Testing a Deep Learning Algorithm for Detection of Diabetic Retinopathy in a Spanish Diabetic Population and with MESSIDOR Database
Abstract
:1. Introduction
2. Subjects
2.1. Setting
2.2. Datasets
2.3. Design
2.4. Inclusion and Exclusion Criteria
3. Material and Methods
3.1. Ethics and Consent
3.2. Imaging Technique
3.3. Model Construction
3.4. Training, Validation and Testing the DLA
3.4.1. Training
3.4.2. Validation
3.4.3. Testing
3.5. Statistical Methods
4. Results
4.1. Description of Sample Size
4.2. Testing the DLA in Our Population Cohort
4.3. Testing the DLA with MESSIDOR Database
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaw, J.E.; Sicree, R.A.; Zimmet, P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Prot. 2010, 87, 4–14. [Google Scholar] [CrossRef]
- Ogurtsova, K.; Rocha Fernandes, J.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Prot. 2017, 128, 40–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. Microvascular complications and foot care: Standards of medical care in diabetes—2018. Diabetes Care 2018, 41 (Suppl. 1), S105–S118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yau, J.W.; Rogers, S.L.; Kawasaki, R.; Lamoureux, E.L.; Kowalski, J.W.; Bek, T.; Chen, S.-J.; Dekker, J.M.; Fletcher, A.; Grauslund, J.; et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012, 35, 556–564. [Google Scholar] [CrossRef] [Green Version]
- Bourne, R.R.; Jonas, J.B.; Flaxman, S.R.; Keeffe, J.; Leasher, J.; Naidoo, K.; Parodi, M.B.; Pesudovs, K.; Price, H.; White, R.A.; et al. Prevalence and causes of vision loss in high-income countries and in Eastern and Central Europe: 1990–2010. Br. J. Ophthalmol. 2014, 98, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Sabanayagam, C.; Banu, R.; Chee, M.L.; Lee, R.; Wang, Y.X.; Tan, G.; Jonas, J.B.; Lamoureux, E.L.; Cheng, C.Y.; Klein, B.E.K.; et al. Incidence and progression of diabetic retinopathy: A systematic review. Lancet Diabetes Endocrinol. 2019, 7, 140–149. [Google Scholar] [CrossRef]
- Ghanchi, F.; Diabetic Retinopathy Guidelines Working Group. The Royal College of Ophthalmologist’ clinical guidelines for diabetic retinopathy: A summary. Eye 2013, 27, 285–287. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.M.; Wu, A.M.; Young, B.K.; Wu, D.J.; Margo, C.E.; Greenberg, P.B. An appraisal of clinical practice guidelines for diabetic retinopathy. Am. J. Med. Qual. 2016, 31, 370–375. [Google Scholar] [CrossRef]
- Romero-Aroca, P.; De La Riva-Fernandez, S.; Valls-Mateu, A.; Sagarra-Alamo, R.; Moreno-Ribas, A.; Soler, N. Changes observed in diabetic retinopathy. Eight year follow up of a Spanish population. Br. J. Ophthalmol. 2016, 100, 1366–1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero-Aroca, P.; Sagarra-Alamo, R.; Pareja-Rios, A.; López, M. Importance of telemedicine in diabetes care: Relationships between family physicians and ophthalmologists. World J. Diabetes 2015, 6, 1005–1008. [Google Scholar] [CrossRef]
- Ting, D.S.W.; Cheung, C.Y.-L.; Lim, G.; Tan, G.S.W.; Quang, N.D.; Gan, A.; Hamzah, H.; Garcia-Franco, R.; Yeo, I.Y.S.; Lee, S.Y.; et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 2017, 318, 2211–2223. [Google Scholar] [CrossRef]
- Abràmoff, M.D.; Lavin, P.T.; Birch, M.; Shah, N.; Folk, J.C. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit. Med. 2018, 1, 39. [Google Scholar] [CrossRef]
- De la Torre, J.; Puig, D.; Valls, A. Weighted kappa loss function for multi-class classification of ordinal data in deep learning. Pattern Recognit. Lett. 2018, 106, 144–154. [Google Scholar] [CrossRef]
- Tufail, A.; Kapetanakis, V.V.; Salas-Vega, S.; Egan, C.; Rudisill, C.; Owen, C.G.; Lee, A.; Louw, V.; Anderson, J.; Liew, G.; et al. An observational study to assess if automated diabetic retinopathy image assessment software can replace one or more steps of manual imaging grading and to determine their cost-effectiveness. Health Technol. Assess. 2016, 92, 1–72. [Google Scholar] [CrossRef] [Green Version]
- Tufail, A.; Rudisill, C.; Egan, C.; Kapetanakis, V.V.; Salas-Vega, S.; Owen, C.G.; Lee, A.; Louw, V.; Anderson, J.; Liew, G.; et al. Automated diabetic retinopathy image assessment software: Diagnostic accuracy and cost-effectiveness compared with human graders. Ophthalmology 2017, 124, 343–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De la Torre, J.; Valls, A.; Puig, D. A Deep learning interpretable classifier for diabetic retinopathy grading, Neurocomputing 2020, 396, 465–476. Neurocomputing 2020, 396, 465–476. [Google Scholar] [CrossRef] [Green Version]
- Decencière, E.; Zhang, X.; Cazuguel, G.; Lay, B.; Cochener, B.; Trone, C.; Gain, P.; Ordonez, R.; Massin, P.; Erginay, A.; et al. Feedback on a publicly distributed database: The Messidor database. Image Anal. Stereol. 2014, 33, 231–234. Available online: http://www.ias-iss.org/ojs/IAS/article/view/1155 (accessed on 28 June 2021). [CrossRef] [Green Version]
- EyePACS. EyePACS Dataset. 2018. Available online: https://kaggle.com/c/diabetic-retinopathy-detection/data (accessed on 28 June 2021).
- Romero-Aroca, P.; Verges-Puig, R.; De la Torre, J.; Valls, A.; Relaño-Barambio, N.; Domenec-Puig Baget-Bernaldiz, M. Validation of a deep learning algorithm for diabetic retinopathy. Telemed. J. E-Health 2020, 8, 1001–1008. [Google Scholar] [CrossRef]
- Friedenwald, J. Diabetic Retinopathy. Am. J. Ophthalmol. 1950, 33, 1187–1199. [Google Scholar] [CrossRef]
- Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; et al. Detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016, 316, 2402–2410. [Google Scholar] [CrossRef]
- Wilkinson, C.P.; Ferris, F.L.; Klein, R.E.; Lee, P.P.; Agardh, C.D.; Davis, M.; Dills, D.; Kampik, A.; Pararajasegaram, R.; Verdaguer, J.T. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 2003, 110, 1677–1682. [Google Scholar] [CrossRef]
- Shah, P.; Mishra, D.; Shanmugam, M.; Doshi, B.; Jayaraj, H.; Ramanju, R. Validation of deep convolutional neural network-based algorithm for detection of diabetic retinopathy-artificial intelligence versus clinician for screening. Indian J. Ophthalmol. 2020, 68, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Van Der Heijden, A.A.; Abramoff, M.D.; Verbraak, F.; van Hecke, M.V.; Liem, A.; Nijpels, G. Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the hoorn diabetes care system. Acta Ophthalmol. 2018, 96, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Erfurth, U.; Sadeghipour, A.; Gerendas, B.S.; Waldstein, S.M.; Bogunovic, H. Artificial intelligence in retina. Prog. Retin. Eye Res. 2018, 67, 1–29. [Google Scholar] [CrossRef]
- Bhaskaranand, M.; Ramachandra, C.; Bhat, S.; Cuadros, J.; Nittala, M.G.; Sadda, S.R.; Solanki, K. The value of automated diabetic retinopathy screening wuth the EyeArt system: A study of more than 100,000 consecutive encounters from people with diabetes. Diabetes Technol. Ther. 2019, 21, 635–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Gonzalo, C.; Sánchez-Gutiérrez, V.; Hernández-Martínez, P.; Contreras, I.; Lechanteur, Y.T.; Domanian, A.; Van Ginneken, B.; Sánchez, C.I. Evaluation of a deep learning system for the joint automated detection of diabetic retinopathy and age-related macular degeneration. Acta Ophthalmol. 2020, 98, 368–377. [Google Scholar] [CrossRef]
- Takahashi, H.; Tampo, H.; Arai, Y.; Inoue, Y.; Kawashima, H. Applying artificial intelligence to disease staging: Deep learning for improved staging of diabetic retinopathy. PLoS ONE 2017, 12, e0179790. [Google Scholar] [CrossRef] [Green Version]
- NCD Risk Factor Collaboration. Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 2016, 387, 1513–1530. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Our Population | MESSIDOR |
---|---|---|
Patient demographics | ||
No. of unique individuals | 7164 | 874 |
Age, mean (SD) (years) | 67.3 (12.01) | 57.6 (15.9) |
Gender (male %) | 54.6 | 57.4 |
Retinal images | ||
No. of images | 14,186 | 1200 |
No. of ophthalmologists | 4 | 4 |
No. of grades per image | 4 | 4 |
Gradeability rate (%) | 99.00% | 100.00% |
DR distribution classified by the ophthalmologists (reference standard). No, (%) | ||
No DR (level 0) | 11,827 (83.4) | 625 (52.0) |
Mild DR (level 1) | 778 (5.5) | 197 (16.4) |
Moderate DR (level 2) | 984 (6.9) | 130 (10.8) |
Severe or proliferative DR (level 3) | 597 (4.2) | 248 (20.6) |
Referable DR | 1503 (10.6) | 378 (31.5) |
Predicted by the DLA | |||||
---|---|---|---|---|---|
No DR | Mild DR | Moderate DR | Severe DR | ||
Diagnosed by Ophthalmologists | No DR | 11,816 | 11 | 0 | 0 |
Mild DR | 36 | 732 | 10 | 0 | |
Moderate DR | 9 | 32 | 940 | 3 | |
Severe DR | 4 | 13 | 64 | 516 | |
Total | 11,865 | 788 | 1014 | 519 |
A | Predicted by the DLA | ||
No DR | Any DR | ||
Diagnosed by ophthalmologists | No DR | 11,816 | 11 |
Any DR | 49 | 2310 | |
11,865 | 2321 | ||
B | Predicted by the DLA | ||
No DR + Mild DR | Referable DR | ||
Diagnosed by ophthalmologists | No DR + mild DR | 12,595 | 10 |
Referable DR | 58 | 1523 | |
12,653 | 1533 |
Predicted by the DLA | |||||
---|---|---|---|---|---|
No DR | Mild DR | Moderate DR | Severe DR | ||
Predicted by MESSIDOR | No DR | 610 | 35 | 0 | 0 |
Mild DR | 13 | 143 | 7 | 0 | |
Moderate DR | 2 | 15 | 116 | 10 | |
Severe DR | 0 | 4 | 7 | 238 | |
Total | 625 | 197 | 130 | 248 |
A | Predicted by the DLA | ||
No DR | Any DR | ||
Predicted by MESSIDOR | No DR | 610 | 35 |
Any DR | 15 | 545 | |
625 | 575 | ||
B | Predicted by the DLA | ||
No DR + Mild DR | Referable DR | ||
Predicted by MESSIDOR | No DR + Mild DR | 801 | 7 |
Referable DR | 21 | 371 | |
822 | 378 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baget-Bernaldiz, M.; Pedro, R.-A.; Santos-Blanco, E.; Navarro-Gil, R.; Valls, A.; Moreno, A.; Rashwan, H.A.; Puig, D. Testing a Deep Learning Algorithm for Detection of Diabetic Retinopathy in a Spanish Diabetic Population and with MESSIDOR Database. Diagnostics 2021, 11, 1385. https://doi.org/10.3390/diagnostics11081385
Baget-Bernaldiz M, Pedro R-A, Santos-Blanco E, Navarro-Gil R, Valls A, Moreno A, Rashwan HA, Puig D. Testing a Deep Learning Algorithm for Detection of Diabetic Retinopathy in a Spanish Diabetic Population and with MESSIDOR Database. Diagnostics. 2021; 11(8):1385. https://doi.org/10.3390/diagnostics11081385
Chicago/Turabian StyleBaget-Bernaldiz, Marc, Romero-Aroca Pedro, Esther Santos-Blanco, Raul Navarro-Gil, Aida Valls, Antonio Moreno, Hatem A. Rashwan, and Domenec Puig. 2021. "Testing a Deep Learning Algorithm for Detection of Diabetic Retinopathy in a Spanish Diabetic Population and with MESSIDOR Database" Diagnostics 11, no. 8: 1385. https://doi.org/10.3390/diagnostics11081385