The Influence of Maternal Cell Contamination on Fetal Aneuploidy Detection Using Chip-Based Digital PCR Testing
Abstract
:1. Introduction
2. Materials and Methods
2.1. MCC Simulation
2.2. MCC Detection in Clinical Samples
2.3. Chip-Based Digital PCR Workflow
2.4. Aneuploidy Analysis
2.5. Statical Analysis
3. Results
3.1. MCC Simulation
3.2. MCC Detection in Clinical Samples
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buchovecky, C.; Nahum, O.; Levy, B. Assessment of Maternal Cell Contamination in Prenatal Samples by Quantitative Fluorescent PCR (QF-PCR). Methods Mol. Biol. 2019, 1885, 117–127. [Google Scholar]
- Winsor, E.J.T.; Silver, M.P.; Theve, R.; Wright, M.; Ward, B.E. Maternal cell contamination in uncultured amniotic fluid. Prenat. Diagn. 1996, 16, 49–54. [Google Scholar] [CrossRef]
- Saura, R.; Roux, D.; Taine, L.; Maugey, B.; Laulon, D.; Laplace, J.P.; Horovitz, J. Early amniocentesis versus chorionic villus sampling for fetal karyotyping. Lancet 1994, 344, 825–826. [Google Scholar] [CrossRef]
- Ledbetter, D.H.; Zachary, J.M.; Simpson, J.L.; Golbus, M.S.; Pergament, E.; Jackson, L.; Mahoney, M.J.; Desnick, R.J.; Schulman, J.; Copeland, K.L.; et al. Cytogenetic results from the U.S. Collaborative Study on CVS. Prenat. Diagn. 1992, 12, 317–345. [Google Scholar] [CrossRef] [PubMed]
- Schrijver, I.; Cherny, S.C.; Zehnder, J.L. Testing for maternal cell contamination in prenatal samples: A comprehensive survey of current diagnostic practices in 35 molecular diagnostic laboratories. J. Mol. Diagn. 2007, 9, 394–400. [Google Scholar] [CrossRef] [Green Version]
- Nagan, N.; Faulkner, N.E.; Curtis, C.; Schrijver, I. Laboratory guidelines for detection, interpretation, and reporting of maternal cell contamination in prenatal analyses: A report of the association for molecular pathology. J. Mol. Diagn. 2011, 13, 7–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- South, S.T.; Lee, C.; Lamb, A.N.; Higgins, A.W.; Kearney, H.M. ACMG Standards and Guidelines for constitutional cytogenomic microarray analysis, including postnatal and prenatal applications: Revision 2013. Genet. Med. 2013, 15, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.; Mountford, R.; Bultler, A.; Mann, K.; Treacy, B. Practice guidelines for the Testing for maternal cell contamination (MCC) in prenatal samples for molecular studies. Clin. Mol. Genet. Soc. Best Pract. Guidel. 2008, 5–7, 76856385. [Google Scholar]
- CCMG. CCMG Molecular Genetics Guidelines; CCMG Mol Genet Committee: Ottawa, ON, Canada, 2006; p. 9. [Google Scholar]
- Dong, L.; Meng, Y.; Sui, Z.; Wang, J.; Wu, L.; Fu, B. Comparison of four digital PCR platforms for accurate quantification of DNA copy number of a certified plasmid DNA reference material. Sci. Rep. 2015, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Huggett, J.F.; Foy, C.A.; Benes, V.; Emslie, K.; Garson, J.A.; Haynes, R.; Hellemans, J.; Kubista, M.; Mueller, R.D.; Nolan, T.; et al. The digital MIQE guidelines: Minimum information for publication of quantitative digital PCR experiments. Clin. Chem. 2013, 59, 892–902. [Google Scholar] [CrossRef]
- Hindson, B.J.; Ness, K.D.; Masquelier, D.A.; Belgrader, P.; Heredia, N.J.; Makarewicz, A.J.; Bright, I.J.; Lucero, M.Y.; Hiddessen, A.L.; Legler, T.C.; et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 2011, 83, 8604–8610. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Liu, C.; Tong, H.; Chen, Y.; Liu, K. Principles of digital PCR and its applications in current obstetrical and gynecological diseases. Am. J. Transl. Res. 2019, 11, 7209–7222. [Google Scholar]
- Whale, A.S.; Huggett, J.F.; Cowen, S.; Speirs, V.; Shaw, J.; Ellison, S.; Foy, C.A.; Scott, D.J. Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Res. 2012, 40, e82. [Google Scholar] [CrossRef]
- Nykel, A.; Kaszkowiak, M.; Fendler, W.; Gach, A. Chip-based digital PCR approach provides a sensitive and cost-effective single-day screening tool for common fetal aneuploidies-A proof of concept study. Int. J. Mol. Sci. 2019, 20, 5486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, H.C.; Blumenfeld, Y.J.; El-Sayed, Y.Y.; Chueh, J.; Quake, S.R. Microfluidic digital PCR enables rapid prenatal diagnosis of fetal aneuploidy. Am. J. Obstet. Gynecol. 2009, 200, e1–e543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, L.D.; Cai, T.T.; Das Gupta, A. Interval estimation for a binomial proportion. Stat. Sci. 2001, 16, 101–117. [Google Scholar] [CrossRef]
- Nykel, A.; Woźniak, R.; Gach, A. Clinical Validation of Novel Chip-Based Digital PCR Platform for Fetal Aneuploidies Screening. Diagnostics 2021, 11, 1131. [Google Scholar] [CrossRef]
- Faas, B.H.W.; Cirigliano, V.; Bui, T.H. Rapid methods for targeted prenatal diagnosis of common chromosome aneuploidies. Semin. Fetal Neonatal Med. 2011, 16, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Mann, K.; Ogilvie, C.M. QF-PCR: Application, overview and review of the literature. Prenat. Diagn. 2012, 32, 309–314. [Google Scholar] [CrossRef]
- Kooper, A.J.; Faas, B.H.; Feuth, T.; Creemers, J.W.; Zondervan, H.H.; Boekkooi, P.F.; Quartero, R.W.; Rijnders, R.J.; van der Burgt, I.; van Kessel, A.G.; et al. Detection of chromosome aneuploidies in chorionic villus samples by multiplex ligation-dependent probe amplification. J. Mol. Diagn. 2009, 11, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Donaghue, C.; Mann, K.; Docherty, Z.; Ogilvie, C.M. Detection of mosaicism for primary trisomies in prenatal samples by QF-PCR and karyotype analysis. Prenat. Diagn. 2005, 25, 65–72. [Google Scholar] [CrossRef]
- Cirigliano, V.; Voglino, G.; Canadas, M.P.; Marongiu, A.; Ejarque, M.; Ordonez, E.; Plaja, A.; Massobrio, M.; Todros, T.; Fuster, C.; et al. Rapid prenatal diagnosis of common chromosome aneuploidies by QF-PCR. Assessment on 18,000 consecutive clinical samples. Mol. Hum. Reprod. 2004, 10, 839–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, H.C.; Quake, S.R. Detection of aneuploidy with digital polymerase chain reaction. Anal. Chem. 2007, 79, 7576–7579. [Google Scholar] [CrossRef]
- Evans, M.I.; Wright, D.A.; Pergament, E.; Cuckle, H.S.; Nicolaides, K.H. Digital PCR for noninvasive detection of aneuploidy: Power analysis equations for feasibility. Fetal Diagn. Ther. 2012, 31, 244–247. [Google Scholar] [CrossRef] [PubMed]
- El Khattabi, L.A.; Rouillac-Le Sciellour, C.; Le Tessier, D.; Luscan, A.; Coustier, A.; Porcher, R.; Bhouri, R.; Nectoux, J.; Sérazin, V.; Quibel, T.; et al. Could digital PCR be an alternative as a non-invasive prenatal test for trisomy 21: A proof of concept study. PLoS ONE 2016, 11, e0155009. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.; Chen, X.; Wang, F.; Wang, D.; Cao, Z.; Zhu, X.; Lu, C.; Yang, W.; Gao, N.; Gao, H.; et al. A multiplex droplet digital PCR assay for non-invasive prenatal testing of fetal aneuploidies. Analyst 2019, 144, 2239–2247. [Google Scholar] [CrossRef] [PubMed]
Case No. | Sample Type | cdPCR Result | Follow-Up Cytogenetic Result | ||
---|---|---|---|---|---|
z-Score for chr 21 | z-Score for chr X | ||||
1 | AF | 90% MCC, euploid male | 0.198 | −2.573 | 46,XY |
2 | AF | 65% MCC, euploid male | −2.412 | −9.739 | 46,XY |
3 | AF | 69% MCC, euploid male | 0.294 | −12.285 | 46,XY |
4 | AF | 70% MCC, euploid male | −1.076 | −8.560 | 46,XY |
5 | AF | 70% MCC, euploid male | −0.508 | −10.280 | 46,XY |
6 | AF | 93% MCC, euploid male | −0.069 | −2.599 | 46,XY |
7 | AF | 65% MCC, euploid male | 1.550 | −9.733 | 46,XY |
8 | AF | 60% MCC, euploid male | −2.239 | −10.129 | 46,XY |
9 | CVS | 79% MCC, T21 male | 6.519 | −6.387 | 47,XY,+21 |
10 | AF | 66% MCC, T21 male | 12.754 | −10.926 | 47,XY,+21 |
11 1 | AF | 50% mos, T21 male | 5.838 | −12.531 | mos 47,XY,+21[13]/46,XY[10] |
12 1 | CVS | 69% mos, X0 | −0.468 | −7.996 | mos 45,X[5]/46,XX[16] |
13 | CVS | 68% mos, X0 | 0.102 | −8.301 | mos 45,X[10]/46,XX[14] |
14 | AF | 12% mos, X0/XY | −0.059 | −12.963 | mos 45,X[28]/46,XY[6] |
cdPCR | QF-PCR | MLPA | FISH | |
---|---|---|---|---|
Detection of aneuploidies of target chromosomes | + | + | + | + |
Detection of mosaicism of target chromosomes | 5–15% | 5–20% | ~20% | 10% |
Detection of MCC | + | + | +/− | +/− |
Number of loci per chromosome | 1 | 5/10 | 8 (13, 18, 21, X), Y (Y) | 1 |
Sex chromosomes included | + | depends on kit | + | + |
Detection of triploidy | male only | male, female | male only | male, female |
Non-informative loci | − | + | − | − |
DNA quality/concentration important | less than with QF-PCR, MLPA | less than with MLPA | yes | interphase nuclei needed |
Results quality influenced by gestational age | no | no | no | yes |
Workflow | only pre-PCR step | pre-PCR and post-PCR steps | pre-PCR and post-PCR steps, overnight hybridization, | labor-intensive, overnight hybridization |
Equipment | QS3D Digital PCR system | thermal cycler, genetic analyzer | thermal cycler, genetic analyzer | fluorescent microscopy |
Results time | <4 h | <6 h | <48 h | <24 h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nykel, A.; Woźniak, R.; Gach, A. The Influence of Maternal Cell Contamination on Fetal Aneuploidy Detection Using Chip-Based Digital PCR Testing. Diagnostics 2021, 11, 1607. https://doi.org/10.3390/diagnostics11091607
Nykel A, Woźniak R, Gach A. The Influence of Maternal Cell Contamination on Fetal Aneuploidy Detection Using Chip-Based Digital PCR Testing. Diagnostics. 2021; 11(9):1607. https://doi.org/10.3390/diagnostics11091607
Chicago/Turabian StyleNykel, Anna, Rafał Woźniak, and Agnieszka Gach. 2021. "The Influence of Maternal Cell Contamination on Fetal Aneuploidy Detection Using Chip-Based Digital PCR Testing" Diagnostics 11, no. 9: 1607. https://doi.org/10.3390/diagnostics11091607
APA StyleNykel, A., Woźniak, R., & Gach, A. (2021). The Influence of Maternal Cell Contamination on Fetal Aneuploidy Detection Using Chip-Based Digital PCR Testing. Diagnostics, 11(9), 1607. https://doi.org/10.3390/diagnostics11091607