Hosp. Med. 2014, 9, 594–597. [Google Scholar] [CrossRef]
- Platz, E.; Pivetta, E.; Merz, A.; Peck, J.; Rivero, J.; Cheng, S. Impact of device selection and clip duration on lung ultrasound assessment in patients with heart failure. Am. J. Emerg. Med. 2015, 33, 1552–1556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sforza, A.; Mancusi, C.; Carlino, M.V.; Buonauro, A.; Barozzi, M.; Romano, G.; Serra, S.; De Simone, G. Diagnostic performance of multi-organ ultrasound with pocket-sized device in the management of acute dyspnea. Cardiovasc. Ultrasound 2017, 15, 16. [Google Scholar] [CrossRef] [Green Version]
- Phillips, C.T.; Manning, W.J. Advantages and pitfalls of pocket ultrasound vs daily chest radiography in the coronary care unit: A single-user experience. Echocardiography 2017, 34, 656–661. [Google Scholar] [CrossRef]
- Bobbia, X.; Chabannon, M.; Chevallier, T.; de La Coussaye, J.E.; Lefrant, J.Y.; Pujol, S.; Claret, P.-G.; Zieleskiewicz, L.; Roger, C.; Muller, L. Assessment of five different probes for lung ultrasound in critically ill patients: A pilot study. Am. J. Emerg. Med. 2018, 36, 1265–1269. [Google Scholar] [CrossRef]
- Bensted, K.; McKenzie, J.; Havryk, A.; Plit, M.; Ben-Menachem, E. Lung Ultrasound After Transbronchial Biopsy for Pneumothorax Screening in Post–Lung Transplant Patients. J. Bronchology Interv. Pulmonol. 2018, 25, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Lim, R.; Ma, I.W.; Brutsaert, T.D.; Nysten, H.E.; Nysten, C.N.; Sherpa, M.T.; Day, T.A. Transthoracic sonographic assessment of B-line scores during ascent to altitude among healthy trekkers. Respir. Physiol. Neurobiol. 2019, 263, 14–19. [Google Scholar] [CrossRef]
- Newhouse, S.M.; Effing, T.W.; Dougherty, B.D.; Costa, J.A.D.A.; Rose, A.R. Is Bigger Really Better? Comparison of Ultraportable Handheld Ultrasound with Standard Point-of-Care Ultrasound for Evaluating Safe Site Identification and Image Quality prior to Pleurocentesis. Respiration 2020, 99, 325–332. [Google Scholar] [CrossRef]
- Jalil, B.A.; Khan, A.; Kugasia, I.R.; Ijaz, M. Lung ultrasound in early SARS-CoV-2 pneumonia and the LUS-CoV criteria. Bayl. Univ. Med. Cent. Proc. 2021, 34, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Dini, F.L.; Bergamini, C.; Allegrini, A.; Scopelliti, M.; Secco, G.; Miccoli, M.; Boni, S.; Brigada, R.; Perlini, S. Bedside wireless lung ultrasound for the evaluation of COVID-19 lung injury in senior nursing home residents. Monaldi Arch. Chest Dis. 2020, 90, 1446. [Google Scholar] [CrossRef]
- Bennett, D.; De Vita, E.; Mezzasalma, F.; Lanzarone, N.; Cameli, P.; Bianchi, F.; Perillo, F.; Bargagli, E.; Mazzei, M.A.; Volterrani, L.; et al. Portable Pocket-Sized Ultrasound Scanner for the Evaluation of Lung Involvement in Coronavirus Disease 2019 Patients. Ultrasound Med. Biol. 2021, 47, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Melbye, H. Lungeauskultasjonen--fortsatt en nyttig undersøkelse? [Auscultation of the lungs—Still a useful examination?]. Tidsskr. Nor. Laegeforen. 2001, 121, 451–454. [Google Scholar] [PubMed]
- Gustafsson, M.; Alehagen, U.; Johansson, P. Imaging Congestion With a Pocket Ultrasound Device: Prognostic Implications in Patients With Chronic Heart Failure. J. Card. Fail. 2015, 21, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Bourcier, J.-E.; Braga, S.; Garnier, D. Lung Ultrasound Will Soon Replace Chest Radiography in the Diagnosis of Acute Community-Acquired Pneumonia. Curr. Infect. Dis. Rep. 2016, 18, 43. [Google Scholar] [CrossRef] [PubMed]
- Maw, A.M.; Hassanin, A.; Ho, P.M.; McInnes, M.D.F.; Moss, A.; Juarez-Colunga, E.; Soni, N.J.; Miglioranza, M.H.; Platz, E.; DeSanto, K.; et al. Diagnostic Accuracy of Point-of-Care Lung Ultrasonography and Chest Radiography in Adults With Symptoms Suggestive of Acute Decompensated Heart Failure. JAMA Netw. Open 2019, 2, e190703. [Google Scholar] [CrossRef]
- Xia, Y.; Ying, Y.; Wang, S.; Li, W.; Shen, H. Effectiveness of lung ultrasonography for diagnosis of pneumonia in adults: A systematic review and meta-analysis. J. Thorac. Dis. 2016, 8, 2822–2831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buonsenso, D.; Raffaelli, F.; Tamburrini, E.; Biasucci, D.G.; Salvi, S.; Smargiassi, A.; Inchingolo, R.; Scambia, G.; Lanzone, A.; Testa, A.C.; et al. Clinical role of lung ultrasound for diagnosis and monitoring of COVID-19 pneumonia in pregnant women. Ultrasound Obstet. Gynecol. 2020, 56, 106–109. [Google Scholar] [CrossRef] [PubMed]
- NICE. Butterfly iQ+ for Diagnostic Ultrasound Imaging. Medtech Innovation Briefing. Available online: https://www.nice.org.uk/advice/mib254/resources/butterfly-iq-for-diagnostic-ultrasound-imaging-pdf-2285965693413061 (accessed on 4 March 2021).
- Burleson, S.L.; Swanson, J.F.; Shufflebarger, E.F.; Wallace, D.W.; Heimann, M.A.; Crosby, J.C.; Pigott, D.C.; Gullett, J.P.; Thompson, M.A.; Greene, C.J. Evaluation of a novel handheld point-of-care ultrasound device in an African emergency department. Ultrasound J. 2020, 12, 53. [Google Scholar] [CrossRef]
- Rajendram, R.; Hussain, A.; Mahmood, N.; Kharal, M. Feasibility of using a handheld ultrasound device to detect and characterize shunt and deep vein thrombosis in patients with COVID-19: An observational study. Ultrasound J. 2020, 12, 49. [Google Scholar] [CrossRef]
- ClinicalTrials.gov Identifier: NCT04591158. Status: Recruiting. Indication: Lung infection, COVID-19. Devices: Butterfly iQ+. Last Updated: October 2020. Country: Canada. Available online: www.clinicaltrials.gov/ct2/show/NCT04591158 (accessed on 10 May 2021).
- Trauer, M.M.; Matthies, A.; Mani, N.; McDermott, C.; Jarman, R. The utility of lung ultrasound in COVID-19: A systematic scoping review. Ultrasound 2020, 28, 208–222. [Google Scholar] [CrossRef]
- Hew, M.; Corcoran, J.P.; Harriss, E.; Rahman, N.M.; Mallett, S. The diagnostic accuracy of chest ultrasound for CT-detected radiographic consolidation in hospitalised adults with acute respiratory failure: A systematic review. BMJ Open 2015, 5, e007838. [Google Scholar] [CrossRef]
- Smith, M.; Hayward, S.; Innes, S.; Miller, A. Point-of-care lung ultrasound in patients with COVID-19—A narrative review. Anaesthesia 2020, 75, 1096–1104. [Google Scholar] [CrossRef] [Green Version]
- Pillai, K.; Hewage, S.; Harky, A. The Role of the Lung Ultrasound in Coronavirus Disease 2019: A Systematic Review. J. Med. Ultrasound 2020, 28, 207–212. [Google Scholar] [PubMed]
- Roy, S.; Menapace, W.; Oei, S.; Luijten, B.; Fini, E.; Saltori, C.; Huijben, I.; Chennakeshava, N.; Mento, F.; Sentelli, A.; et al. Deep Learning for Classification and Localization of COVID-19 Markers in Point-of-Care Lung Ultrasound. IEEE Trans. Med. Imaging 2020, 39, 2676–2687. [Google Scholar] [CrossRef] [PubMed]
- Evans, K.D.; Yang, Q.; Liu, Y.; Ye, R.; Peng, C. Sonography of the Lungs: Diagnosis and Surveillance of Patients With COVID-19. J. Diagn. Med. Sonogr. 2020, 36, 370–376. [Google Scholar] [CrossRef]
- Anatomical Intelligence—Advanced Quantification and Reproducibility for Ultrasound Exams. © Koninklijke Philips N.V., 2004–2021. Available online: https://www.usa.philips.com/healthcare/resources/feature-detail/anatomical-intelligence-ultrasound (accessed on 24 April 2021).
- Baribeau, Y.; Sharkey, A.; Chaudhary, O.; Krumm, S.; Fatima, H.; Mahmood, F.; Matyal, R. Handheld Point-of-Care Ultrasound Probes: The New Generation of POCUS. J. Cardiothorac. Vasc. Anesth. 2020, 34, 3139–3145. [Google Scholar] [CrossRef] [PubMed]
Study, Year [Ref.] | Location | Sign/Disease | Index Test Device | Comparator Test |
---|---|---|---|---|
Bedetti et al., 2006 [18] | Pisa, Italy | ultrasound lung comets (ULC) (extravascular lung water) | Optigo (Philips, Andover, MA, USA) (“low-tech beginner”) | conventional US |
Kajimoto et al., 2012 [19] | Tokyo, Japan | pulmonary disease | Vscan (GE Healthcare, Japan) | chest X-ray |
Lisi et al., 2012 [20] | Siena, Italy | pleural effusion | Vscan, Horten, Norway (1.7–3.8 MHz) | chest X-rays |
Cogliati et al. 2014 [21] | Milan, Italy | interstitial lung disease in patients with rheumatoid arthritis | VSCAN, GE Healthcare, Fairfield, CT, USA) supporting a phased array transducer (1.7–3.8 MHz). | conventional US, high-resolution CT |
Filopei et al., 2014 [22] | New York City, NY, USA | Dyspnea * | Vscan; GE Vingmed Ultrasound, Horten, Norway | chest X-ray, CT |
Platz et al., 2015 [23] | unclear | pulmonary edema—heart failure | VScan, General Electric | conventional US |
Sforza et al., 2017 [24] | Italy | acute or worsening of chronic dyspnea | Vscan (General Electric Healthcare | chest X-ray |
Phillips and Manning, 2017 [25] | Boston, MA, USA | interstitial edema, pleural effusion, pneumonia, and the presence of a central line | Vscan (GE Vingmed Ultrasound A/S, Horten, Norway) | chest X-ray and conventional transthoracic echocardiography (TTE) |
Bobbia et al., 2018 [26] | France | acute respiratory failure | Vscan Dual probe, GE Hea | CT, conventional US |
Bensted et al., 2018 [27] | Sydney, Australia | pneumothorax after transbronchial lung biopsy | Vscan; GE Healthcare, Chicago, IL, USA) | chest X-ray |
Lima et al., 2019 [28] | Nepal | subclinical pulmonary edema on healthy volunteers | iViz (FUJIFILM SonoSite, Inc) | Ancillary measurements included pulse oximetry (SpO2; %), heart rate (HR; /min), and blood pressure (BP; mmHg) |
Newhouse et al. 2020 [29] | Adelaide, SA, Australia | unilateral pleural effusion | Signostics Uscan© hand-held US | conventional US |
Jalil et al., 2020 [30] | TX, USA | SARS-CoV-2 pneumonia | Vscan Extend Dual Probe, GE | chest X-ray, SARS-CoV-2 PCR testing |
Dini et al. 2020 [31] | Pavia, Italy | COVID-19 pneumonia | CERBERO (ATL, Milano, Italy) | nasopharyngeal swab testing for COVID-19 |
Bennett et al. 2021 [32] | Siena, Italy | COVID-19 pneumonia | Butterfly iQ | conventional US |
Study, Year [Ref.] | Sample Size | Age, Years | Men | Accuracy Metric |
---|---|---|---|---|
Bedetti et al., 2006 [18] | 20 | 66 ± 12 | 18 (90.0) | Feasibility: 100%; Mean ULCs: 35.7 ± 25.3 (“high-tech veteran”) vs. 34.2 ± 26.8 (“low-tech beginner”) |
Kajimoto et al., 2012 [19] | 90 | 78.1 ± 9.9 | 45 (50.0) | Se = 96.2%, Sp = 54.0%, NPV = 90.9%, PPV = 75.0%, |
Lisi et al., 2012 [20] | 73 | 68.4 ± 9.2 | 41 (56.2) | AUC = 0.99, Se = 91.7%, Sp = 99.9% for PE (pleural effusion) >100 mL |
Cogliati et al., 2014 [21] | 29 | 64.87 ± 9.9 n = 39 | 10 (25.6) n = 39 | LUS using a PS-USD: Se = 89% (95%CI = [68 to 100]), Sp = 50% [28 to 72], n = 29 |
Filopei et al., 2014 [22] | 69 | 69 ± n.a. | (52.2) | Se = 36% and Sp = 100% for pneumonia—focus training group vs. Se = 89% and Sp = 100% for pulmonary edema—extended training group |
Platz et al., 2015 [23] | 21 | 73 (36 to 86) | 17 (81) | number of B-lines: Wilcoxon signed-rank test |
Sforza et al., 2017 [24] | 68 | 78 ± 12 | 43 (62) | Se = 92.6% [74.2 to 98.7], Sp = 80.5% [64.6 to 90.6], PPV = 75.8% [57.4 to 88.2], NPV = 94.3% [79.5 to 99], Acc = 85.3% for interstitial syndrome / effusion |
Phillips and Manning, 2017 [25] | 64 * | 70 ± 15 | n.a. | Concordance PS-USD—X-rays: 80% (interstitial edema), 77% (pleural effusion), 92% (pneumonia), 81% (central line) |
Bobbia et al., 2018 [26] | 10 | 62 ± 16 | 5 (50) | Kappa coefficient PUD—CT using vascular probe (6–14 MHz): 0.62 [0.37 to 0.86] for experts and 0.68 [0.44 to 0.91] for trained physicians |
Bensted et al., 2018 [27] | 165 | 44 (mean value) | 80 (48.5) | Se = 75%, Sp = 93%, PPV = 35%, NPV = 99% |
Lima et al., 2019 [28] | 20 | 24.7 ± 5.8 | 9 (45) | B-line Scores at different altitude: 3 (1400m), 0 (3440 m), 1 (3820 m), 17 (4240m), 12 (5160m) |
Newhouse et al., 2020 [29] | 53 | 72.9 ± 12.7 | 27 (50) | No accuracy assessment; image ratings |
Jalil et al., 2020 [30] | 69 | 64 ± n.a. | 34 (49) | LUS vs. RT-PCR testing: Se = 91%, Sp = 86%, PPV = 86%, NPV = 91% |
Dini et al., 2020 [31] | 150 | 88 ± n.a. | n.a. (15) | Se = 79% in predicting positive naso-pharyngeal testing, Sp = 57%, PPV = 74%, NPV = 62% |
Bennett et al., 2021 [32] | 18 | 77.6 ± 10 | 14 (n.a.) | PS-USD vs. conventional US: Pearson correlation coefficient 0.99, Bland–Altman bias close to zero (absolute level of bias—0.016) |
Study, Year [Ref] | Risk of Bias | Applicability Concerns | Comments | |||||
---|---|---|---|---|---|---|---|---|
Patient Selection | Index Test | Comparator test | Flow and Timing | Patient Selection | Index Test | Comparator Test | ||
Bedetti et al., 2006 [18] | unclear | unclear | unclear | low | low | low | low | |
Kajimoto et al., 2012 [19] | unclear | low | low | low | low | low | low | |
Lisi et al., 2012 [20] | low | low | low | low | low | low | low | X-ray followed by hand-held US |
Cogliati et al., 2014 [21] | low | low | low | low | low | low | low | A short-trained physician, who underwent two sessions of 3h each for recognition of B-lines |
Filopei et al., 2014 [22] | low | high | low | low | low | low | low | Brief report |
Platz et al., 2015 [23] | low | low | low | low | low | low | low | |
Sforza et al., 2017 [24] | low | low | low | low | low | low | low | |
Phillips and Manning, 2017 [25] | low | low | unclear | unclear | low | low | low | Different results reported in the abstract and in the body of the manuscript |
Bobbia et al., 2018 [26] | low | high | unclear | low | low | low | low | |
Bensted et al., 2018 [27] | low | low | low | low | low | low | low | 17 patients with pneumothorax |
Lima et al., 2019 [28] | low | low | low | low | low | low | low | |
Newhouse et al., 2020 [29] | low | low | low | low | low | low | low | |
Jalil et al., 2020 [30] | high | low | low | low | low | low | low | |
Dini et al., 2020 [31] | low | low | low | unclear | low | low | low | |
Bennett et al., 2021 [32] | unclear | low | low | low | low | low | low | Two different operators, both experts in lung ultrasound |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haji-Hassan, M.; Lenghel, L.M.; Bolboacă, S.D. Hand-Held Ultrasound of the Lung: A Systematic Review. Diagnostics 2021, 11, 1381. https://doi.org/10.3390/diagnostics11081381
Haji-Hassan M, Lenghel LM, Bolboacă SD. Hand-Held Ultrasound of the Lung: A Systematic Review. Diagnostics. 2021; 11(8):1381. https://doi.org/10.3390/diagnostics11081381
Chicago/Turabian StyleHaji-Hassan, Mariam, Lavinia Manuela Lenghel, and Sorana D. Bolboacă. 2021. "Hand-Held Ultrasound of the Lung: A Systematic Review" Diagnostics 11, no. 8: 1381. https://doi.org/10.3390/diagnostics11081381
APA StyleHaji-Hassan, M., Lenghel, L. M., & Bolboacă, S. D. (2021). Hand-Held Ultrasound of the Lung: A Systematic Review. Diagnostics, 11(8), 1381. https://doi.org/10.3390/diagnostics11081381