Late Changes in the Extracellular Matrix of the Bladder after Radiation Therapy for Pelvic Tumors
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Patients’ Data and the Study Design
- Cystoscopy of the bladder in all the patients with a visual assessment of the mucosa according to the protocol.
- CP OCT study of the bladder mucosa. For each patient, at least 2–3 images were acquired for the bladder bottom region—the “hot” zone receiving the highest radiation dose in pelvic tumor RT.
- Biopsy harvesting. Biopsy was performed with a resectoscope (Karl Storz SE and Co. KG, Tuttlingen, Germany) from the regions of the CP OCT study in accordance with the cystoscopic picture. The indications for biopsy were the following: suspicion of malignancy in the chronic inflammation group (12 specimens from 12 patients out of 67); suspicion of secondary damage (including the hemorrhage cases) or the presence of hemorrhage in the radiation damage group (9 specimens from 9 patients out of 105).
- Preparation of histological sections.
- TPM study of dewaxed unstained bladder tissue sections.
- AFM study of the same histological sections.
2.2. CP OCT Study
2.3. TPM Study
2.4. AFM Study
2.5. Statistical Processing
3. Results
3.1. The Study of the ECM at the Level of the General Organ Architecture by CP OCT
3.2. The Study of the ECM at the Level of Collagen Fibers and Their Bundles by TPM
3.3. The Study of the ECM at the Level of Collagen Fibers by AFM
3.4. Quantitative Evaluation of the Changes in the ECM Depending on the Level of Its Hierarchical Organization
4. Discussion
- Disappearance of the ordered densely packed 3D network of collagen fibers, disordering of the ECM structure.
- Appearance of a large amount of a structureless material covering the fibrous collagen structures in the case of Grade 2 radiation damage. For Grade 3–4 radiation damage, appearance of “nude” fibers not covered with the amorphous substance becomes more characteristic (Figure 4d,e).
- Direct destruction of the bladder ECM, which is noticed in AFM images with the appearance of >1 µm-deep ruptures in the network of collagen fibers.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- De Sanctis, V.; Agolli, L.; Valeriani, M.; Narici, S.; Osti, M.F.; Patacchiola, F.; Mossa, B.; Moscarini, M.; Maurizi Enrici, R. External-beam radiotherapy and/or HDR brachytherapy in postoperative endometrial cancer patients: Clinical outcomes and toxicity rates. Radiol. Med. 2013, 118, 311–322. [Google Scholar] [CrossRef]
- Cuccia, F.; Mortellaro, G.; Trapani, G.; Valenti, V.; Ognibene, L.; De Gregorio, G.; Quartuccio, E.; Luca, N.; Tripoli, A.; Serretta, V.; et al. Acute and late toxicity and preliminary outcomes report of moderately hypofractionated helical tomotherapy for localized prostate cancer: A mono-institutional analysis. Radiol. Med. 2020, 125, 220–227. [Google Scholar] [CrossRef]
- Common Terminology Criteria for Adverse Events (CTCAE), Version 5.0. 2017. Available online: http://ctep.cancer.gov (accessed on 24 July 2021).
- Goldner, G.; Tomicek, B.; Becker, G.; Geinitz, H.; Wachter, S.; Zimmermann, F.; Wachter-Gerstner, N.; Reibenwein, J.; Glocker, S.; Bamberg, M.; et al. Proctitis after external-beam radiotherapy for prostate cancer classified by Vienna Rectoscopy Score and correlated with EORTC/RTOG score for late rectal toxicity: Results of a prospective multicenter study of 166 patients. J. Radiat. Oncol. Biol. Phys. 2007, 67, 78–83. [Google Scholar] [CrossRef]
- Tan, L.T.; Zahra, M. Long-term survival and late toxicity after chemoradiotherapy for cervical cancer the addenbrooke’s experience. Clin. Oncol. 2008, 20, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Tucker, S.L.; Dong, L.; Bosch, W.R.; Michalski, J.; Winter, K.; Mohan, R.; Prudy, J.A.; Kuban, D.; Lee, D.A.; Cheung, M.R.; et al. Late rectal toxicity on RTOG 94-06: Analysis using a mixture lyman model. J. Radiat. Oncol. Biol. Phys. 2010, 78, 1253–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwak, Y.K.; Lee, S.W.; Kay, C.S.; Park, H.H. Intensity-modulated radiotherapy reduces gastrointestinal toxicity in pelvic radiation therapy with moderate dose. PLoS ONE 2017, 12, e0183339. [Google Scholar] [CrossRef]
- Abdollahi, H.; Tanha, K.; Mofid, B.; Razzaghdoust, A.; Saadipoor, A.; Khalafi, L.; Bakhshandeh, M.; Mahdavi, S.R. MRI radiomic analysis of IMRT-induced bladder wall changes in prostate cancer patients: A relationship with radiation dose and toxicity. J. Med. Imaging Radiat. Sci. 2019, 50, 252–260. [Google Scholar] [CrossRef]
- Parry, M.G.; Sujenthiran, A.; Cowling, T.E.; Nossiter, J.; Cathcart, P.; Clarke, N.W.; Payne, H.; van der Meulen, J.; Aggarwal, A. Treatment-Related Toxicity Using Prostate-Only Versus Prostate and Pelvic Lymph Node Intensity-Modulated Radiation Therapy: A National Population-Based Study. J. Clin. Oncol. 2019, 37, 1828–1835. [Google Scholar] [CrossRef] [PubMed]
- Denham, J.W.; Hauer-Jensen, M. The radiotherapeutic injury—A complex ‘wound’. Radiother. Oncol. 2002, 63, 129–145. [Google Scholar] [CrossRef]
- Baker, D.G.; Krochak, R.J. The response of the microvascular system to radiation: A review. Cancer Investig. 1989, 7, 287–294. [Google Scholar] [CrossRef]
- Jaal, J.; Dörr, W. Radiation effects on cellularity, proliferation and EGFR expression in mouse bladder urothelium. Radiat. Res. 2010, 173, 479–485. [Google Scholar] [CrossRef]
- Yarnold, J.; Brotons, M.C.V. Pathogenetic mechanisms in radiation fibrosis. Radiother. Oncol. 2010, 97, 149–161. [Google Scholar] [CrossRef]
- Chen, J.; Wong, S.; Nathanson, M.H.; Jain, D. Evaluation of Barrett esophagus by multiphoton microscopy. Arch. Pathol. Lab. Med. 2014, 138, 204–212. [Google Scholar] [PubMed] [Green Version]
- Kochueva, M.; Dudenkova, V.; Kuznetsov, S.; Varlamova, A.; Sergeeva, E.; Kiseleva, E.; Maslennikova, A. Quantitative assessment of radiation-induced changes of bladder and rectum collagen structure using optical methods. J. Biomed. Opt. 2018, 23, 091417. [Google Scholar] [CrossRef] [Green Version]
- Rasband, W.S. ImageJ; U.S. National Institutes of Health: Bethesda, MD, USA, 1997. Available online: http://imagej.nih.gov/ij/ (accessed on 25 June 2021).
- Daniltchenko, D.; König, F.; Lankenau, E.; Sachs, M.; Kristiansen, G.; Huettmann, G.; Schnorr, D. Utilizing optical coherence tomography (OCT) for visualization of urothelial diseases of the urinary bladder. Radiologe 2006, 46, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Shia, H.; Yang, X.; Wang, J.; Yang, W.; Zhang, H.; Liu, L. Recent advances in AFM-based biological characterizations and applications at multiple levels. Soft Matter. 2020, 16, 8962–8984. [Google Scholar] [CrossRef] [PubMed]
- Graham, H.K.; Hodson, N.W.; Hoyland, J.A.; Millward-Sadler, S.J.; Garrod, D.; Scothern, A.; Griffiths, C.E.M.; Watson, R.E.B.; Cox, T.R.; Erler, J.T.; et al. Tissue section AFM: In situ ultrastructural imaging of native biomolecules. Matrix Biol. 2010, 29, 254–260. [Google Scholar] [CrossRef]
- Zhu, P.; Fang, M. Nano-morphology of cartilage in hydrated and dehydrated conditions revealed by atomic force microscopy. J. Phys. Chem. Biophys. 2012, 2, 106–108. [Google Scholar] [CrossRef] [Green Version]
- Kwok, J.; Grogan, S.; Meckes, B.; Arce, F.; Lal, R.; D’Lima, D. Atomic force microscopy reveals age-dependent changes in nanomechanical properties of the extracellular matrix of native human menisci: Implications for joint degeneration and osteoarthritis. Nanomedicine 2014, 10, 1777–1785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.; Sridharan, I.; Ma, Y.; Zhu, B.; Chi, N.; Kobak, W.; Rotmensch, J.; Schieber, J.D.; Wang, R. Identifying distinct nanoscopic features of native collagen fibrils towards early diagnosis of pelvic organ prolapse. Nanomedicine 2016, 12, 667–675. [Google Scholar] [CrossRef] [Green Version]
- Jorba, I.; Uriarte, J.J.; Campillo, N.; Farre, R.; Navajas, D. Probing micromechanical properties of the extracellular matrix of soft tissues by atomic force microscopy. J. Cell Physiol. 2017, 232, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Maslennikova, A.; Kochueva, M.; Ignatieva, N.; Vitkin, A.; Zakharkina, O.; Kamensky, V.; Sergeeva, E.; Kiseleva, E.; Bagratashvili, V. Effects of gamma irradiation on collagen damage and remodeling. Int. J. Radiat. Biol. 2015, 91, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Kotova, S.L.; Timashev, P.S.; Belkova, G.V.; Kochueva, M.V.; Babak, K.V.; Timofeeva, V.A.; Kiseleva, E.B.; Vasilieva, O.O.; Maslennikova, A.V.; Solovieva, A.B. Early effects of ionizing radiation on the collagen hierarchical structure of bladder and rectum visualized by atomic force microscopy. Microsc. Microanalysis. 2018, 24, 38–48. [Google Scholar] [CrossRef]
- Streltsova, O.S.; Maslennikova, A.V.; Yunusova, K.E.; Dudenkova, V.V.; Kiseleva, E.B.; Kochueva, M.V.; Tararova, E.A.; Malikov, D.K.; Vorobieva, A.S.; Krupin, V.N. Nonlinear microscopy in studying extracellular matrix state of the urinary bladder in severe complications after radiation therapy of female pelvic tumors. Sovrem. Tehnol. Med. 2017, 9, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Kiseleva, E.; Gladkova, N.; Streltzova, O.; Kirillin, M.; Maslennikova, A.; Dudenkova, V.; Yunusova, K.; Sergeeva, E. Cross-polarization OCT for in vivo diagnostics and prediction of bladder cancer. In Bladder Cancer—Management of NMI and Muscle invasive Cancer; Ather, M.H., Ed.; IntechOpen: London, UK, 2017; pp. 43–61. [Google Scholar]
- Dudenkova, V.V.; Maslennikova, A.V.; Kiseleva, E.B.; Tararova, E.A.; Yunusova, K.E.; Streltsova, O.S. Quantitative assessment of radiation-induced changes in the connective tissue matrix of the urinary bladder by nonlinear microscopy. Sovrem Tehnol Med. 2018, 10, 118–123. [Google Scholar] [CrossRef]
- Gladkova, N.; Streltsova, O.; Zagaynova, E.; Kiseleva, E.; Gelikonov, V.; Gelikonov, G.; Karabut, M.; Yunusova, K.; Evdokimova, O. Cross polarization optical coherence tomography for early bladder cancer detection: Statistical study. J. Biophotonics. 2011, 4, 519–532. [Google Scholar] [CrossRef]
- Kiseleva, E.; Kirillin, M.; Feldchtein, F.; Vitkin, I.; Sergeeva, E.; Zagaynova, E.; Streltzova, O.; Shakhov, B.; Gubarkova, E.; Gladkova, N. Differential diagnosis of human bladder mucosa pathologies in vivo with cross-polarization optical coherence tomography. Biomed. Opt. Express. 2015, 6, 1464–1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenger, M.P.E.; Bozec, L.; Horton, M.A.; Mesquidaz, P. Mechanical properties of collagen fibrils. Biophys. J. 2007, 93, 1255–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timashev, P.S.; Kotova, S.L.; Belkova, G.V.; Gubar’kova, E.V.; Timofeeva, L.B.; Gladkova, N.D.; Solovieva, A.B. Atomic force microscopy study of atherosclerosis progression in arterial walls. Microsc. Microanal. 2016, 22, 311–325. [Google Scholar] [CrossRef]
- Alex, A.; Weingast, J.; Weinigel, M.; Kellner-Höfer, M.; Nemecek, R.; Binder, M.; Pehamberger, H.; König, K.; Drexler, W. Three-dimensional multiphoton/optical coherence tomography for diagnostic applications in dermatology. J. Biophotonics. 2013, 6, 352–362. [Google Scholar] [CrossRef] [PubMed]
- Kiseleva, E.B.; Gubarkova, E.V.; Dudenkova, V.V.; Timashev, P.S.; Kotova, S.L.; Timofeeva, L.B.; Kirillin, M.Y.; Belkova, G.V.; Solov’eva, A.B.; Strel’tsova, O.S.; et al. Complementary study of collagen state in bladder diseases using cross-polarization optical coherence tomography, nonlinear and atomic force microscopy. Sovrem. Tehnol. Med. 2017, 9, 7–18. [Google Scholar] [CrossRef] [Green Version]
Group | Patients without Pathology of the Bladder | Patients with Chronic Cystitis | Patients after RT: The Radiation Cystitis Severity Grades 2/3/4 |
---|---|---|---|
(a) Total number of patients | 20 | 67 | 105: 42/35/28 |
Age range (mean), years, for (a) | 44–67 (52) | 32–64 (53) | 35–80 (56) |
(b) Number of patients enrolled in CP OCT, TPM and AFM studies | 5 | 12 | 9:3/3/3 |
Age range (mean), years, for (b) | 50–65 (57) | 38–55 (43) | 37–79 (55) |
Group/Calculated Parameter | “Norm” | “Chronic Cystitis” | “Grade 2 Radiation Cystitis” | “Grade 3 Radiation Cystitis” | “Grade 4 Radiation Cystitis” |
---|---|---|---|---|---|
Brightness of the OCT signal in cross-polarization image, a.u. | 37.1 ± 5.9 | 25.6 ± 5.2 0 | 21.6 ± 5.9 0 | 20.1 ± 7.7 0 | 17.9 ± 5.5 0 |
Intensity of the SGH signal, a.u. | 117.1 ± 20.0 | 100.8 ± 16.0 | 124.8 ± 21.0 * | 87.6 ± 10.3 #,0 | 81.3 ± 3.2 #,0 |
Area occupied by ruptures in AFM images, % | 7.8 ± 1.8 | 9.7 ± 2.5 | 17.8 ± 5.2 *,#,0 | 19.7 ± 5.0 *,#,0 | 24.8 ± 4.0 #,0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Streltsova, O.; Kiseleva, E.; Dudenkova, V.; Sergeeva, E.; Tararova, E.; Kochueva, M.; Kotova, S.; Timofeeva, V.; Yunusova, K.; Bavrina, A.; et al. Late Changes in the Extracellular Matrix of the Bladder after Radiation Therapy for Pelvic Tumors. Diagnostics 2021, 11, 1615. https://doi.org/10.3390/diagnostics11091615
Streltsova O, Kiseleva E, Dudenkova V, Sergeeva E, Tararova E, Kochueva M, Kotova S, Timofeeva V, Yunusova K, Bavrina A, et al. Late Changes in the Extracellular Matrix of the Bladder after Radiation Therapy for Pelvic Tumors. Diagnostics. 2021; 11(9):1615. https://doi.org/10.3390/diagnostics11091615
Chicago/Turabian StyleStreltsova, Olga, Elena Kiseleva, Varvara Dudenkova, Ekaterina Sergeeva, Ekaterina Tararova, Marina Kochueva, Svetlana Kotova, Victoriya Timofeeva, Katerina Yunusova, Anna Bavrina, and et al. 2021. "Late Changes in the Extracellular Matrix of the Bladder after Radiation Therapy for Pelvic Tumors" Diagnostics 11, no. 9: 1615. https://doi.org/10.3390/diagnostics11091615
APA StyleStreltsova, O., Kiseleva, E., Dudenkova, V., Sergeeva, E., Tararova, E., Kochueva, M., Kotova, S., Timofeeva, V., Yunusova, K., Bavrina, A., Timashev, P., Solovieva, A., & Maslennikova, A. (2021). Late Changes in the Extracellular Matrix of the Bladder after Radiation Therapy for Pelvic Tumors. Diagnostics, 11(9), 1615. https://doi.org/10.3390/diagnostics11091615