Diagnostic Performance of Electromagnetic Navigation Bronchoscopy-Guided Biopsy for Lung Nodules in the Era of Molecular Testing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Data Collection
2.2. Procedure and Clinical Measurements
2.3. Molecular Testing for Lung Cancer
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Subjects
3.2. Baseline Characteristics of Lung the Nodules
3.3. Results of ENB
3.4. Factors Affecting the Diagnostic Yield
3.5. Safety
3.6. Molecular Testing Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bai, C.; Choi, C.M.; Chu, C.M.; Anantham, D.; Chung-Man Ho, J.; Khan, A.Z.; Lee, J.M.; Li, S.Y.; Saenghirunvattana, S.; Yim, A. Evaluation of Pulmonary Nodules: Clinical Practice Consensus Guidelines for Asia. Chest 2016, 150, 877–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Koning, H.J.; Meza, R.; Plevritis, S.K.; ten Haaf, K.; Munshi, V.N.; Jeon, J.; Erdogan, S.A.; Kong, C.Y.; Han, S.S.; van Rosmalen, J.; et al. Benefits and harms of computed tomography lung cancer screening strategies: A comparative modeling study for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2014, 160, 311–320. [Google Scholar] [CrossRef]
- Mouronte-Roibas, C.; Leiro-Fernandez, V.; Fernandez-Villar, A.; Botana-Rial, M.; Ramos-Hernandez, C.; Ruano-Ravina, A. COPD, emphysema and the onset of lung cancer. A systematic review. Cancer Lett. 2016, 382, 240–244. [Google Scholar] [CrossRef]
- Naccache, J.M.; Gibiot, Q.; Monnet, I.; Antoine, M.; Wislez, M.; Chouaid, C.; Cadranel, J. Lung cancer and interstitial lung disease: A literature review. J. Thorac. Dis. 2018, 10, 3829–3844. [Google Scholar] [CrossRef]
- Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J.; Wu, Y.-L.; Paz-Ares, L. Lung cancer: Current therapies and new targeted treatments. Lancet 2017, 389, 299–311. [Google Scholar] [CrossRef]
- Kalanjeri, S.; Gildea, T.R. Electromagnetic Navigational Bronchoscopy for Peripheral Pulmonary Nodules. Thorac. Surg. Clin. 2016, 26, 203–213. [Google Scholar] [CrossRef]
- Loo, F.L.; Halligan, A.M.; Port, J.L.; Hoda, R.S. The emerging technique of electromagnetic navigation bronchoscopy-guided fine-needle aspiration of peripheral lung lesions: Promising results in 50 lesions. Cancer Cytopathol. 2014, 122, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Seijo, L.M.; de Torres, J.P.; Lozano, M.D.; Bastarrika, G.; Alcaide, A.B.; Lacunza, M.M.; Zulueta, J.J. Diagnostic yield of electromagnetic navigation bronchoscopy is highly dependent on the presence of a Bronchus sign on CT imaging: Results from a prospective study. Chest 2010, 138, 1316–1321. [Google Scholar] [CrossRef] [Green Version]
- Ost, D.E.; Ernst, A.; Lei, X.; Kovitz, K.L.; Benzaquen, S.; Diaz-Mendoza, J.; Greenhill, S.; Toth, J.; Feller-Kopman, D.; Puchalski, J.; et al. Diagnostic Yield and Complications of Bronchoscopy for Peripheral Lung Lesions. Results of the AQuIRE Registry. Am. J. Respir. Crit. Care Med. 2016, 193, 68–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, D.S.; Bartlett, R.J. Improved Diagnostic Yield of Bronchoscopy in a Community Practice: Combination of Electromagnetic Navigation System and Rapid On-site Evaluation. J. Bronchol. Interv. Pulmonol. 2007, 14, 227–232. [Google Scholar] [CrossRef]
- Folch, E.E.; Pritchett, M.A.; Nead, M.A.; Bowling, M.R.; Murgu, S.D.; Krimsky, W.S.; Murillo, B.A.; LeMense, G.P.; Minnich, D.J.; Bansal, S.; et al. Electromagnetic Navigation Bronchoscopy for Peripheral Pulmonary Lesions: One-Year Results of the Prospective, Multicenter NAVIGATE Study. J. Thorac. Oncol. 2019, 14, 445–458. [Google Scholar] [CrossRef] [Green Version]
- Patrucco, F.; Gavelli, F.; Daverio, M.; Antonini, C.; Boldorini, R.; Casadio, C.; Balbo, P.E. Electromagnetic Navigation Bronchoscopy: Where Are We Now? Five Years of a Single-Center Experience. Lung 2018, 196, 721–727. [Google Scholar] [CrossRef]
- Khandhar, S.J.; Bowling, M.R.; Flandes, J.; Gildea, T.R.; Hood, K.L.; Krimsky, W.S.; Minnich, D.J.; Murgu, S.D.; Pritchett, M.; Toloza, E.M.; et al. Electromagnetic navigation bronchoscopy to access lung lesions in 1,000 subjects: First results of the prospective, multicenter NAVIGATE study. BMC Pulm. Med. 2017, 17, 59. [Google Scholar] [CrossRef]
- Muñoz-Largacha, J.A.; Litle, V.R.; Fernando, H.C. Navigation bronchoscopy for diagnosis and small nodule location. J. Thorac. Dis. 2017, 9, S98–S103. [Google Scholar] [CrossRef] [Green Version]
- Mallow, C.; Lee, H.; Oberg, C.; Thiboutot, J.; Akulian, J.; Burks, A.C.; Luna, B.; Benzaquen, S.; Batra, H.; Cardenas-Garcia, J.; et al. Safety and diagnostic performance of pulmonologists performing electromagnetic guided percutaneous lung biopsy (SPiNperc). Respirology 2019, 24, 453–458. [Google Scholar] [CrossRef]
- Han, H.S.; Lim, S.N.; An, J.Y.; Lee, K.M.; Choe, K.H.; Lee, K.H.; Kim, S.T.; Son, S.M.; Choi, S.Y.; Lee, H.C.; et al. Detection of EGFR mutation status in lung adenocarcinoma specimens with different proportions of tumor cells using two methods of differential sensitivity. J. Thorac. Oncol. 2012, 7, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Naito, T.; Udagawa, H.; Sato, J.; Horinouchi, H.; Murakami, S.; Goto, Y.; Kanda, S.; Fujiwara, Y.; Yamamoto, N.; Zenke, Y.; et al. A Minimum of 100 Tumor Cells in a Single Biopsy Sample Is Required to Assess Programmed Cell Death Ligand 1 Expression in Predicting Patient Response to Nivolumab Treatment in Nonsquamous Non-Small Cell Lung Carcinoma. J. Thorac. Oncol. 2019, 14, 1818–1827. [Google Scholar] [CrossRef]
- Ettinger, D.S.; Wood, D.E.; Aisner, D.L.; Akerley, W.; Bauman, J.R.; Bharat, A.; Bruno, D.S.; Chang, J.Y.; Chirieac, L.R.; D’Amico, T.A.; et al. NCCN Guidelines Insights: Non-Small Cell Lung Cancer, Version 2.2021. J. Natl. Compr. Cancer Netw. 2021, 19, 254–266. [Google Scholar] [CrossRef]
- Gex, G.; Pralong, J.A.; Combescure, C.; Seijo, L.; Rochat, T.; Soccal, P.M. Diagnostic yield and safety of electromagnetic navigation bronchoscopy for lung nodules: A systematic review and meta-analysis. Respiration 2014, 87, 165–176. [Google Scholar] [CrossRef]
- Chen, A.; Pastis, N.; Furukawa, B.; Silvestri, G.A. The effect of respiratory motion on pulmonary nodule location during electromagnetic navigation bronchoscopy. Chest 2015, 147, 1275–1281. [Google Scholar] [CrossRef]
- Karnak, D.; Ciledağ, A.; Ceyhan, K.; Atasoy, C.; Akyar, S.; Kayacan, O. Rapid on-site evaluation and low registration error enhance the success of electromagnetic navigation bronchoscopy. Ann. Thorac. Med. 2013, 8, 28–32. [Google Scholar] [CrossRef]
- Lamprecht, B.; Porsch, P.; Wegleitner, B.; Strasser, G.; Kaiser, B.; Studnicka, M. Electromagnetic navigation bronchoscopy (ENB): Increasing diagnostic yield. Respir. Med. 2012, 106, 710–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamprecht, B.; Porsch, P.; Pirich, C.; Studnicka, M. Electromagnetic navigation bronchoscopy in combination with PET-CT and rapid on-site cytopathologic examination for diagnosis of peripheral lung lesions. Lung 2009, 187, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, R.; Morgan, R.K.; Ernst, A.; Beyer, T.; Herth, F.J. Comparison of suction catheter versus forceps biopsy for sampling of solitary pulmonary nodules guided by electromagnetic navigational bronchoscopy. Respiration 2010, 79, 54–60. [Google Scholar] [CrossRef]
- Webb, T.N.; Bonta, D.V.; Masters, R.; Parks, C.; Bechara, R. Jet Ventilation Decreases Target Motion and Increases Yield of ENB Especially in Lesions With Negative Bronchus Sign. J. Bronchol. Interv. Pulmonol. 2020, 27, 14–21. [Google Scholar] [CrossRef]
- Kim, I.; Kim, A.; Lee, C.H.; Lee, G.; Kim, A.; Jo, E.J.; Kim, M.H.; Mok, J.; Lee, K.; Kim, K.U.; et al. Reliability of PD-L1 assays using small tissue samples compared with surgical specimens. Medicine 2019, 98, e14972. [Google Scholar] [CrossRef]
- Heymann, J.J.; Bulman, W.A.; Swinarski, D.; Pagan, C.A.; Crapanzano, J.P.; Haghighi, M.; Fazlollahi, L.; Stoopler, M.B.; Sonett, J.R.; Sacher, A.G.; et al. PD-L1 expression in non-small cell lung carcinoma: Comparison among cytology, small biopsy, and surgical resection specimens. Cancer Cytopathol. 2017, 125, 896–907. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Xie, F.; Zheng, X.; Jiang, Y.; Zhu, L.; Mao, X.; Han, B. Learning curve of electromagnetic navigation bronchoscopy for diagnosing peripheral pulmonary nodules in a single institution. Transl. Cancer Res. 2017, 6, 541–551. [Google Scholar] [CrossRef]
- Shinde, A.; Li, R.; Kim, J.; Salgia, R.; Hurria, A.; Amini, A. Stereotactic body radiation therapy (SBRT) for early-stage lung cancer in the elderly. Semin. Oncol. 2018, 45, 210–219. [Google Scholar] [CrossRef]
- Sebastian, N.T.; Merritt, R.E.; Abdel-Rasoul, M.; Wu, T.; Bazan, J.G.; Xu-Welliver, M.; Haglund, K.; D’Souza, D.; Kneuertz, P.J.; Williams, T.M. Recurrence After Stereotactic Body Radiation Therapy versus Lobectomy for Non-Small Cell Lung Cancer. Ann. Thorac. Surg. 2020, 110, 998–1005. [Google Scholar] [CrossRef]
- Folch, E.E.; Labarca, G.; Ospina-Delgado, D.; Kheir, F.; Majid, A.; Khandhar, S.J.; Mehta, H.J.; Jantz, M.A.; Fernandez-Bussy, S. Sensitivity and Safety of Electromagnetic Navigation Bronchoscopy for Lung Cancer Diagnosis: Systematic Review and Meta-analysis. Chest 2020, 158, 1753–1769. [Google Scholar] [CrossRef] [PubMed]
- Heerink, W.J.; de Bock, G.H.; de Jonge, G.J.; Groen, H.J.; Vliegenthart, R.; Oudkerk, M. Complication rates of CT-guided transthoracic lung biopsy: Meta-analysis. Eur. Radiol. 2017, 27, 138–148. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, A.C.; McCarthy, C.; Ridge, C.A.; Mitchell, P.; Hanrahan, E.; Butler, M.; Keane, M.P.; Dodd, J.D. Rapid needle-out patient-rollover time after percutaneous CT-guided transthoracic biopsy of lung nodules: Effect on pneumothorax rate. Radiology 2012, 262, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.S.; Trick, W.; Mba, B.I.; Mohananey, D.; Sethi, J.; Musani, A.I. Radial endobronchial ultrasound for the diagnosis of peripheral pulmonary lesions: A systematic review and meta-analysis. Respirology 2017, 22, 443–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGuire, A.L.; Myers, R.; Grant, K.; Lam, S.; Yee, J. The Diagnostic Accuracy and Sensitivity for Malignancy of Radial-Endobronchial Ultrasound and Electromagnetic Navigation Bronchoscopy for Sampling of Peripheral Pulmonary Lesions: Systematic Review and Meta-analysis. J. Bronchol. Interv. Pulmonol. 2020, 27, 106–121. [Google Scholar] [CrossRef]
Number (%) | |
---|---|
Total participants | 30 |
Age in years, median (range) | 63 (56–72) |
Male sex | 21 (70) |
Smoking | |
Never | 9 (30.0) |
Ex-smoker | 13 (43.3) |
Current smoker | 8 (26.7) |
Pulmonary function | |
FVC, % pred, mean ± SD | 85.8 ± 12.1 |
FEV1, % pred, mean ± SD | 81.2 ± 114.9 |
DLco, % pred, mean ± SD | 78.6 ± 22.1 |
Cause of ENB | |
Emphysema | 7 (23.3) |
Vascular structure | 19 (63.3) |
Inaccessible | 4 (13.3) |
Intravenous sedation | 30 (100) |
Total procedure time, mean ± SD, min | 22.7 ± 11.8 |
Number (%) | |
---|---|
Total nodules | 30 |
Location | |
Right upper lobe | 8 (26.7) |
Right middle lobe | 4 (13.3) |
Right lower lobe | 5 (16.7) |
Left upper lobe | 9 (30.0) |
Left lower lobe | 4 (13.3) |
Size, mm ± SD | 25.2 ± 7.8 |
Type | |
Solid | 22 (73.3) |
Ground-glass opacity | 1 (3.3) |
Partially solid | 5 (116.7) |
Consolidation | 2 (6.7) |
Bronchus sign present | 20 (66.7) |
Metabolic activity in PET, mean SUVmax ± SD (n = 27) | 7.7 ± 6.6 |
Distance from visceral pleura, mm ± SD | 9.7 ± 8.6 |
Biopsy tool used | |
Forceps | 23 (76.7) |
Needle | 3 (10.0) |
Forceps + needle | 4 (13.3) |
Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Lower lobe lesion | 0.909 (0.184–4.500) | 0.907 | ||
Nodule size, mm | 1.079 (0.967–1.205) | 0.175 | ||
Solid type nodule | 0.367 (0.060–2.252) | 0.279 | ||
Peripheral location | 1.556 (0.256–9.469) | 0.632 | ||
Bronchus sign | 4.667 (0.866–25.136) | 0.073 | 15.874 (1.568–160.6) | 0.019 |
Metabolic activity, SUVmax | 1.032 (0.911–1.168) | 0.620 | ||
Distance from Visceral pleura, mm | 0.979 (0.899–1.067) | 0.629 | ||
Total procedure time, min | 0.893 (0.799–0.999) | 0.048 | 0.842 (0.718–0.987) | 0.034 |
Biopsy device | ||||
Forceps only | Ref | |||
Needle only | 0.286 (0.022–3.669) | 0.336 | ||
Forceps + needle | 0.571 (0.067–4.875) | 0.609 |
Adverse Event | Number (%) |
---|---|
Overall | 1 (3.4) |
Pneumothorax | 1 (3.4) |
Need for chest tube insertion | 1 (3.4) |
Bleeding | 0 (0) |
Respiratory failure | 0 (0) |
Death | 0 (0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, J.H.; Choi, C.-M.; Kim, S.; Jang, S.J.; Oh, S.Y.; Kim, M.Y.; Hwang, H.S.; Ji, W. Diagnostic Performance of Electromagnetic Navigation Bronchoscopy-Guided Biopsy for Lung Nodules in the Era of Molecular Testing. Diagnostics 2021, 11, 1432. https://doi.org/10.3390/diagnostics11081432
Oh JH, Choi C-M, Kim S, Jang SJ, Oh SY, Kim MY, Hwang HS, Ji W. Diagnostic Performance of Electromagnetic Navigation Bronchoscopy-Guided Biopsy for Lung Nodules in the Era of Molecular Testing. Diagnostics. 2021; 11(8):1432. https://doi.org/10.3390/diagnostics11081432
Chicago/Turabian StyleOh, Ju Hyun, Chang-Min Choi, Seulgi Kim, Se Jin Jang, Sang Young Oh, Mi Young Kim, Hee Sang Hwang, and Wonjun Ji. 2021. "Diagnostic Performance of Electromagnetic Navigation Bronchoscopy-Guided Biopsy for Lung Nodules in the Era of Molecular Testing" Diagnostics 11, no. 8: 1432. https://doi.org/10.3390/diagnostics11081432
APA StyleOh, J. H., Choi, C. -M., Kim, S., Jang, S. J., Oh, S. Y., Kim, M. Y., Hwang, H. S., & Ji, W. (2021). Diagnostic Performance of Electromagnetic Navigation Bronchoscopy-Guided Biopsy for Lung Nodules in the Era of Molecular Testing. Diagnostics, 11(8), 1432. https://doi.org/10.3390/diagnostics11081432