MicroRNAs in Hypertrophic, Arrhythmogenic and Dilated Cardiomyopathy
Abstract
:1. Introduction
2. Article Selection
3. miRNAs as Potential Biomarkers in Hypertrophic Cardiomyopathy
3.1. Circulating miRNAs in HCM
3.2. Cardiac miRNAs in HCM
3.3. miRNAs and HCM Phenocopies
4. miRNAs as Potential Biomarkers in Arrhythmogenic Cardiomyopathy
4.1. Circulating miRNAs in ACM
4.2. Cardiac miRNAs in ACM
5. miRNAs as Potential Biomarkers in Dilated Cardiomyopathy
5.1. Circulating miRNAs in DCM
5.2. Cardiac miRNAs in DCM
5.3. DCM Is Common Cardiomyopathy in Childhood
6. Discussion
7. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- McKenna, W.J.; Judge, D.P. Epidemiology of the Inherited Cardiomyopathies. Nat. Rev. Cardiol. 2021, 18, 22–36. [Google Scholar] [CrossRef]
- Magi, S.; Lariccia, V.; Maiolino, M.; Amoroso, S.; Gratteri, S. Sudden Cardiac Death: Focus on the Genetics of Channelopathies and Cardiomyopathies. J. Biomed. Sci. 2017, 24, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Towbin, J.A. Inherited Cardiomyopathies. Circ. J. 2014, 78, 2347–2356. [Google Scholar] [CrossRef] [Green Version]
- Miles, C.; Fanton, Z.; Tome, M.; Behr, E.R. Inherited cardiomyopathies. BMJ 2019, 365, l1570. [Google Scholar] [CrossRef] [Green Version]
- Latronico, M.V.G.; Catalucci, D.; Condorelli, G. MicroRNA and Cardiac Pathologies. Physiol. Genom. 2008, 34, 239–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latronico, M.V.G.; Condorelli, G. MicroRNAs in Hypertrophy and Heart Failure. Exp. Biol. Med. 2011, 236, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Fazmin, I.T.; Achercouk, Z.; Edling, C.E.; Said, A.; Jeevaratnam, K. Circulating MicroRNA as a Biomarker for Coronary Artery Disease. Biomolecules 2020, 10, 1354. [Google Scholar] [CrossRef] [PubMed]
- Wronska, A.; Kurkowska-Jastrzebska, I.; Santulli, G. Application of MicroRNAs in Diagnosis and Treatment of Cardiovascular Disease. Acta Physiol. 2015, 213, 60–83. [Google Scholar] [CrossRef] [Green Version]
- Goren, Y.; Meiri, E.; Hogan, C.; Mitchell, H.; Lebanony, D.; Salman, N.; Schliamser, J.E.; Amir, O. Relation of Reduced Expression of MiR-150 in Platelets to Atrial Fibrillation in Patients with Chronic Systolic Heart Failure. Am. J. Cardiol. 2014, 113, 976–981. [Google Scholar] [CrossRef]
- Jeon, Y.J.; Kim, O.J.; Kim, S.Y.; Oh, S.H.; Oh, D.; Kim, O.J.; Shin, B.S.; Kim, N.K. Association of the MiR-146a, MiR-149, MiR-196a2, and MiR-499 Polymorphisms with Ischemic Stroke and Silent Brain Infarction Risk. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 420–430. [Google Scholar] [CrossRef] [Green Version]
- Bartel, D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Sohel, M.H. Extracellular/Circulating MicroRNAs: Release Mechanisms, Functions and Challenges. Achiev. Life Sci. 2016, 10, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Layne, T.R.; Green, R.A.; Lewis, C.A.; Nogales, F.; Dawson Cruz, T.C.; Zehner, Z.E.; Seashols-Williams, S.J. MicroRNA Detection in Blood, Urine, Semen, and Saliva Stains After Compromising Treatments. J. Forensic Sci. 2019, 64, 1831–1837. [Google Scholar] [CrossRef] [PubMed]
- Mayes, C.; Houston, R.; Seashols-Williams, S.; LaRue, B.; Hughes-Stamm, S. The Stability and Persistence of Blood and Semen MRNA and MiRNA Targets for Body Fluid Identification in Environmentally Challenged and Laundered Samples. Leg. Med. 2019, 38, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Mocellin, S.; Pasquali, S.; Pilati, P. Oncomirs: From Tumor Biology to Molecularly Targeted Anticancer Strategies. Mini Rev. Med. Chem. 2009, 9, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Al Qarni, A.; Hawwari, A.; Alghanem, A.F.; Ahmed, G. Metabolic Syndrome, Dyslipidemia and Regulation of Lipoprotein Metabolism. Curr. Diabetes Rev. 2018, 14, 427–433. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, M.M.J.; Krauskopf, J.; Ramaekers, J.G.; Kleinjans, J.C.S.; Prickaerts, J.; Briedé, J.J. Circulating MicroRNAs as Potential Biomarkers for Psychiatric and Neurodegenerative Disorders. Prog. Neurobiol. 2020, 185, 101732. [Google Scholar] [CrossRef]
- Marian, A.J.; Braunwald, E. Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy. Circ. Res. 2017, 121, 749–770. [Google Scholar] [CrossRef]
- Elliott, P.M.; Anastasakis, A.; Borger, M.A.; Borggrefe, M.; Cecchi, F.; Charron, P.; Hagege, A.A.; Lafont, A.; Limongelli, G.; Mahrholdt, H.; et al. 2014 ESC Guidelines on Diagnosis and Management of Hypertrophic Cardiomyopathy: The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart J. 2014, 35, 2733–2779. [Google Scholar] [CrossRef] [PubMed]
- Aquaro, G.D.; Guidi, B.; Biondi, F.; Chiti, E.; Santurro, A.; Scopetti, M.; Turillazzi, E.; Di Paolo, M. Post-Mortem Cardiac Magnetic Resonance for the Diagnosis of Hypertrophic Cardiomyopathy. Diagnostics 2020, 10, 981. [Google Scholar] [CrossRef]
- Pradella, S.; Grazzini, G.; De Amicis, C.; Letteriello, M.; Acquafresca, M.; Miele, V. Cardiac Magnetic Resonance in Hypertrophic and Dilated Cardiomyopathies. Radiol. Med. 2020, 125, 1056–1071. [Google Scholar] [CrossRef] [PubMed]
- Sabater-Molina, M.; Pérez-Sánchez, I.; Hernández Del Rincón, J.P.; Gimeno, J.R. Genetics of Hypertrophic Cardiomyopathy: A Review of Current State. Clin. Genet. 2018, 93, 3–14. [Google Scholar] [CrossRef]
- Medical Masterclass contributors; Firth, J. Cardiology: Hypertrophic Cardiomyopathy. Clin. Med. 2019, 19, 61–63. [Google Scholar] [CrossRef]
- Roncarati, R.; Viviani Anselmi, C.; Losi, M.A.; Papa, L.; Cavarretta, E.; Da Costa Martins, P.; Contaldi, C.; Saccani Jotti, G.; Franzone, A.; Galastri, L.; et al. Circulating MiR-29a, among Other up-Regulated MicroRNAs, Is the Only Biomarker for Both Hypertrophy and Fibrosis in Patients with Hypertrophic Cardiomyopathy. J. Am. Coll. Cardiol. 2014, 63, 920–927. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Ellims, A.H.; Moore, X.; White, D.A.; Taylor, A.J.; Chin-Dusting, J.; Dart, A.M. Circulating MicroRNAs as Biomarkers for Diffuse Myocardial Fibrosis in Patients with Hypertrophic Cardiomyopathy. J. Transl. Med. 2015, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Derda, A.A.; Thum, S.; Lorenzen, J.M.; Bavendiek, U.; Heineke, J.; Keyser, B.; Stuhrmann, M.; Givens, R.C.; Kennel, P.J.; Schulze, P.C.; et al. Blood-Based MicroRNA Signatures Differentiate Various Forms of Cardiac Hypertrophy. Int. J. Cardiol. 2015, 196, 115–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Zhou, Y.; Wang, C.-X. LncRNA-MIAT Regulates Fibrosis in Hypertrophic Cardiomyopathy (HCM) by Mediating the Expression of MiR-29a-3p. J. Cell Biochem. 2018, 120, 7265–7275. [Google Scholar] [CrossRef]
- Gudkova, A.Y.; Davidova, V.G.; Bezhanishvili, T.G.; Pyko, S.A.; Zarayskiy, M.I. Characterisation of circulating microRNA-21 levels in patients with hypertrophic cardiomyopathy. Ter. Arkh. 2020, 92, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Palacín, M.; Reguero, J.R.; Martín, M.; Díaz Molina, B.; Morís, C.; Alvarez, V.; Coto, E. Profile of MicroRNAs Differentially Produced in Hearts from Patients with Hypertrophic Cardiomyopathy and Sarcomeric Mutations. Clin. Chem. 2011, 57, 1614–1616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Wang, S.; Zhao, P.; Wang, X.; Wang, J.; Wang, Y.; Song, L.; Zou, Y.; Hui, R. MiR-221 Promotes Cardiac Hypertrophy in Vitro through the Modulation of P27 Expression. J. Cell Biochem. 2012, 113, 2040–2046. [Google Scholar] [CrossRef]
- Leptidis, S.; El Azzouzi, H.; Lok, S.I.; de Weger, R.; Olieslagers, S.; Olieslagers, S.; Kisters, N.; Silva, G.J.; Heymans, S.; Cuppen, E.; et al. A Deep Sequencing Approach to Uncover the MiRNOME in the Human Heart. PLoS ONE 2013, 8, e57800. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Afzal, J.; Vakrou, S.; Greenland, G.V.; Talbot, C.C.; Hebl, V.B.; Guan, Y.; Karmali, R.; Tardiff, J.C.; Leinwand, L.A.; et al. Differences in MicroRNA-29 and Pro-Fibrotic Gene Expression in Mouse and Human Hypertrophic Cardiomyopathy. Front. Cardiovasc. Med. 2019, 6, 170. [Google Scholar] [CrossRef]
- Kuster, D.W.D.; Mulders, J.; Ten Cate, F.J.; Michels, M.; Dos Remedios, C.G.; da Costa Martins, P.A.; van der Velden, J.; Oudejans, C.B.M. MicroRNA Transcriptome Profiling in Cardiac Tissue of Hypertrophic Cardiomyopathy Patients with MYBPC3 Mutations. J. Mol. Cell Cardiol. 2013, 65, 59–66. [Google Scholar] [CrossRef]
- Song, L.; Su, M.; Wang, S.; Zou, Y.; Wang, X.; Wang, Y.; Cui, H.; Zhao, P.; Hui, R.; Wang, J. MiR-451 Is Decreased in Hypertrophic Cardiomyopathy and Regulates Autophagy by Targeting TSC1. J. Cell Mol. Med. 2014, 18, 2266–2274. [Google Scholar] [CrossRef]
- Ming, S.; Shui-Yun, W.; Wei, Q.; Jian-Hui, L.; Ru-Tai, H.; Lei, S.; Mei, J.; Hui, W.; Ji-Zheng, W. MiR-139-5p Inhibits Isoproterenol-Induced Cardiac Hypertrophy by Targetting c-Jun. Biosci. Rep. 2018, 38, BSR20171430. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Chen, X.; Chen, L.; Chen, K.; Zhou, J.; Song, J. MiR-1-3p That Correlates with Left Ventricular Function of HCM Can Serve as a Potential Target and Differentiate HCM from DCM. J. Transl. Med. 2018, 16, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, D.; Li, C.; Liu, J.; Wang, Z.; Liu, Y.; Luo, C.; Chen, Y.; Wen, S. Expression Profile of MicroRNAs in Hypertrophic Cardiomyopathy and Effects of MicroRNA-20 in Inducing Cardiomyocyte Hypertrophy Through Regulating Gene MFN2. DNA Cell Biol. 2019, 38, 796–807. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Chen, Z.; Wang, J.; Chen, Y.; Liu, D.; Lin, K. MicroRNA-221 Is a Potential Biomarker of Myocardial Hypertrophy and Fibrosis in Hypertrophic Obstructive Cardiomyopathy. Biosci. Rep. 2020, 40, BSR20191234. [Google Scholar] [CrossRef] [PubMed]
- Cammarata, G.; Scalia, S.; Colomba, P.; Zizzo, C.; Pisani, A.; Riccio, E.; Montalbano, M.; Alessandro, R.; Giordano, A.; Duro, G. A Pilot Study of Circulating MicroRNAs as Potential Biomarkers of Fabry Disease. Oncotarget 2018, 9, 27333–27345. [Google Scholar] [CrossRef]
- Xiao, K.; Lu, D.; Hoepfner, J.; Santer, L.; Gupta, S.; Pfanne, A.; Thum, S.; Lenders, M.; Brand, E.; Nordbeck, P.; et al. Circulating MicroRNAs in Fabry Disease. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Derda, A.A.; Pfanne, A.; Bär, C.; Schimmel, K.; Kennel, P.J.; Xiao, K.; Schulze, P.C.; Bauersachs, J.; Thum, T. Blood-Based MicroRNA Profiling in Patients with Cardiac Amyloidosis. PLoS ONE 2018, 13, e0204235. [Google Scholar] [CrossRef] [Green Version]
- Tarallo, A.; Carissimo, A.; Gatto, F.; Nusco, E.; Toscano, A.; Musumeci, O.; Coletta, M.; Karali, M.; Acampora, E.; Damiano, C.; et al. MicroRNAs as Biomarkers in Pompe Disease. Genet. Med. 2019, 21, 591–600. [Google Scholar] [CrossRef]
- Sen-Chowdhry, S.; Syrris, P.; Prasad, S.K.; Hughes, S.E.; Merrifield, R.; Ward, D.; Pennell, D.J.; McKenna, W.J. Left-Dominant Arrhythmogenic Cardiomyopathy: An under-Recognized Clinical Entity. J. Am. Coll Cardiol. 2008, 52, 2175–2187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saguner, A.M.; Brunckhorst, C.; Duru, F. Arrhythmogenic Ventricular Cardiomyopathy: A Paradigm Shift from Right to Biventricular Disease. World J. Cardiol. 2014, 6, 154–174. [Google Scholar] [CrossRef] [PubMed]
- Stadiotti, I.; Catto, V.; Casella, M.; Tondo, C.; Pompilio, G.; Sommariva, E. Arrhythmogenic Cardiomyopathy: The Guilty Party in Adipogenesis. J. Cardiovasc. Transl. Res. 2017, 10, 446–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiene, G.; Nava, A.; Corrado, D.; Rossi, L.; Pennelli, N. Right Ventricular Cardiomyopathy and Sudden Death in Young People. N. Engl. J. Med. 1988, 318, 129–133. [Google Scholar] [CrossRef]
- Marcus Frank, I.; McKenna William, J.; Sherrill, D.; Basso, C.; Bauce, B.; Bluemke David, A.; Calkins, H.; Corrado, D.; Cox Moniek, G.P.J.; Daubert James, P.; et al. Diagnosis of Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia. Circulation 2010, 121, 1533–1541. [Google Scholar] [CrossRef] [PubMed]
- Castaños Gutiérrez, S.L.; Kamel, I.R.; Zimmerman, S.L. Current Concepts on Diagnosis and Prognosis of Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia. J. Thorac. Imaging 2016, 31, 324–335. [Google Scholar] [CrossRef]
- Bennett, R.G.; Haqqani, H.M.; Berruezo, A.; Della Bella, P.; Marchlinski, F.E.; Hsu, C.-J.; Kumar, S. Arrhythmogenic Cardiomyopathy in 2018-2019: ARVC/ALVC or Both? Heart Lung. Circ. 2019, 28, 164–177. [Google Scholar] [CrossRef] [PubMed]
- Calore, M.; Lorenzon, A.; De Bortoli, M.; Poloni, G.; Rampazzo, A. Arrhythmogenic Cardiomyopathy: A Disease of Intercalated Discs. Cell Tissue Res. 2015, 360, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Sommariva, E.; D’Alessandra, Y.; Farina, F.M.; Casella, M.; Cattaneo, F.; Catto, V.; Chiesa, M.; Stadiotti, I.; Brambilla, S.; Dello Russo, A.; et al. MiR-320a as a Potential Novel Circulating Biomarker of Arrhythmogenic CardioMyopathy. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.; Hsiao, Y.-W.; Chang, S.-L.; Lin, Y.-J.; Lo, L.-W.; Chung, F.-P.; Chiang, S.-J.; Hu, Y.-F.; Tuan, T.-C.; Chao, T.-F.; et al. Circulating MicroRNAs in Arrhythmogenic Right Ventricular Cardiomyopathy with Ventricular Arrhythmia. Europace 2018, 20, f37–f45. [Google Scholar] [CrossRef]
- Bueno Marinas, M.; Celeghin, R.; Cason, M.; Bariani, R.; Frigo, A.C.; Jager, J.; Syrris, P.; Elliott, P.M.; Bauce, B.; Thiene, G.; et al. A MicroRNA Expression Profile as Non-Invasive Biomarker in a Large Arrhythmogenic Cardiomyopathy Cohort. Int. J. Mol. Sci. 2020, 21, 1536. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Liu, S.; Dong, T.; Yang, J.; Xie, Y.; Wu, Y.; Kang, K.; Hu, S.; Gou, D.; Wei, Y. Profiling of Differentially Expressed MicroRNAs in Arrhythmogenic Right Ventricular Cardiomyopathy. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rainer, J.; Meraviglia, V.; Blankenburg, H.; Piubelli, C.; Pramstaller, P.P.; Paolin, A.; Cogliati, E.; Pompilio, G.; Sommariva, E.; Domingues, F.S.; et al. The Arrhythmogenic Cardiomyopathy-Specific Coding and Non-Coding Transcriptome in Human Cardiac Stromal Cells. BMC Genom. 2018, 19, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weintraub, R.G.; Semsarian, C.; Macdonald, P. Dilated Cardiomyopathy. Lancet 2017, 390, 400–414. [Google Scholar] [CrossRef]
- Japp, A.G.; Gulati, A.; Cook, S.A.; Cowie, M.R.; Prasad, S.K. The Diagnosis and Evaluation of Dilated Cardiomyopathy. J. Am. Coll Cardiol. 2016, 67, 2996–3010. [Google Scholar] [CrossRef]
- Jefferies, J.L.; Towbin, J.A. Dilated Cardiomyopathy. Lancet 2010, 375, 752–762. [Google Scholar] [CrossRef]
- Pérez-Serra, A.; Toro, R.; Sarquella-Brugada, G.; de Gonzalo-Calvo, D.; Cesar, S.; Carro, E.; Llorente-Cortes, V.; Iglesias, A.; Brugada, J.; Brugada, R.; et al. Genetic Basis of Dilated Cardiomyopathy. Int. J. Cardiol. 2016, 224, 461–472. [Google Scholar] [CrossRef]
- Schultheiss, H.-P.; Fairweather, D.; Caforio, A.L.P.; Escher, F.; Hershberger, R.E.; Lipshultz, S.E.; Liu, P.P.; Matsumori, A.; Mazzanti, A.; McMurray, J.; et al. Dilated Cardiomyopathy. Nat. Rev. Dis. Primers 2019, 5, 1–19. [Google Scholar] [CrossRef]
- Pinto, Y.M.; Elliott, P.M.; Arbustini, E.; Adler, Y.; Anastasakis, A.; Böhm, M.; Duboc, D.; Gimeno, J.; de Groote, P.; Imazio, M.; et al. Proposal for a Revised Definition of Dilated Cardiomyopathy, Hypokinetic Non-Dilated Cardiomyopathy, and Its Implications for Clinical Practice: A Position Statement of the ESC Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2016, 37, 1850–1858. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.R.; Carniel, E.; Mestroni, L. Cardiomyopathy, Familial Dilated. Orphanet. J. Rare Dis. 2006, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Francone, M. Role of Cardiac Magnetic Resonance in the Evaluation of Dilated Cardiomyopathy: Diagnostic Contribution and Prognostic Significance. ISRN Radiol. 2014, 2014, 365404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Priori, S.G.; Blomström-Lundqvist, C.; Mazzanti, A.; Blom, N.; Borggrefe, M.; Camm, J.; Elliott, P.M.; Fitzsimons, D.; Hatala, R.; Hindricks, G.; et al. 2015 ESC Guidelines for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC)Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur. Heart J. 2015, 36, 2793–2867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, N.; Kumar, S.; Gongora, E.; Gupta, S. Circulating MiRNA as Novel Markers for Diastolic Dysfunction. Mol. Cell Biochem. 2013, 376, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.K.; Halley, C.; Duan, Z.H.; Lappe, J.; Viterna, J.; Jana, S.; Augoff, K.; Mohan, M.L.; Vasudevan, N.T.; Na, J.; et al. MiRNA-548c: A Specific Signature in Circulating PBMCs from Dilated Cardiomyopathy Patients. J. Mol. Cell. Cardiol. 2013, 62, 131–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, K.-L.; Zhang, H.-F.; Shen, J.; Zhang, Q.; Li, X.-L. Circulating MicroRNAs Levels in Chinese Heart Failure Patients Caused by Dilated Cardiomyopathy. Indian Heart J. 2013, 65, 12–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, M.; Liang, W.; Xie, Y.; Long, Q.; Cheng, X.; Liao, Y.-H.; Yuan, J. Circulating MiR-185 Might Be a Novel Biomarker for Clinical Outcome in Patients with Dilated Cardiomyopathy. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Chen, F.; Tong, J.; Li, Y.; Cai, J.; Wang, Y.; Li, P.; Hao, Y.; Tian, W.; Lv, Y.; et al. Circulating MicroRNAs as Novel Biomarkers for Dilated Cardiomyopathy. Cardiol. J. 2017, 24, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Rubiś, P.; Totoń-Żurańska, J.; Wiśniowska-Śmiałek, S.; Holcman, K.; Kołton-Wróż, M.; Wołkow, P.; Wypasek, E.; Natorska, J.; Rudnicka-Sosin, L.; Pawlak, A.; et al. Relations between Circulating MicroRNAs (MiR-21, MiR-26, MiR-29, MiR-30 and MiR-133a), Extracellular Matrix Fibrosis and Serum Markers of Fibrosis in Dilated Cardiomyopathy. Int. J. Cardiol. 2017, 231, 201–206. [Google Scholar] [CrossRef]
- Wu, T.; Chen, Y.; Du, Y.; Tao, J.; Zhou, Z.; Yang, Z. Serum Exosomal MiR-92b-5p as a Potential Biomarker for Acute Heart Failure Caused by Dilated Cardiomyopathy. Cell Physiol. Biochem. 2018, 46, 1939–1950. [Google Scholar] [CrossRef] [PubMed]
- Onrat, S.T.; Onrat, E.; Ercan Onay, E.; Yalım, Z.; Avşar, A. The Genetic Determination of the Differentiation Between Ischemic Dilated Cardiomyopathy and Idiopathic Dilated Cardiomyopathy. Genet. Test. Mol. Biomark. 2018, 22, 644–651. [Google Scholar] [CrossRef]
- Toro, R.; Blasco-Turrión, S.; Morales-Ponce, F.J.; Gonzalez, P.; Martínez-Camblor, P.; López-Granados, A.; Brugada, R.; Campuzano, O.; Pérez-Serra, A.; Rosa Longobardo, F.; et al. Plasma MicroRNAs as Biomarkers for Lamin A/C-Related Dilated Cardiomyopathy. J. Mol. Med. (Berl) 2018, 96, 845–856. [Google Scholar] [CrossRef] [PubMed]
- Belmonte, T.; Mangas, A.; Calderon-Dominguez, M.; Quezada-Feijoo, M.; Ramos, M.; Campuzano, O.; Gomez, S.; Peña, M.L.; Cubillos-Arango, A.M.; Dominguez, F.; et al. Peripheral MicroRNA Panels to Guide the Diagnosis of Familial Cardiomyopathy. Transl. Res. 2020, 218, 1–15. [Google Scholar] [CrossRef]
- Zaragoza, C.; Saura, M.; Hernández, I.; Ramirez-Carracedo, R.; García-García, F.; Zamorano, J.L.; Mangas, A.; Toro, R. Differential Expression of Circulating MiRNAs as a Novel Tool to Assess BAG3-Associated Familial Dilated Cardiomyopathy. Biosci. Rep. 2019, 39, BSR20180934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dziewięcka, E.; Totoń-Żurańska, J.; Wołkow, P.; Kołton-Wróż, M.; Pitera, E.; WiśniowskaŚmiałek, S.; Khachatryan, L.; Karabinowska, A.; Szymonowicz, M.; Podolec, P.; et al. Relations between Circulating and Myocardial Fibrosis-Linked MicroRNAs with Left Ventricular Reverse Remodeling in Dilated Cardiomyopathy. Adv. Clin. Exp. Med. 2020, 29, 285–293. [Google Scholar] [CrossRef]
- Calderon-Dominguez, M.; Belmonte, T.; Quezada-Feijoo, M.; Ramos, M.; Calderon-Dominguez, J.; Campuzano, O.; Mangas, A.; Toro, R. Plasma Microrna Expression Profile for Reduced Ejection Fraction in Dilated Cardiomyopathy. Sci. Rep. 2021, 11, 1–15. [Google Scholar] [CrossRef]
- Satoh, M.; Minami, Y.; Takahashi, Y.; Tabuchi, T.; Nakamura, M. A Cellular MicroRNA, Let-7i, Is a Novel Biomarker for Clinical Outcome in Patients with Dilated Cardiomyopathy. J. Card. Fail. 2011, 17, 923–929. [Google Scholar] [CrossRef]
- Xu, H.-F.; Ding, Y.-J.; Zhang, Z.-X.; Wang, Z.-F.; Luo, C.-L.; Li, B.-X.; Shen, Y.-W.; Tao, L.-Y.; Zhao, Z.-Q. MicroRNA-21 Regulation of the Progression of Viral Myocarditis to Dilated Cardiomyopathy. Mol. Med. Rep. 2014, 10, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Greco, S.; Fasanaro, P.; Castelvecchio, S.; D’Alessandra, Y.; Arcelli, D.; Di Donato, M.; Malavazos, A.; Capogrossi, M.C.; Menicanti, L.; Martelli, F. MicroRNA Dysregulation in Diabetic Ischemic Heart Failure Patients. Diabetes 2012, 61, 1633–1641. [Google Scholar] [CrossRef] [Green Version]
- Besler, C.; Urban, D.; Watzka, S.; Lang, D.; Rommel, K.-P.; Kandolf, R.; Klingel, K.; Thiele, H.; Linke, A.; Schuler, G.; et al. Endomyocardial MiR-133a Levels Correlate with Myocardial Inflammation, Improved Left Ventricular Function, and Clinical Outcome in Patients with Inflammatory Cardiomyopathy. Eur. J. Heart Fail. 2016, 18, 1442–1451. [Google Scholar] [CrossRef] [Green Version]
- Naga Prasad, S.V.; Gupta, M.K.; Duan, Z.-H.; Surampudi, V.S.K.; Liu, C.-G.; Kotwal, A.; Moravec, C.S.; Starling, R.C.; Perez, D.M.; Sen, S.; et al. A Unique MicroRNA Profile in End-Stage Heart Failure Indicates Alterations in Specific Cardiovascular Signaling Networks. PLoS ONE 2017, 12, e0170456. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, M.; Xu, L.; Liu, J.; Wang, D.; Li, Q.; Wang, L.; Li, P.; Chen, S.; Liu, T. Expression of Bcl-2 and MicroRNAs in Cardiac Tissues of Patients with Dilated Cardiomyopathy. Mol. Med. Rep. 2017, 15, 359–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Q.; Schötterl, S.; Backes, D.; Brunner, E.; Hahn, J.K.; Ionesi, E.; Aidery, P.; Sticht, C.; Labeit, S.; Kandolf, R.; et al. Inhibition of MiR-208b Improves Cardiac Function in Titin-Based Dilated Cardiomyopathy. Int. J. Cardiol. 2017, 230, 634–641. [Google Scholar] [CrossRef]
- Rubiś, P.; Totoń-Żurańska, J.; Wiśniowska-Śmiałek, S.; Dziewięcka, E.; Kołton-Wróż, M.; Wołkow, P.; Pitera, E.; Rudnicka-Sosin, L.; Garlitski, A.C.; Gackowski, A.; et al. The Relationship between Myocardial Fibrosis and Myocardial MicroRNAs in Dilated Cardiomyopathy: A Link between Mir-133a and Cardiovascular Events. J. Cell Mol. Med. 2018, 22, 2514–2517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyamoto, S.D.; Karimpour-Fard, A.; Peterson, V.; Auerbach, S.R.; Stenmark, K.R.; Stauffer, B.L.; Sucharov, C.C. Circulating MicroRNA as a Biomarker for Recovery in Pediatric Dilated Cardiomyopathy. J. Heart Lung. Transpl. 2015, 34, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Enes Coşkun, M.; Kervancıoğlu, M.; Öztuzcu, S.; Yılmaz Coşkun, F.; Ergün, S.; Başpınar, O.; Kılınç, M.; Temel, L.; Coşkun, M.Y. Plasma MicroRNA Profiling of Children with Idiopathic Dilated Cardiomyopathy. Biomarkers 2016, 21, 56–61. [Google Scholar] [CrossRef]
- Jiao, M.; You, H.-Z.; Yang, X.-Y.; Yuan, H.; Li, Y.-L.; Liu, W.-X.; Jin, M.; Du, J. Circulating MicroRNA Signature for the Diagnosis of Childhood Dilated Cardiomyopathy. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woulfe, K.C.; Siomos, A.K.; Nguyen, H.; SooHoo, M.; Galambos, C.; Stauffer, B.L.; Sucharov, C.; Miyamoto, S. Fibrosis and Fibrotic Gene Expression in Pediatric and Adult Patients With Idiopathic Dilated Cardiomyopathy. J. Card Fail. 2017, 23, 314–324. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Wang, X.; Yang, J.; Duan, X.; Yao, Y.; Shi, X.; Chen, Z.; Fan, Z.; Liu, X.; Qin, S.; et al. A Translational Study of Urine MiRNAs in Acute Myocardial Infarction. J. Mol. Cell Cardiol. 2012, 53, 668–676. [Google Scholar] [CrossRef] [Green Version]
- Duan, X.; Zhou, X.; Wang, X.; Fan, Z.; Zhang, C.; Chen, Z. Urine cardiac specific microRNA-1 level in patients with ST segment elevation acute myocardial infarction. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2012, 24, 709–712. [Google Scholar]
- Zhao, Y.; Wang, C.; Wu, J.; Wang, Y.; Zhu, W.; Zhang, Y.; Du, Z. Choline Protects against Cardiac Hypertrophy Induced by Increased After-Load. Int. J. Biol. Sci. 2013, 9, 295–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, Y.; Wan, L.; Bu, L.; Zhao, D.; Dong, D.; Huang, T.; Cheng, Z.; Shen, B. MicroRNA-22 Downregulation by Atorvastatin in a Mouse Model of Cardiac Hypertrophy: A New Mechanism for Antihypertrophic Intervention. Cell Physiol. Biochem. 2013, 31, 997–1008. [Google Scholar] [CrossRef]
- Thum, T.; Gross, C.; Fiedler, J.; Fischer, T.; Kissler, S.; Bussen, M.; Galuppo, P.; Just, S.; Rottbauer, W.; Frantz, S.; et al. MicroRNA-21 Contributes to Myocardial Disease by Stimulating MAP Kinase Signalling in Fibroblasts. Nature 2008, 456, 980–984. [Google Scholar] [CrossRef]
- Roy, S.; Khanna, S.; Hussain, S.-R.A.; Biswas, S.; Azad, A.; Rink, C.; Gnyawali, S.; Shilo, S.; Nuovo, G.J.; Sen, C.K. MicroRNA Expression in Response to Murine Myocardial Infarction: MiR-21 Regulates Fibroblast Metalloprotease-2 via Phosphatase and Tensin Homologue. Cardiovasc. Res. 2009, 82, 21–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, F.; Liu, W.; Yan, X.; Zhou, H.; Zhang, H.; Liu, J.; Yu, M.; Zhu, X.; Ma, K. Effects of Mir-21 on Cardiac Microvascular Endothelial Cells After Acute Myocardial Infarction in Rats: Role of Phosphatase and Tensin Homolog (PTEN)/Vascular Endothelial Growth Factor (VEGF) Signal Pathway. Med. Sci. Monit. 2016, 22, 3562–3575. [Google Scholar] [CrossRef]
- Li, L.; Chen, Q.; Feng, C.; Jin, Y.; Xia, S. Aberrant Expression of TNRC6a and MiR-21 during Myocardial Infarction. 3 Biotech 2019, 9, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Chen, H.; Ge, D.; Xu, Y.; Xu, H.; Yang, Y.; Gu, M.; Zhou, Y.; Zhu, J.; Ge, T.; et al. Mir-21 Promotes Cardiac Fibrosis After Myocardial Infarction Via Targeting Smad7. Cell Physiol. Biochem. 2017, 42, 2207–2219. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, C.; Ban, T.; Liu, Y.; Mei, L.; Piao, X.; Zhao, D.; Lu, Y.; Chu, W.; Yang, B. A Novel Reciprocal Loop between MicroRNA-21 and TGFβRIII Is Involved in Cardiac Fibrosis. Int. J. Biochem. Cell Biol. 2012, 44, 2152–2160. [Google Scholar] [CrossRef]
- Cao, W.; Shi, P.; Ge, J.-J. MiR-21 Enhances Cardiac Fibrotic Remodeling and Fibroblast Proliferation via CADM1/STAT3 Pathway. BMC Cardiovasc. Disord. 2017, 17, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kriegel, A.J.; Liu, Y.; Fang, Y.; Ding, X.; Liang, M. The MiR-29 Family: Genomics, Cell Biology, and Relevance to Renal and Cardiovascular Injury. Physiol. Genomics 2012, 44, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Dawson, K.; Wakili, R.; Ordög, B.; Clauss, S.; Chen, Y.; Iwasaki, Y.; Voigt, N.; Qi, X.Y.; Sinner, M.F.; Dobrev, D.; et al. MicroRNA29: A Mechanistic Contributor and Potential Biomarker in Atrial Fibrillation. Circulation 2013, 127, 1466–1475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.; Wang, L.; Lu, L.; Jiang, P.; Sun, H.; Wang, H. Inhibition of MiR-29 by TGF-Beta- Smad3 Signaling through Dual Mechanisms Promotes Transdifferentiation of Mouse Myoblasts into Myofibroblasts. PLoS ONE 2012, 7, e33766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Huang, X.-R.; Wei, L.-H.; Chung, A.C.; Yu, C.-M.; Lan, H.-Y. MiR-29b as a Therapeutic Agent for Angiotensin II-Induced Cardiac Fibrosis by Targeting TGF-β/Smad3 Signaling. Mol. Ther. 2014, 22, 974–985. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wang, N.; Zhang, J.; He, H.P.; Gong, H.Q.; Zhang, R.; Song, T.F.; Zhang, L.N.; Guo, Z.X.; Cao, D.S.; et al. MicroRNA-29a-3p attenuates ET-1-induced hypertrophic responses in H9c2 cardiomyocytes. Gene 2016, 585, 44–50. [Google Scholar] [CrossRef]
- Sassi, Y.; Avramopoulos, P.; Ramanujam, D.; Grüter, L.; Werfel, S.; Giosele, S.; Brunner, A.-D.; Esfandyari, D.; Papadopoulou, A.S.; De Strooper, B.; et al. Cardiac Myocyte MiR-29 Promotes Pathological Remodeling of the Heart by Activating Wnt Signaling. Nat. Commun. 2017, 8, 1–11. [Google Scholar] [CrossRef]
- Rao, P.K.; Kumar, R.M.; Farkhondeh, M.; Baskerville, S.; Lodish, H.F. Myogenic Factors That Regulate Expression of Muscle-Specific MicroRNAs. Proc. Natl. Acad. Sci. USA 2006, 103, 8721–8726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Townley-Tilson, W.H.D.; Callis, T.E.; Wang, D.-Z. MicroRNAs 1, 133, and 206: Critical Factors of Skeletal and Cardiac Muscle Development, Function, and Disease. Int. J. Biochem. Cell Biol. 2010, 42, 1252–1255. [Google Scholar] [CrossRef] [Green Version]
- Kumar Mishra, P. Is Mir-133a a Promising Therapeutic Target for Heart Failure? J. Diabetes Metab. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Lin, X.; Yang, X.; Chang, J. NFATc4 Is Negatively Regulated in MiR-133a-Mediated Cardiomyocyte Hypertrophic Repression. Am. J. Physiol. Heart Circ. Physiol. 2010, 298, H1340–H1347. [Google Scholar] [CrossRef] [Green Version]
- Sucharov, C.; Bristow, M.R.; Port, J.D. MiRNA Expression in the Failing Human Heart: Functional Correlates. J. Mol. Cell Cardiol. 2008, 45, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Carè, A.; Catalucci, D.; Felicetti, F.; Bonci, D.; Addario, A.; Gallo, P.; Bang, M.-L.; Segnalini, P.; Gu, Y.; Dalton, N.D.; et al. MicroRNA-133 Controls Cardiac Hypertrophy. Nat. Med. 2007, 13, 613–618. [Google Scholar] [CrossRef]
- Drawnel, F.M.; Wachten, D.; Molkentin, J.D.; Maillet, M.; Aronsen, J.M.; Swift, F.; Sjaastad, I.; Liu, N.; Catalucci, D.; Mikoshiba, K.; et al. Mutual Antagonism between IP3RII and MiRNA-133a Regulates Calcium Signals and Cardiac Hypertrophy. J. Cell Biol. 2012, 199, 783–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, H.; Zhang, Y.; Lu, Y.; Zhang, Y.; Pan, Z.; Cai, B.; Wang, N.; Li, X.; Feng, T.; Hong, Y.; et al. Downregulation of MiR-133 and MiR-590 Contributes to Nicotine-Induced Atrial Remodelling in Canines. Cardiovasc. Res. 2009, 83, 465–472. [Google Scholar] [CrossRef]
- Duisters, R.F.; Tijsen, A.J.; Schroen, B.; Leenders, J.J.; Lentink, V.; van der Made, I.; Herias, V.; van Leeuwen, R.E.; Schellings, M.W.; Barenbrug, P.; et al. MiR-133 and MiR-30 Regulate Connective Tissue Growth Factor: Implications for a Role of MicroRNAs in Myocardial Matrix Remodeling. Circ. Res. 2009, 104, 170–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, T.X.; Rothenberg, M.E. MicroRNA. J. Allergy Clin. Immunol. 2018, 141, 1202–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stenvang, J.; Petri, A.; Lindow, M.; Obad, S.; Kauppinen, S. Inhibition of MicroRNA Function by AntimiR Oligonucleotides. Silence 2012, 3, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Pang, J.K.S.; Phua, Q.H.; Soh, B.-S. Applications of MiRNAs in Cardiac Development, Disease Progression and Regeneration. Stem. Cell Res. Ther. 2019, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ucar, A.; Gupta, S.K.; Fiedler, J.; Erikci, E.; Kardasinski, M.; Batkai, S.; Dangwal, S.; Kumarswamy, R.; Bang, C.; Holzmann, A.; et al. The MiRNA-212/132 Family Regulates Both Cardiac Hypertrophy and Cardiomyocyte Autophagy. Nat. Commun. 2012, 3, 1–11. [Google Scholar] [CrossRef]
- Bernardo, B.C.; Nguyen, S.S.; Winbanks, C.E.; Gao, X.-M.; Boey, E.J.H.; Tham, Y.K.; Kiriazis, H.; Ooi, J.Y.Y.; Porrello, E.R.; Igoor, S.; et al. Therapeutic Silencing of MiR-652 Restores Heart Function and Attenuates Adverse Remodeling in a Setting of Established Pathological Hypertrophy. FASEB J. 2014, 28, 5097–5110. [Google Scholar] [CrossRef] [Green Version]
miRNAs in HCM | |||
---|---|---|---|
Circulating miRNAs | |||
miRNAs | Quantitative Effect | Notes | Reference |
miR-1, miR-16, miR-214 | downregulated | [24] | |
miR-27a, miR-199a-5p, miR-26a, miR-145, mi -133a, miR-143, miR-199a-3p, miR-126-3p, miR-29a, miR-155, miR-30a, miR-21 | upregulated | miR-199a-5p, miR-27a correlates with hypertrophy. miR-29a significantly correlates with both cardiac fibrosis and hypertrophy | |
miR-373-3p, miR-96-5p | downregulated | [25] | |
miR-18a-5p, miR-146a-5p, miR-30d-5p, miR-17-5p, miR-200a-3p, miR-19b-3p, miR-21-5p, miR-193-5p, miR-10b-5p, miR-15a-5p, miR-192-5p, miR-296-5p, miR-29a-3p, miR-133a-3p | upregulated | patients with HCM and diffuse myocardial fibrosis | |
miR-155 | downregulated | miR-155 downregulated in obstructive and non-obstructive HCM | [26] |
miR-29a | upregulated | miR-29a upregulated in obstructive HCM with MYH7 mutations | |
miR-29c | upregulated | miR-29c high only in aortic stenosis group | |
miR-29a | upregulated | HCM patients with fibrosis compared to HCM without fibrosis | [27] |
miR-21 | upregulated | [28] | |
Cardiac miRNAs | |||
miR-1, miR-133b, miR-191, miR-208b, miR-218, miR-30b, miR-374, miR-454, miR-495 | downregulated | miR-208b downregulated in HCM due to valve disease. miR-495 downregulated in HCM with MYH7 mutations | [29] |
miR-590-5p, miR-92a | upregulated | ||
miR-221 | upregulated | [30] | |
miR-1-3p, miR-23a-3p, miR-23b-3p, miR-24-3p, miR-29b-3p, miR-30d-5p, miR-125a-5p, miR-126-3p, miR-133a-3p, miR-143-3p, miR-145-5p, miR-193b-3p, miR-197-3p, miR-331-3p, miR-342-3p, miR-361-5p, miR-365-3p, miR-455-3p, miR-1975-3p, miR-1978 | upregulated | end-stage HCM patients compared to controls | [31] |
miR-29 family | - | no differences between patients and controls | [32] |
miR-10b, miR10b* miR-184, miR-497, miR-204, miR-222*, miR-34* | downregulated upregulated | [33] | |
miR-451, miR- 363, miR-150, miR-3141, miR-144, miR-144*, miR-139-5p, miR-139-3p, miR-1246, miR-486-3p miR-21, miR-130b, miR-132 | downregulated upregulated | [34] | |
miR-139-5p | downregulated | [35] | |
miR-27a, miR-1-3p | downregulated | both miRNAs were downregulated also in DCM cardiac tissue. | [36] |
miR-20 | upregulated | [37] | |
miR-19b, miR-155 miR-221, miR-222, miR-433 | Downregulated upregulated | in obstructive HCM patients compared to controls | [38] |
miRNAs in ACM | |||
---|---|---|---|
Circulating miRNAs | |||
miRNAs | Quantitative Effect | Notes | Reference |
miR-320a | downregulated | lower in ACM compared to IVT and controls | [51] |
miR-144-3p, miR-145-5p, miR-185-5p, and miR-494 | upregulated | ACM with ventricular arrhythmia compared to controls | [52] |
miR-122-5p, miR-182-5p, and miR-183-5p miR-133a-3p, miR-133b, miR-142-3p | Upregulated downregulated | deregulated in ACM compared to controls and other cardiomyopathies | [53] |
Cardiac miRNAs | |||
miR-21-3p, miR-21-5p, miR-34a-5p, miR-212-3p, miR-216a, miR-584-3p, miR-1251, miR-3621, miR-3674, miR-3692-3p, miR-4286, miR-4301 | upregulated | [54] | |
miR-135b, miR-138-5p, miR-193b-3p, miR-302b-3p, miR-302c-3p, miR-338-3p, miR-451a, miR-491-3p, miR-575, miR-3529-5P, miR-4254, miR-4643 | downregulated | ||
miR-29b-3p | upregulated | [55] |
miRNAs in DCM | |||
---|---|---|---|
Circulating miRNAs | |||
miRNAs | Quantitative Effect | Notes | Reference |
miR-142-3p | downregulated | in compensated and in congestive heart failure DCM | [65] |
miR-124-5p | upregulated | ||
miR-548 | downregulated | DCM with stable chronic heart failure | [66] |
miR-423-5p | upregulated | DCM-related heart failure | [67] |
miR-185 | upregulated | upregulation linked to a favourable prognosis in DCM patients | [68] |
miR-3135b, miR-3908, miR-5571-5p | upregulated | [69] | |
miR-26, miR-30 | similar levels | chronic and new-onset DCM with and without fibrosis | [70] |
miR-92b-5p | upregulated | acute heart failure due to DCM | [71] |
miR-24-3p, miR-28-5p, miR-100-5p, miR-103-3p, miR-125b5p, miR-214-3p, let-7b-5p, let-7c-5p | upregulated | ischemic and idiopathic DCM | [72] |
let-7a-5p, miR-142-3p, miR-145-5p, miR-454-3p | upregulated | DCM with pathogenic LMNA mutations compared to idiopathic DCM or controls | [73] |
let-7a-5p, let-7g-5p, miR-16-2-3p, miR-210-3p, miR-215-5p, miR-629-5p | upregulated | in familiar DCM compared to no familiar | [74] |
miR-154-5p, miR-182-5p, miR-1249-ep, miR-3191-3p, miR-6769b-3p, miR-6855-5p | upregulated | in DCM patients BAG3+ mutation carriers compared to BAG3 wt | [75] |
miR-133a | upregulated | increased expression in LVRR compared to non-LVRR | [76] |
miR-130b-3p, miR-150-5p, miR-210-3p | upregulated | distinguish DCM with severe reduced systolic ejection fraction from moderately reduced ejection fraction | [77] |
Cardiac miRNAs | |||
miR-214 | downregulated | [36] | |
miR-21 | upregulated | ||
let-7i, miR-126,miR-155 | downregulated | let-7i associated with a poor clinical outcome | [78] |
miR-21 | upregulated | ||
miR-21 | upregulated | [79] | |
miR-223, miR-650 | downregulated | lower in non diabetic DCM than in controls | [80] |
miR-216a | upregulated | higher in both DCM groups than in controls | |
miR-34b, miR-34c, miR-199b, miR-210 | upregulated | higher in diabetic DCM than in controls | |
miR-133a | upregulated | inflammatory DCM without fibrosis vs. fibrotic DCM | [81] |
miR-378, miR-1, miR-7, miR-29b | downregulated | [82] | |
miR-342, miR-214, miR-125b, miR-145, miR-181b | upregulated | in end-stage heart failure DCM | |
miR-133 | downregulated | [83] | |
miR-21, miR-29 | upregulated | in left, right ventricle and apex | |
miR-208b | upregulated | high in DCM with severe heart failure and assist device implantation compared to subjects with heart failure due to ischemic heart disease or myocarditis | [84] |
miR-26, miR-133a | downregulated | [85] | |
miR-29 | upregulated |
miRNAs in Pediatric DCM | |||
---|---|---|---|
miRNAs | Quantitative Effect | Notes | Reference |
Circulating miRNAs | |||
miR-155, miR-636 | upregulated | in subjects with poor prognosis compared to recovered ventricular function | [86] |
miR-646, miR-639 | downregulated | ||
miR-454, miR-518f | upregulated | [87] | |
miR-99b, miR-147, miR-155, miR-194, miR-205, miR-218 miR-302a, miR-544, miR-618, miR-875-3p | downregulated | ||
let-7f-5p, let-7g-5p, miR-26a-5p, miR-27a-3p, miR-27b-3p, miR-126-3p, miR-142-5p, miR-143-3p | upregulated | [88] | |
Cardiac miRNAs | |||
miR-29 family | downregulated | in cardiac tissue of heart failure patients without fibrosis | [89] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiti, E.; Paolo, M.D.; Turillazzi, E.; Rocchi, A. MicroRNAs in Hypertrophic, Arrhythmogenic and Dilated Cardiomyopathy. Diagnostics 2021, 11, 1720. https://doi.org/10.3390/diagnostics11091720
Chiti E, Paolo MD, Turillazzi E, Rocchi A. MicroRNAs in Hypertrophic, Arrhythmogenic and Dilated Cardiomyopathy. Diagnostics. 2021; 11(9):1720. https://doi.org/10.3390/diagnostics11091720
Chicago/Turabian StyleChiti, Enrica, Marco Di Paolo, Emanuela Turillazzi, and Anna Rocchi. 2021. "MicroRNAs in Hypertrophic, Arrhythmogenic and Dilated Cardiomyopathy" Diagnostics 11, no. 9: 1720. https://doi.org/10.3390/diagnostics11091720
APA StyleChiti, E., Paolo, M. D., Turillazzi, E., & Rocchi, A. (2021). MicroRNAs in Hypertrophic, Arrhythmogenic and Dilated Cardiomyopathy. Diagnostics, 11(9), 1720. https://doi.org/10.3390/diagnostics11091720