Microbial Translocation and Perinatal Asphyxia/Hypoxia: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Search Question Formation
3. Results
3.1. Microbial Translocation in Hypoxic/Asphyxiating Conditions
3.2. The Impact of Ischemia/Reperfusion(I/R) Injury on the Intestinal Barrier Function
3.3. Necrotizing Enterocolitis and Translocation
Authors | Year | Topic | Outcome |
---|---|---|---|
Ali Nayci et al. [28] | 2006 | Oxygen supplementation during airway instrumentation improves intestinal barrier dysfunction | Oxygen prevents hypoxemia, intestinal damage, and bacterial translocation |
Mallick et al.[29] | 2004 | I/R injury of the intestine and protective strategies against injury | Prospective controlled studies in humans involving ischemic preconditioning of the intestine are lacking |
Berman et al. [31] | 2011 | NEC: an update | Most frequent long-term complications include short bowel syndrome, abnormal growth, neurodevelopmental delay. |
Ostlie et al. [32] | 2003 | NEC in full-term infants | 10% of cases of NEC are full term infants |
Short et al. [33] | 2014 | Late onset of NEC in the full-term infant is associated with increased mortality: results from a two-center analysis | The gestational age is inversely proportional to the time of onset of NEC. Possible risk factors include perinatal hypoxia/asphyxia, congenital heart diseases etc. |
Iben et al. [34] | 2011 | NEC | The distal ileum and the proximal colon, are the most commonly affected in NEC |
Patole et al. [35] | 2017 | Microbiota and NEC | Microbial dysbiosis has been implicated in pathogenesis of NEC |
Pammi et al. [36] | 2017 | Intestinal dysbiosis in preterm infants preceding NEC: a systematic review and meta-analysis | Further research is needed in order to assess the reproducibility of the available data on the issue |
Grishin et al. [37] | 2016 | Roles of nitric oxide and intestinal microbiota in the pathogenesis of NEC | Nitric oxide plays a prominent role in the intestinal barrier damage by inducing enterocyte apoptosis and inhibiting the epithelial restitution processes |
Stevenson et al. [38] | 2006 | Historical perspectives: NEC an inherited or acquired condition? | Intestinal mucosa ischemic injury caused by the “diving reflex” occurs in response to the decrease of blood pressure during perinatal asphyxia |
Keely et al. [39] | 2010 | Hypoxia-inducible factor-dependent regulation of platelet-activating factor receptor as a route for gram-positive bacterial translocation across epithelia | It remains to be determined whether HIF-mediated, PAFr-dependent bacterial translocation represents a physiological clearance mechanism or rather serves as a pathophysiologic mechanism whereby bacteria exploit PAFr as a route of entry |
Glover et al. [40] | 2016 | Oxygen metabolism and barrier regulation in the intestinal mucosa | In the intestine, baseline pO2 levels are uniquely low due to counter-current blood flow and the presence of large numbers of bacteria and this mechanism contributes to the gut mucosa homeostasis |
Tugtekin et al. [41] | 2001 | Increased ileal-mucosal-arterial PCO2 gap is associated with impaired villus microcirculation in endotoxic pigs | Increased ileal-mucosal-arterial delta PCO2 during porcine endotoxemia is related to impaired villus microcirculation |
Varvarousis et al. [42] | 2017 | Metabolomics profiling reveals different patterns in an animal model of asphyxial and dysrhythmic cardiac arrest | Succinate overproduction was observed in the animals with the worse outcome, suggesting a potential prognostic role for this metabolite |
Lim et al. [43] | 2015 | Pathogenesis of NEC | Opportunistic pathogens breach the gut barrier and incite an inflammatory response that leads to overproduction of inflammatory mediators which exacerbate the initial mucosal injury and also suppress the intestinal repair mechanisms |
Hackam et al. [44] | 2013 | Mechanisms of gut barrier failure in the pathogenesis of NEC: Toll-like receptors throw the switch | Activation of the receptor for bacterial endotoxin, TLR4, is required for the development of intestinal barrier failure leading to NEC |
Patel et al. [45] | 2015 | Intestinal microbiota and its relationship with NEC | Shifting the balance of intestinal microbiota from a pathogenic to protective complement of bacteria can protect the gut from inflammation and subsequent injury that leads to NEC |
3.4. Bacterial Endotoxins
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Evaluation of Studies Quality/Level of Evidence According to the Evidence Based Medicine Pyramid
Authors | Year | Study Type | Level of Evidence |
---|---|---|---|
International Liaison Committee on Resuscitation [16] | 2005 | Guideline | High |
Fattuoni et al. [17] | 2015 | Review | High |
Aslam et al. [18] | 2014 | Retrospective Case control study | Medium |
Antonucci et al. [20] | 2014 | Review | High |
Rainaldi et al. [21] | 2016 | Review | High |
Moreno et al. [22] | 2016 | RCT on mice (10 and 10) | Medium |
Authors | Year | Study Type | Level of Evidence |
---|---|---|---|
Küçükaydin et al. [24] | 2000 | RCT on mice (20, 20 and d20) | Medium |
Xu et al. [25] | 1999 | In vitro study on cell cultures | Low |
Sun et al. [26] | 2000 | RCT on mice | Medium |
Gkiza et al. [27] | 2012 | Case control study on piglets (24 and 22) | Medium |
Authors | Year | Study Type | Level of Evidence |
---|---|---|---|
Ali Nayci et al. [28] | 2006 | RCT on mice (15 20 and 20) | Medium |
Mallick et al. [29] | 2004 | Review | High |
Berman et al. [31] | 2011 | Seminar paper/educational | High |
Ostlie et al. [32] | 2003 | Retrospective case control study | Medium |
Short et al. [33] | 2014 | Retrospective review | Medium |
Iben et al. [34] | 2011 | Book chapter | High |
Patole et al. [35] | 2017 | Review | High |
Pammi et al. [36] | 2017 | Systematic review and meta-analysis | High |
Grishin et al. [37] | 2016 | Review | High |
Stevenson et al. [38] | 2006 | Personal insight | Low |
Keely et al. [39] | 2010 | In vitro study on cell cultures | Low |
Glover et al. [40] | 2016 | Review | High |
Tugtekin et al. [41] | 2001 | RCT on domestic pigs (12 with toxin and 10 without) | Medium |
Varvarousis et al. [42] | 2017 | RCT on swine (10: asphyxial cardiac arrest and 10: ventricular fibrillation cardiac arrest) | Medium |
Lim et al. [43] | 2015 | Review | High |
Hackam et al. [44] | 2013 | Review (description of current research) | High |
Patel et al. [45] | 2015 | Review | High |
Authors | Year | Study Type | Level of Evidence |
---|---|---|---|
Beutler et al. [46] | 2003 | Review | High |
Jiang et al. [47] | 1995 | Experiment on 37 rats | Low |
Yao et al. [48] | 1995 | RCT on rats | Medium |
Anand et al. [49] | 2007 | Review | High |
Wolfs et al. [50] | 2010 | Specimens obtained from the ileum of infants and adults and stored tissue material | Medium |
Hackam et al. [51] | 2005 | Review | High |
Cetin et al. [52] | 2004 | Cell culture | Low |
Qureshi et al. [53] | 2005 | Experiment on rats | Low |
Corcoran et al. [54] | 2016 | Review | High |
Authors | Year | Study Type | Level of Evidence |
---|---|---|---|
Ares et al. [55] | 2018 | Review on animal models | High |
Azcarate-Peril et al. [56] | 2011 | Study on 23 piglets | High |
Berthe C Oosterloo et al. [57] | 2014 | Review on piglet models | High |
Aroni et al. [58] | 2012 | Study on 10 piglets | Low |
Sangild et al. [59] | 2013 | Review on piglet animal models | High |
Barré-Sinoussi et al. [60] | 2015 | Opinion | Low |
References
- DiBartolomeo, M.E.; Claud, E.C. The Developing Microbiome of the Preterm Infant. Clin. Ther. 2016, 38, 733–739. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, J.M.; Murphy, K.; Stanton, C.; Ross, R.P.; Kober, O.I.; Juge, N.; Avershina, E.; Rudi, K.; Narbad, A.; Jenmalm, M.C.; et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis. 2015, 26, 26050. [Google Scholar] [CrossRef]
- Collado, M.C.; Rautava, S.; Aakko, J.; Isolauri, E.; Salminen, S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci. Rep. 2016, 6, 23129. [Google Scholar] [CrossRef] [Green Version]
- Collado, M.C.; Rautava, S.; Isolauri, E.; Salminen, S. Gut microbiota: A source of novel tools to reduce the risk of human disease? Pediatric Res. 2015, 77, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.J.; Wu, E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 2012, 3, 4–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, C.; Round, J.L. Defining dysbiosis and its influence on host immunity and disease. Cell. Microbiol. 2014, 16, 1024–1033. [Google Scholar] [CrossRef]
- Sodhi, P.; Fiset, P. Necrotizing enterocolitis. Contin. Educ. Anaesth. Crit. Care Pain 2012, 12, 1–4. [Google Scholar] [CrossRef]
- Collado, M.C.; Cernada, M.; Bauerl, C.; Vento, M.; Perez-Martinez, G. Microbial ecology and host-microbiota interactions during early life stages. Gut Microbes 2012, 3, 352–365. [Google Scholar] [CrossRef] [Green Version]
- Grzeskowiak, L.; Collado, M.C.; Mangani, C.; Maleta, K.; Laitinen, K.; Ashorn, P.; Isolauri, E.; Salminen, S. Distinct gut microbiota in southeastern African and northern European infants. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 812–816. [Google Scholar] [CrossRef] [PubMed]
- Marseglia, L.; D’Angelo, G.; Manti, S.; Aversa, S.; Reiter, R.J.; Antonuccio, P.; Centorrino, A.; Romeo, C.; Impellizzeri, P.; Gitto, E. Oxidative Stress-Mediated Damage in Newborns with Necrotizing Enterocolitis: A Possible Role of Melatonin. Am. J. Perinatol. 2015, 32, 905–909. [Google Scholar] [CrossRef] [PubMed]
- Farhadi, A.; Banan, A.; Fields, J.; Keshavarzian, A. Intestinal barrier: An interface between health and disease. J. Gastroenterol. Hepatol. 2003, 18, 479–497. [Google Scholar] [CrossRef] [PubMed]
- Swank, G.M.; Deitch, E.A. Role of the gut in multiple organ failure: Bacterial translocation and permeability changes. World J. Surg. 1996, 20, 411–417. [Google Scholar] [CrossRef]
- Berg, R.D.; Garlington, A.W. Translocation of certain indigenous bacteria from the gastrointestinal tract to the mesenteric lymph nodes and other organs in a gnotobiotic mouse model. Infect. Immun. 1979, 23, 403–411. [Google Scholar] [CrossRef] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
- Evans, N.J. Assessing the practical differences between model selection methods in inferences about choice response time tasks. Psychon. Bull. Rev. 2019, 26, 1070–1098. [Google Scholar] [CrossRef] [PubMed]
- International Liaison Committee on Resuscitation. 2005 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Part 7: Neonatal resuscitation. Resuscitation 2005, 67, 293–303. [Google Scholar] [CrossRef]
- Fattuoni, C.; Palmas, F.; Noto, A.; Fanos, V.; Barberini, L. Perinatal asphyxia: A review from a metabolomics perspective. Molecules 2015, 20, 7000–7016. [Google Scholar] [CrossRef]
- Aslam, H.M.; Saleem, S.; Afzal, R.; Iqbal, U.; Saleem, S.M.; Shaikh, M.W.; Shahid, N. Risk factors of birth asphyxia. Ital. J. Pediatr. 2014, 40, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millar, L.J.; Shi, L.; Hoerder-Suabedissen, A.; Molnár, Z. Neonatal Hypoxia Ischaemia: Mechanisms, Models, and Therapeutic Challenges. Front. Cell. Neurosci. 2017, 11, 78. [Google Scholar] [CrossRef] [Green Version]
- Antonucci, R.; Porcella, A.; Pilloni, M.D. Perinatal asphyxia in the term newborn. J. Pediatric Neonatal Individ. Med. (JPNIM) 2014, 3, e030269. [Google Scholar] [CrossRef]
- Rainaldi, M.A.; Perlman, J.M. Pathophysiology of Birth Asphyxia. Clin. Perinatol. 2016, 43, 409–422. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Indias, I.; Torres, M.; Sanchez-Alcoholado, L.; Cardona, F.; Almendros, I.; Gozal, D.; Montserrat, J.M.; Queipo-Ortuno, M.I.; Farre, R. Normoxic Recovery Mimicking Treatment of Sleep Apnea Does Not Reverse Intermittent Hypoxia-Induced Bacterial Dysbiosis and Low-Grade Endotoxemia in Mice. Sleep 2016, 39, 1891–1897. [Google Scholar] [CrossRef]
- Zhdanov, A.V.; Okkelman, I.A.; Golubeva, A.V.; Doerr, B.; Hyland, N.P.; Melgar, S.; Shanahan, F.; Cryan, J.F.; Papkovsky, D.B. Quantitative analysis of mucosal oxygenation using ex vivo imaging of healthy and inflamed mammalian colon tissue. Cell. Mol. Life Sci. CMLS 2017, 74, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Küçükaydin, M.; Kocaoğlu, C.; Köksal, F.; Kontaş, O. Detection of intestinal bacterial translocation in subclinical ischemia-reperfusion using the polymerase chain reaction technique. J. Pediatric Surg. 2000, 35, 41–43. [Google Scholar] [CrossRef]
- Xu, D.Z.; Lu, Q.; Kubicka, R.; Deitch, E.A. The effect of hypoxia/reoxygenation on the cellular function of intestinal epithelial cells. J. Trauma 1999, 46, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wang, X.; Deng, X.; Borjesson, A.; Wallen, R.; Hallberg, E.; Andersson, R. Phagocytic and intestinal endothelial and epithelial barrier function during the early stage of small intestinal ischemia and reperfusion injury. Shock 2000, 13, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Gkiza, E.; Giamarellos-Bourboulis, E.; Tsaganos, T.; Xanthos, T.; Korou, L.M.; Carrer, D.P.; Stergiopoulos, S.; Kouskouni, E.; Perrea, D.N.; Dontas, I.A. Isolation of Aerobic Bacteria in Internal Specimens from Domesticated Pigs Used in Biomedical Research and the Association with Bacterial Translocation. J. Anim. Vet. Adv. 2012, 11, 539–546. [Google Scholar] [CrossRef] [Green Version]
- Nayci, A.; Atis, S.; Ersoz, G.; Polat, A.; Talas, D. Oxygen supplementation during airway instrumentation improves intestinal barrier dysfunction. J. Pediatric Surg. 2006, 41, 1386–1391. [Google Scholar] [CrossRef]
- Mallick, I.H.; Yang, W.; Winslet, M.C.; Seifalian, A.M. Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig. Dis. Sci. 2004, 49, 1359–1377. [Google Scholar] [CrossRef]
- Jesse, N.; Neu, J. Necrotizing Enterocolitis: Relationship to Innate Immunity, Clinical Features, and Strategies for Prevention. Neoreviews 2006, 7, e143–e150. [Google Scholar] [CrossRef] [Green Version]
- Berman, L.; Moss, R.L. Necrotizing enterocolitis: An update. Semin. Fetal Neonatal Med. 2011, 16, 145–150. [Google Scholar] [CrossRef]
- Ostlie, D.J.; Spilde, T.L.; St Peter, S.D.; Sexton, N.; Miller, K.A.; Sharp, R.J.; Gittes, G.K.; Snyder, C.L. Necrotizing enterocolitis in full-term infants. J. Pediatric Surg. 2003, 38, 1039–1042. [Google Scholar] [CrossRef]
- Short, S.S.; Papillon, S.; Berel, D.; Ford, H.R.; Frykman, P.K.; Kawaguchi, A. Late onset of necrotizing enterocolitis in the full-term infant is associated with increased mortality: Results from a two-center analysis. J. Pediatric Surg. 2014, 49, 950–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iben, S.; Rodriguez, R.J. Neonatal Necrotizing Enterocolitis. In Pediatric Gastrointestinal and Liver Disease, 4th ed.; Wyllie, R., Hyams, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; p. 1104. [Google Scholar]
- Patole, S. Microbiota and Necrotizing Enterocolitis. Nestle Nutr. Inst. Workshop Ser. 2017, 88, 81–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pammi, M.; Cope, J.; Tarr, P.I.; Warner, B.B.; Morrow, A.L.; Mai, V.; Gregory, K.E.; Kroll, J.S.; McMurtry, V.; Ferris, M.J.; et al. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: A systematic review and meta-analysis. Microbiome 2017, 5, 31. [Google Scholar] [CrossRef] [Green Version]
- Grishin, A.; Bowling, J.; Bell, B.; Wang, J.; Ford, H.R. Roles of nitric oxide and intestinal microbiota in the pathogenesis of necrotizing enterocolitis. J. Pediatric Surg. 2016, 51, 13–17. [Google Scholar] [CrossRef]
- Stevenson, D.K.; Blakely, M.L. Historical Perspectives Necrotizing Enterocolitis: An Inherited Or Acquired Condition? Neoreviews 2006, 7, e125–e134. [Google Scholar] [CrossRef]
- Keely, S.; Glover, L.E.; Weissmueller, T.; MacManus, C.F.; Fillon, S.; Fennimore, B.; Colgan, S.P. Hypoxia-inducible factor-dependent regulation of platelet-activating factor receptor as a route for gram-positive bacterial translocation across epithelia. Mol. Biol. Cell 2010, 21, 538–546. [Google Scholar] [CrossRef] [Green Version]
- Glover, L.E.; Lee, J.S.; Colgan, S.P. Oxygen metabolism and barrier regulation in the intestinal mucosa. J. Clin. Investig. 2016, 126, 3680–3688. [Google Scholar] [CrossRef] [Green Version]
- Tugtekin, I.F.; Radermacher, P.; Theisen, M.; Matejovic, M.; Stehr, A.; Ploner, F.; Matura, K.; Ince, C.; Georgieff, M.; Träger, K. Increased ileal-mucosal-arterial PCO2 gap is associated with impaired villus microcirculation in endotoxic pigs. Intensive Care Med. 2001, 27, 757–766. [Google Scholar] [CrossRef]
- Varvarousis, D.; Xanthos, T.; Ferino, G.; Noto, A.; Iacovidou, N.; Mura, M.; Scano, P.; Chalkias, A.; Papalois, A.; De-Giorgio, F.; et al. Metabolomics profiling reveals different patterns in an animal model of asphyxial and dysrhythmic cardiac arrest. Sci. Rep. 2017, 7, 16575. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.C.; Golden, J.M.; Ford, H.R. Pathogenesis of neonatal necrotizing enterocolitis. Pediatr. Surg. Int. 2015, 31, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Hackam, D.J.; Good, M.; Sodhi, C.P. Mechanisms of gut barrier failure in the pathogenesis of necrotizing enterocolitis: Toll-like receptors throw the switch. Semin. Pediatr. Surg. 2013, 22, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Patel, R.M.; Denning, P.W. Intestinal microbiota and its relationship with necrotizing enterocolitis. Pediatric Res. 2015, 78, 232–238. [Google Scholar] [CrossRef] [Green Version]
- Beutler, B.; Rietschel, E.T. Innate immune sensing and its roots: The story of endotoxin. Nat. Rev. Immunol. 2003, 3, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Bahrami, S.; Leichtfried, G.; Redl, H.; Ohlinger, W.; Schlag, G. Kinetics of endotoxin and tumor necrosis factor appearance in portal and systemic circulation after hemorrhagic shock in rats. Ann. Surg. 1995, 221, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.M.; Bahrami, S.; Leichtfried, G.; Redl, H.; Schlag, G. Pathogenesis of hemorrhage-induced bacteria/endotoxin translocation in rats. Effects of recombinant bactericidal/permeability-increasing protein. Ann. Surg. 1995, 221, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Anand, R.J.; Leaphart, C.L.; Mollen, K.P.; Hackam, D.J. The role of the intestinal barrier in the pathogenesis of necrotizing enterocolitis. Shock 2007, 27, 124–133. [Google Scholar] [CrossRef]
- Wolfs, T.G.; Derikx, J.P.; Hodin, C.M.; Vanderlocht, J.; Driessen, A.; de Bruine, A.P.; Bevins, C.L.; Lasitschka, F.; Gassler, N.; van Gemert, W.G.; et al. Localization of the lipopolysaccharide recognition complex in the human healthy and inflamed premature and adult gut. Inflamm. Bowel Dis. 2010, 16, 68–75. [Google Scholar] [CrossRef]
- Hackam, D.J.; Upperman, J.S.; Grishin, A.; Ford, H.R. Disordered enterocyte signaling and intestinal barrier dysfunction in the pathogenesis of necrotizing enterocolitis. Semin. Pediatr. Surg. 2005, 14, 49–57. [Google Scholar] [CrossRef]
- Cetin, S.; Dunklebarger, J.; Li, J.; Boyle, P.; Ergun, O.; Qureshi, F.; Ford, H.; Upperman, J.; Watkins, S.; Hackam, D.J. Endotoxin differentially modulates the basolateral and apical sodium/proton exchangers (NHE) in enterocytes. Surgery 2004, 136, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, F.G.; Leaphart, C.; Cetin, S.; Li, J.; Grishin, A.; Watkins, S.; Ford, H.R.; Hackam, D.J. Increased expression and function of integrins in enterocytes by endotoxin impairs epithelial restitution. Gastroenterology 2005, 128, 1012–1022. [Google Scholar] [CrossRef]
- Corcoran, S.E.; O’Neill, L.A. HIF1alpha and metabolic reprogramming in inflammation. J. Clin. Investig. 2016, 126, 3699–3707. [Google Scholar] [CrossRef]
- Ares, G.J.; McElroy, S.J.; Hunter, C.J. The science and necessity of using animal models in the study of necrotizing enterocolitis. Semin. Pediatr. Surg. 2018, 27, 29–33. [Google Scholar] [CrossRef]
- Azcarate-Peril, M.A.; Foster, D.M.; Cadenas, M.B.; Stone, M.R.; Jacobi, S.K.; Stauffer, S.H.; Pease, A.; Gookin, J.L. Acute necrotizing enterocolitis of preterm piglets is characterized by dysbiosis of ileal mucosa-associated bacteria. Gut Microbes 2011, 2, 234–243. [Google Scholar] [CrossRef] [Green Version]
- Oosterloo, B.C.; Premkumar, M.; Stoll, B.; Olutoye, O.; Thymann, T.; Sangild, P.T.; Burrin, D.G. Dual purpose use of preterm piglets as a model of pediatric GI disease. Vet. Immunol. Immunopathol. 2014, 159, 156–165. [Google Scholar] [CrossRef]
- Aroni, F.; Xanthos, T.; Varsami, M.; Argyri, I.; Alexaki, A.; Stroumpoulis, K.; Lelovas, P.; Papalois, A.; Faa, G.; Fanos, V.; et al. An experimental model of neonatal normocapnic hypoxia and resuscitation in Landrace/Large White piglets. J. Matern. Fetal Neonatal Med. 2012, 25, 1750–1754. [Google Scholar] [CrossRef] [PubMed]
- Sangild, P.T.; Thymann, T.; Schmidt, M.; Stoll, B.; Burrin, D.G.; Buddington, R.K. Invited review: The preterm pig as a model in pediatric gastroenterology. J. Anim. Sci. 2013, 91, 4713–4729. [Google Scholar] [CrossRef] [Green Version]
- Barre-Sinoussi, F.; Montagutelli, X. Animal models are essential to biological research: Issues and perspectives. Future Sci. OA 2015, 1, FSO63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murad, M.H.; Asi, N.; Alsawas, M.; Alahdab, F. New evidence pyramid. Evid. Based Med. 2016, 21, 125–127. [Google Scholar] [CrossRef] [Green Version]
Component | Query |
---|---|
P(Patient, Problem or Population) | ((infant*[Title/Abstract] or infant*[MeSH Terms]) OR (neonat*[Title/Abstract] or neonat*[MeSH Terms]) OR (newborn[Title/Abstract] or newborn[MeSH Terms])) OR ((animal*[Title/Abstract] or animal*[MeSH Terms]) OR (perinat*[Title/Abstract] or perinat*[MeSH Terms]) OR (child*[Title/Abstract] or child*[MeSH Terms]) OR (model*[Title/Abstract] or model*[MeSH Terms]) OR (piglet[Title/Abstract] or piglet[MeSH Terms])) |
I (Intervention) | ((asphyxia[Title/Abstract] or asphyxia[MeSH Terms]) OR (hypoxia[Title/Abstract] or hypoxia[MeSH Terms]) OR (necrot* enterocolitis[Title/Abstract] or necroti* enterocolitis[MeSH Terms]) OR (NEC[Title/Abstract] or NEC[MeSH Terms])) |
C(Comparison, control or comparator) | Not used |
O (Outcome) | ((gastro*[Title/Abstract] or gastro[MeSH Terms]) OR (intestin*[Title/Abstract] or intestin*[MeSH Terms]) OR (gut[Title/Abstract] or gut[MeSH Terms])) AND ((microb*[Title/Abstract] or microb*[MeSH Terms]) OR (bacter*[Title/Abstract] or bacter*[MeSH Terms]) OR (translocation[Title/Abstract] or translocation[MeSH Terms]) OR (toxine*[Title/Abstract] or toxine*[MeSH Terms])) |
Τ (Time) | (“1990/01/01” [Publication Date]: “3000” [Publication Date]) |
PICO Question | ((infant*[Title/Abstract] or infant*[MeSH Terms]) OR (neonat*[Title/Abstract] or neonat*[MeSH Terms]) OR (newborn[Title/Abstract] or newborn[MeSH Terms])) OR ((animal*[Title/Abstract] or animal*[MeSH Terms]) OR (perinat*[Title/Abstract] or perinat*[MeSH Terms]) OR (child*[Title/Abstract] or child*[MeSH Terms]) OR (model*[Title/Abstract] or model*[MeSH Terms]) OR (piglet[Title/Abstract] or piglet[MeSH Terms])) AND ((asphyxia[Title/Abstract] or asphyxia[MeSH Terms]) OR (hypoxia[Title/Abstract] or hypoxia[MeSH Terms]) OR (necrot* enterocolitis[Title/Abstract] or necroti* enterocolitis[MeSH Terms]) OR (NEC[Title/Abstract] or NEC[MeSH Terms])) AND AND((gastro*[Title/Abstract] or gastro[MeSH Terms]) OR (intestin*[Title/Abstract] or intestin*[MeSH Terms]) OR (gut[Title/Abstract] or gut[MeSH Terms])) AND ((microb*[Title/Abstract] or microb*[MeSH Terms]) OR (bacter*[Title/Abstract] or bacter*[MeSH Terms]) OR (translocation[Title/Abstract] or translocation[MeSH Terms]) OR (toxine*[Title/Abstract] or toxine*[MeSH Terms])) AND (“1990/01/01”[Publication Date]: “3000”[Publication Date]) |
Authors | Year | Topic | Outcome |
---|---|---|---|
International Liaison Committee on Resuscitation [16] | 2005 | International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Part 7: Neonatal resuscitation | The majority of newborn infants do not need specialized medical intervention peripartum, but the large number of births worldwide means that many infants require some resuscitation |
Fattuoni et al. [17] | 2015 | Perinatal Asphyxia: A Review from a Metabolomics Perspective | Oxygen deprivation that occurs around the time of birth, caused by several perinatal events, affects one million neonates worldwide per year, causing even death |
Aslam et al. [18] | 2014 | Risk factors of birth asphyxia | Birth asphyxia leads to decreased oxygen perfusion and malfunction in vital organs |
Antonucci et al. [20] | 2014 | Perinatal asphyxia in the term newborn | Despite the advances in perinatal care, asphyxia remains a severe condition leading to significant mortality and morbidity |
Rainaldi et al. [21] | 2016 | Pathophysiology of Birth Asphyxia | Asphyxia generally results from interruption of placental blood flow with resultant fetal hypoxia, hypercarbia, and acidosis |
Moreno et al. [22] | 2016 | Sleep recovery mimicking treatment of sleep apnea does not reverse intermittent hypoxic-induced dysbiosis and low-grade endotoxemia in mice | Gut microbiota composition and circulating endotoxemia remain negatively altered after a post-intermittent hypoxia normoxic period in mice with obstructive sleep apnea |
Authors | Year | Topic | Outcome |
---|---|---|---|
Küçükaydin et al. [24] | 2000 | Detection of intestinal bacterial translocation in subclinical I/R using the polymerase chain reaction (PCR) technique | PCR detecting microbial DNA, showed that subclinical intestinal I/R injury in rats results in bacterial translocation |
Xu et al. [25] | 1999 | The effect of hypoxia/reoxygenation on the cellular function of intestinal epithelial cells | Hypoxia/reoxygenation can directly impair cellular function |
Sun et al. [26] | 2000 | Phagocytic and intestinal endothelial and epithelial barrier function during the early stage of small intestinal I/R injury | Endothelial and epithelial barrier integrity is harmed in the early phase after I/R |
Gkiza et al. [27] | 2012 | Isolation of aerobic bacteria in internal specimens from domesticated pigs used in biomedical research and the association with bacterial translocation. | There is bacterial transmission caused by intestinal I/R damage due to cardiac arrest |
Authors | Year | Topic | Outcome |
---|---|---|---|
Beutler et al. [46] | 2003 | Innate immune sensing and its roots: the story of endotoxin | Host sensors named Toll-like receptors take part in chemical, biological and genetic analyses centred on a bacterial poison and termed endotoxin |
Jiang et al. [47] | 1995 | Kinetics of endotoxin and tumor necrosis factor appearance in portal and systemic circulation after hemorrhagic shock in rats | Hemorrhagic shock may lead to early bacterial translocation in the intestinal wall and transient access of gut-derived LPS and LPS-induced mediators via the portal circulation |
Yao et al. [48] | 1995 | Pathogenesis of hemorrhage-induced bacteria-endotoxin translocation in rats: effects of recombinant bactericidal-increasing protein (rBPI21) | Hemorrhagic shock may lead to bacterial/endotoxin translocation with concomitant TNF formation, and endogenous endotoxemia may play an important role in the pathogenesis of multiple-organ failure after shock and trauma |
Anand et al. [49] | 2007 | The role of the intestinal barrier in the pathogenesis of necrotizing enterocolitis | Disruption in barrier function and bacterial translocation are of particular concern to the newborn patient, due to the risk of intestinal inflammation |
Wolfs et al. [50] | 2010 | Localization of the lipopolysaccharide recognition complex in the human healthy and inflamed premature and adult gut | The absence of MD-2 in the immature neonatal gut suggests impaired LPS sensing, predisposing to NEC upon microbial colonization of the immature intestine |
Hackam et al. [51] | 2005 | Disordered enterocyte signaling and intestinal barrier dysfunction in the pathogenesis of necrotizing enterocolitis | Systemic stress causes a breakdown in the intestinal mucosal barrier, which leads to translocation of bacteria and endotoxin and the initiation of a signaling response within the enterocyte |
Cetin et al. [52] | 2004 | Endotoxin differentially modulates the basolateral and apical sodium/proton exchangers (NHE) in enterocytes | LPS selectively impairs basolateral NHE1 leading to cytoplasmic acidification during extracellular acidosis, impairing enterocyte function after translocation |
Qureshi et al. [53] | 2005 | Increased expression and function of integrins in enterocytes by endotoxin impairs epithelial restitution | Enterocyte migration is inhibited by LPS through increased expression and function of alpha 3- and beta 1-integrins |
Corcoran et al. [54] | 2016 | HIF1α and metabolic reprogramming in inflammation | HIF1α is induced in LPS-activated macrophages, where it is critically involved in glycolysis and the induction of pro-inflammatory genes |
Authors | Year | Topic | Outcome |
---|---|---|---|
Ares et al. [55] | 2018 | The science and necessity of using animal models in the study of necrotizing enterocolitis | Animal models are essential to understand the mechanisms involved in the pathophysiology of NEC and the effects of inflammation on the immature intestinal tract |
Azcarate-Peril et al. [56] | 2011 | Acute necrotizing enterocolitis of preterm piglets is characterized by dysbiosis of ileal mucosa-associated bacteria | Ileal mucosa seems to be a fundamental part of GIT for investigation of dysbiosis associated with NEC |
Berthe C Oosterloo et al. [57] | 2014 | Dual purpose use of preterm piglets as a model of pediatric GI disease | Both rodent and pig models have advantages and disadvantages as experimental models of NEC |
Aroni et al. [58] | 2012 | An experimental model of neonatal normocapnic hypoxia and resuscitation in Landrace/ Large White piglets | Hemodynamic fluctuations at baseline during normocapnic hypoxia and reoxygenation in Landrace/Large White piglets are comparable to those in human neonates |
Sangild et al. [59] | 2013 | The preterm pig as a model in pediatric gastroenterology | The preterm pig appears to be a translational model in pediatric gastroenterology and has provided new insights into important pediatric diseases such as NEC |
Barré-Sinoussi et al. [60] | 2015 | Animal models are essential to biological research: issues and perspectives | Animal models have been used to address a variety of scientific questions |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matara, D.-I.; Pouliakis, A.; Xanthos, T.; Sokou, R.; Kafalidis, G.; Iliodromiti, Z.; Boutsikou, T.; Iacovidou, N.; Salakos, C. Microbial Translocation and Perinatal Asphyxia/Hypoxia: A Systematic Review. Diagnostics 2022, 12, 214. https://doi.org/10.3390/diagnostics12010214
Matara D-I, Pouliakis A, Xanthos T, Sokou R, Kafalidis G, Iliodromiti Z, Boutsikou T, Iacovidou N, Salakos C. Microbial Translocation and Perinatal Asphyxia/Hypoxia: A Systematic Review. Diagnostics. 2022; 12(1):214. https://doi.org/10.3390/diagnostics12010214
Chicago/Turabian StyleMatara, Dimitra-Ifigeneia, Abraham Pouliakis, Theodoros Xanthos, Rozeta Sokou, Georgios Kafalidis, Zoi Iliodromiti, Theodora Boutsikou, Nicoletta Iacovidou, and Christos Salakos. 2022. "Microbial Translocation and Perinatal Asphyxia/Hypoxia: A Systematic Review" Diagnostics 12, no. 1: 214. https://doi.org/10.3390/diagnostics12010214
APA StyleMatara, D.-I., Pouliakis, A., Xanthos, T., Sokou, R., Kafalidis, G., Iliodromiti, Z., Boutsikou, T., Iacovidou, N., & Salakos, C. (2022). Microbial Translocation and Perinatal Asphyxia/Hypoxia: A Systematic Review. Diagnostics, 12(1), 214. https://doi.org/10.3390/diagnostics12010214