Urinary Biomarkers in Interstitial Cystitis/Bladder Pain Syndrome and Its Impact on Therapeutic Outcome
Abstract
:1. Definition, Diagnostic Criteria and Prevalence of IC/BPS
2. Sex Difference in Females and Males with IC/BPS
3. Classification and Pathophysiology of IC/BPS
3.1. Classification
3.2. The Etiology and Pathogenesis of IC/BPS
3.2.1. Chronic Inflammation
3.2.2. Autoimmune Disorders
3.2.3. Neurogenic Hyperactivity (Hyperexcitability)
3.2.4. Urothelial Defect
3.2.5. Oxidative Stress: Nrf2-ARE Signaling Pathway
3.2.6. Abnormal Angiogenesis
3.2.7. Exogenous Urine Substances
4. Histopathology
4.1. Histopathological Evaluation of Bladder Biopsy
4.2. Infiltration of Lymphocytes and Plasma Cells
4.3. Mast Cell Infiltration and Neurogenic Inflammation
5. Histopathological Differences between OAB and IC/BPS
6. Clinical Diagnosis for IC/BPS
6.1. Cystoscopy
6.2. Bladder Capacity
6.3. Symptomscore
6.4. Diagnostic Hydrodistension
6.5. Serum and Urine Specimens
6.6. Bladder Biopsy
7. Current Investigated Biomarkers in IC/BPS
7.1. Urothelial Associated Proteins
7.2. Proinflammatory Cytokines or Chemokines
7.3. Growth Factor
7.4. Mast Cells and Histamine
7.5. C-Reactive Protein (CRP)
7.6. ATP
7.7. Antiproliferative Factor (APF)
7.8. Cyclooxygenase-2 (COX-2) and Prostaglandin E2 (PGE2)
7.9. Methylhistamine
7.10. GP51
Biomarkers | Species | Sample | Changes | References |
---|---|---|---|---|
Urothelial barrier protein | ||||
Uroplakin III | Human | Urine | Elevated | [121] |
Human | Bladder tissue | Decreased | [121] | |
E-Cadherin | Human | Bladder tissue | Decreased | [65,66,68,87] |
ZO-1 | Human | Bladder tissue | Decreased | [65,66,68,87] |
Apoptotic signaling molecules | ||||
Bad | Human | Bladder tissue | Elevated | [175] |
Bax | Human | Bladder tissue | Elevated | [175] |
Cleaved caspase-3 | Human | Bladder tissue | Elevated | [175] |
Proinflammatory cytokines, chemokines and proteins | ||||
CXCL-1 | Human | Urine | Elevated | [119] |
CXCL-9 | Human | Bladder tissue | Elevated | [37,38] |
CXCL-10 | Human | Serum | Elevated | [37,38] |
Human | Bladder tissue | Elevated | [38] | |
Human | Urine | Elevated | [119,131] | |
CXCL-11 | Human | Bladder tissue | Elevated | [37,38] |
IL-1β | Human | Serum | Elevated | [37] |
IL-2 | Human | Urine | Elevated | [130] |
IL-4 | Human | Urine | Elevated | [151,176] |
IL-6 | Human | Serum | Elevated | [37] |
Human | Urine | Elevated | [119,127,130] | |
IL-8 | Human | Bladder tissue | Decreased | [169] |
Human | Serum | Elevated | [37] | |
Human | Urine | Elevated | [130] | |
TNF-α | Human | Serum | Elevated | [37] |
IgE | Human | Serum | Elevated | [124] |
Growth factors | ||||
NGF | Human | Bladder tissue | Elevated | [37,177,178] |
Human | Urine | Elevated | [52,119] | |
Human | Serum | Elevated | [144] | |
VEGF | Human | Serum | Elevated | [83] |
Human | Bladder tissue | Elevated | [79,83] | |
HB-EGF | Human | Urine | Decreased | [179] |
EGF | Human | Urine | Elevated | [179] |
APF | Human | Urine | Elevated | [167,179] |
Other potential biomarkers | ||||
HIF-1α | Human | Bladder tissue | Elevated | [24,79] |
GP51 | Human | Urine | Decreased | [174] |
ATP | Human | Urine | Elevated | [163] |
CRP | Human | Serum | Elevated | [94] |
TRPV1, 2, 4 | Human | Bladder tissue | Elevated | [50] |
PDECGF/TP | Human | Serum | Elevated | [37] |
PGE2 | Human | Urine | Elevated | [51] |
Methylhistamine | Human | Urine | Elevated | [127] |
8. Impact of Potential Biomarkers for Assessment of IC/BPS Therapeutic Outcome
8.1. Intravesical Instillation with GAG, Hyaluronic Acid (HA), Chondroitin Sulfate and/or Pentosan Polysulfate
8.2. Intravesical Instillation or Injection with BoNT-A
8.3. Low Intensity Extracorporeal Shock Wave Therapy (LiESWT)
8.4. Regenerative Medicine Therapy Using Platelet-Rich Plasma (PRP)
Treatment | Doses/ Indication | Therapeutic Efficacy | Urinary Biomarker | Reference |
---|---|---|---|---|
BoNT-A (Neurotoxin) | 100–200 IU | Improvement of urinary urgency, bladder pain, and bladder capacity | Reduction of the NGF level | [226] |
Improvement of IC/BPS symptoms | Reduction of the VEGF level | [83] | ||
HA (Glycoprotein) | 40 mg | Improvement of bladder pain and storage symptoms and reduction of bladder pain | Reduction of the NGF level | [190,196,197,227] |
LiESWT | 2000 shocks, frequency of 3 pulses/sec, density of 0.25 mJ/mm2 for 4 weeks | Improvement of IC/BPS symptoms Reduced scores of OSS, ICSI, ICPI, and VAS and bladder pain | Reduction of the VEGF level | [151] |
frequency of 3 pulses/sec density of 0.25 mJ/mm2 for 4 weeks | Improvement of IC/BPS symptoms Reduced scores of OSS and pain scale | Reduction of the IL-4, IL-9, and VEGF levels | [151,216] | |
PRP | 10 mL extracted from 50 mL of whole blood | Improvement of IC/BPS symptoms and increased functional capacity | Increase of the IL-2 and IL-8 levels | [225] |
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Homma, Y.; Akiyama, Y.; Tomoe, H.; Furuta, A.; Ueda, T.; Maeda, D.; Lin, A.T.; Kuo, H.C.; Lee, M.H.; Oh, S.J.; et al. Clinical guidelines for interstitial cystitis/bladder pain syndrome. Int. J. Urol. Off. J. Jpn. Urol. Assoc. 2020, 27, 578–589. [Google Scholar] [CrossRef] [PubMed]
- Doggweiler, R.; Whitmore, K.E.; Meijlink, J.M.; Drake, M.J.; Frawley, H.; Nordling, J.; Hanno, P.; Fraser, M.O.; Homma, Y.; Garrido, G.; et al. A standard for terminology in chronic pelvic pain syndromes: A report from the chronic pelvic pain working group of the international continence society. Neurourol. Urodyn. 2017, 36, 984–1008. [Google Scholar] [CrossRef]
- Hanno, P.M.; Landis, J.R.; Matthews-Cook, Y.; Kusek, J.; Nyberg, L., Jr. The diagnosis of interstitial cystitis revisited: Lessons learned from the National Institutes of Health Interstitial Cystitis Database study. J. Urol. 1999, 161, 553–557. [Google Scholar] [CrossRef]
- Nickel, J.C.; Tripp, D.A.; Pontari, M.; Moldwin, R.; Mayer, R.; Carr, L.K.; Doggweiler, R.; Yang, C.C.; Mishra, N.; Nordling, J. Psychosocial phenotyping in women with interstitial cystitis/painful bladder syndrome: A case control study. J. Urol. 2010, 183, 167–172. [Google Scholar] [CrossRef]
- Homma, Y.; Ueda, T.; Tomoe, H.; Lin, A.T.; Kuo, H.C.; Lee, M.H.; Lee, J.G.; Kim, D.Y.; Lee, K.S.; Interstitial Cystitis Guideline Committee. Clinical guidelines for interstitial cystitis and hypersensitive bladder syndrome. Int. J. Urol. 2009, 16, 597–615. [Google Scholar] [CrossRef]
- Abrams, P.; Cardozo, L.; Fall, M.; Griffiths, D.; Rosier, P.; Ulmsten, U.; van Kerrebroeck, P.; Victor, A.; Wein, A.; Standardisation Sub-committee of the International Continence Society. The standardisation of terminology of lower urinary tract function: Report from the Standardisation Sub-committee of the International Continence Society. Neurourol. Urodyn. 2002, 21, 167–178. [Google Scholar] [CrossRef]
- Malde, S.; Palmisani, S.; Al-Kaisy, A.; Sahai, A. Guideline of guidelines: Bladder pain syndrome. BJU Int. 2018, 122, 729–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erickson, D.R.; Tomaszewski, J.E.; Kunselman, A.R.; Bentley, C.M.; Peters, K.M.; Rovner, E.S.; Demers, L.M.; Wheeler, M.A.; Keay, S.K. Do the National Institute of Diabetes and Digestive and Kidney Diseases cystoscopic criteria associate with other clinical and objective features of interstitial cystitis? J. Urol. 2005, 173, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Homma, Y.; Ueda, T.; Tomoe, H.; Lin, A.T.; Kuo, H.C.; Lee, M.H.; Oh, S.J.; Kim, J.C.; Lee, K.S. Clinical guidelines for interstitial cystitis and hypersensitive bladder updated in 2015. Int. J. Urol. 2016, 23, 542–549. [Google Scholar] [CrossRef]
- Lee, M.H.; Chang, K.M.; Tsai, W.C. Morbidity rate and medical utilization in interstitial cystitis/painful bladder syndrome. Int. Urogynecol. J. 2018, 29, 1045–1050. [Google Scholar] [CrossRef]
- Ito, T.; Miki, M.; Yamada, T. Interstitial cystitis in Japan. BJU Int. 2000, 86, 634–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nickel, J.C.; Nyberg, L.M.; Hennenfent, M. Research guidelines for chronic prostatitis: Consensus report from the first National Institutes of Health International Prostatitis Collaborative Network. Urology 1999, 54, 229–233. [Google Scholar] [CrossRef]
- Clemens, J.Q.; Clauw, D.J.; Kreder, K.; Krieger, J.N.; Kusek, J.W.; Lai, H.H.; Rodriguez, L.; Williams, D.A.; Hou, X.; Stephens, A.; et al. Comparison of baseline urological symptoms in men and women in the MAPP research cohort. J. Urol. 2015, 193, 1554–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marszalek, M.; Wehrberger, C.; Temml, C.; Ponholzer, A.; Berger, I.; Madersbacher, S. Chronic pelvic pain and lower urinary tract symptoms in both sexes: Analysis of 2749 participants of an urban health screening project. Eur. Urol. 2009, 55, 499–507. [Google Scholar] [CrossRef]
- Hosier, G.W.; Doiron, R.C.; Tolls, V.; Nickel, J.C. The X-Y factor: Females and males with urological chronic pelvic pain syndrome present distinct clinical phenotypes. Can. Urol. Assoc. J. 2018, 12, E270–E275. [Google Scholar] [CrossRef] [Green Version]
- Van de Merwe, J.P.; Nordling, J.; Bouchelouche, P.; Bouchelouche, K.; Cervigni, M.; Daha, L.K.; Elneil, S.; Fall, M.; Hohlbrugger, G.; Irwin, P.; et al. Diagnostic criteria, classification, and nomenclature for painful bladder syndrome/interstitial cystitis: An ESSIC proposal. Eur. Urol. 2008, 53, 60–67. [Google Scholar] [CrossRef]
- Engeler, D.B.A.; Baranowski, A.P.; Borovicka, J.; Cottrell, A.M.; Dinis-Oliveira, P.; Elneil, S.; Hughes, J.; Messelink, E.J.; Oberpenning, F.; Williams, A.C.D.C. EAU Guidelines on Chronic Pelvic Pain. Eur. Assoc. Urol. 2018, 18, 1–82. [Google Scholar]
- Parsons, C.L.; Walker, C.J. Cystoscopic changes in interstitial cystitis. Urology 1996, 48, 289–290. [Google Scholar] [CrossRef]
- Messing, E.; Pauk, D.; Schaeffer, A.; Nieweglowski, M.; Nyberg, L.M., Jr.; Landis, J.R.; Cook, Y.L.; Simon, L.J. Associations among cystoscopic findings and symptoms and physical examination findings in women enrolled in the Interstitial Cystitis Data Base (ICDB) Study. Urology 1997, 49, 81–85. [Google Scholar] [CrossRef]
- Nigro, D.A.; Wein, A.J.; Foy, M.; Parsons, C.L.; Williams, M.; Nyberg, L.M., Jr.; Landis, J.R.; Cook, Y.L.; Simon, L.J. Associations among cystoscopic and urodynamic findings for women enrolled in the Interstitial Cystitis Data Base (ICDB) Study. Urology 1997, 49, 86–92. [Google Scholar] [CrossRef]
- Birder, L.; Andersson, K.E. Urothelial signaling. Physiol. Rev. 2013, 93, 653–680. [Google Scholar] [CrossRef] [Green Version]
- Maeda, D.; Akiyama, Y.; Morikawa, T.; Kunita, A.; Ota, Y.; Katoh, H.; Niimi, A.; Nomiya, A.; Ishikawa, S.; Goto, A.; et al. Hunner-Type (Classic) Interstitial Cystitis: A Distinct Inflammatory Disorder Characterized by Pancystitis, with Frequent Expansion of Clonal B-Cells and Epithelial Denudation. PLoS ONE 2015, 10, e0143316. [Google Scholar] [CrossRef] [Green Version]
- Richter, B.; Hesse, U.; Hansen, A.B.; Horn, T.; Mortensen, S.O.; Nordling, J. Bladder pain syndrome/interstitial cystitis in a Danish population: A study using the 2008 criteria of the European Society for the Study of Interstitial Cystitis. BJU Int. 2010, 105, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Van De Merwe, J.P.; Arendsen, H.J. Interstitial cystitis: A review of immunological aspects of the aetiology and pathogenesis, with a hypothesis. BJU Int. 2000, 85, 995–999. [Google Scholar] [CrossRef] [Green Version]
- Saban, R.; Saban, M.R.; Maier, J.; Fowler, B.; Tengowski, M.; Davis, C.A.; Wu, X.R.; Culkin, D.J.; Hauser, P.; Backer, J.; et al. Urothelial expression of neuropilins and VEGF receptors in control and interstitial cystitis patients. Am. J. Physiol. Ren. Physiol. 2008, 295, F1613–F1623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elbadawi, A.E.; Light, J.K. Distinctive ultrastructural pathology of nonulcerative interstitial cystitis: New observations and their potential significance in pathogenesis. Urol. Int. 1996, 56, 137–162. [Google Scholar] [CrossRef]
- Tomaszewski, J.E.; Landis, J.R.; Russack, V.; Williams, T.M.; Wang, L.P.; Hardy, C.; Brensinger, C.; Matthews, Y.L.; Abele, S.T.; Kusek, J.W.; et al. Biopsy features are associated with primary symptoms in interstitial cystitis: Results from the interstitial cystitis database study. Urology 2001, 57, 67–81. [Google Scholar] [CrossRef]
- Gevaert, T.; De Vos, R.; Everaerts, W.; Libbrecht, L.; Van Der Aa, F.; van den Oord, J.; Roskams, T.; De Ridder, D. Characterization of upper lamina propria interstitial cells in bladders from patients with neurogenic detrusor overactivity and bladder pain syndrome. J. Cell Mol. Med. 2011, 15, 2586–2593. [Google Scholar] [CrossRef]
- Altuntas, C.Z.; Daneshgari, F.; Sakalar, C.; Goksoy, E.; Gulen, M.F.; Kavran, M.; Qin, J.; Li, X.; Tuohy, V.K. Autoimmunity to uroplakin II causes cystitis in mice: A novel model of interstitial cystitis. Eur. Urol. 2012, 61, 193–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theoharides, T.C.; Kempuraj, D.; Sant, G.R. Mast cell involvement in interstitial cystitis: A review of human and experimental evidence. Urology 2001, 57, 47–55. [Google Scholar] [CrossRef]
- Cao, J.; Papadopoulou, N.; Kempuraj, D.; Boucher, W.S.; Sugimoto, K.; Cetrulo, C.L.; Theoharides, T.C. Human mast cells express corticotropin-releasing hormone (CRH) receptors and CRH leads to selective secretion of vascular endothelial growth factor. J. Immunol. 2005, 174, 7665–7675. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, R.; Furuno, T.; McKay, D.M.; Wolvers, D.; Teshima, R.; Nakanishi, M.; Bienenstock, J. Direct neurite-mast cell communication in vitro occurs via the neuropeptide substance P. J. Immunol. 1999, 163, 2410–2415. [Google Scholar] [PubMed]
- Theoharides, T.C.; Sant, G.R.; el-Mansoury, M.; Letourneau, R.; Ucci, A.A., Jr.; Meares, E.M., Jr. Activation of bladder mast cells in interstitial cystitis: A light and electron microscopic study. J. Urol. 1995, 153, 629–636. [Google Scholar] [CrossRef]
- Lundeberg, T.; Liedberg, H.; Nordling, L.; Theodorsson, E.; Owzarski, A.; Ekman, P. Interstitial cystitis: Correlation with nerve fibres, mast cells and histamine. Br. J. Urol. 1993, 71, 427–429. [Google Scholar] [CrossRef]
- Sant, G.R.; Kempuraj, D.; Marchand, J.E.; Theoharides, T.C. The mast cell in interstitial cystitis: Role in pathophysiology and pathogenesis. Urology 2007, 69, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Tracey, D.; Klareskog, L.; Sasso, E.H.; Salfeld, J.G.; Tak, P.P. Tumor necrosis factor antagonist mechanisms of action: A comprehensive review. Pharmacol. Ther. 2008, 117, 244–279. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.H.; Peng, C.H.; Liu, H.T.; Kuo, H.C. Increased pro-inflammatory cytokines, C-reactive protein and nerve growth factor expressions in serum of patients with interstitial cystitis/bladder pain syndrome. PLoS ONE 2013, 8, e76779. [Google Scholar] [CrossRef]
- Ogawa, T.; Homma, T.; Igawa, Y.; Seki, S.; Ishizuka, O.; Imamura, T.; Akahane, S.; Homma, Y.; Nishizawa, O. CXCR3 binding chemokine and TNFSF14 over expression in bladder urothelium of patients with ulcerative interstitial cystitis. J. Urol. 2010, 183, 1206–1212. [Google Scholar] [CrossRef]
- Felsen, D.; Frye, S.; Trimble, L.A.; Bavendam, T.G.; Parsons, C.L.; Sim, Y.; Vaughan, E.D., Jr. Inflammatory mediator profile in urine and bladder wash fluid of patients with interstitial cystitis. J. Urol. 1994, 152, 355–361. [Google Scholar] [CrossRef]
- Batler, R.A.; Sengupta, S.; Forrestal, S.G.; Schaeffer, A.J.; Klumpp, D.J. Mast cell activation triggers a urothelial inflammatory response mediated by tumor necrosis factor-alpha. J. Urol. 2002, 168, 819–825. [Google Scholar] [CrossRef]
- Liu, W.; Deyoung, B.R.; Chen, X.; Evanoff, D.P.; Luo, Y. RDP58 inhibits T cell-mediated bladder inflammation in an autoimmune cystitis model. J. Autoimmun. 2008, 30, 257–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosch, P.C. A randomized, double-blind, placebo controlled trial of adalimumab for interstitial cystitis/bladder pain syndrome. J. Urol. 2014, 191, 77–82. [Google Scholar] [CrossRef]
- Bourne, T.; Fossati, G.; Nesbitt, A. A PEGylated Fab’ fragment against tumor necrosis factor for the treatment of Crohn disease: Exploring a new mechanism of action. BioDrugs 2008, 22, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, N.; Oguchi, T.; Yokoyama, H.; Funahashi, Y.; Yoshikawa, S.; Sugino, Y.; Kawamorita, N.; Kashyap, M.P.; Chancellor, M.B.; Tyagi, P.; et al. Bladder afferent hyperexcitability in bladder pain syndrome/interstitial cystitis. Int. J. Urol. 2014, 21 (Suppl. 1), 18–25. [Google Scholar] [CrossRef]
- Nicotra, L.; Loram, L.C.; Watkins, L.R.; Hutchinson, M.R. Toll-like receptors in chronic pain. Exp. Neurol. 2012, 234, 316–329. [Google Scholar] [CrossRef] [Green Version]
- De Groat, W.C. Highlights in basic autonomic neuroscience: Contribution of the urothelium to sensory mechanisms in the urinary bladder. Auton. Neurosci. 2013, 177, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Liao, L.; Wyndaele, J.J. Inhibitory Effect and Possible Mechanism of Intraurethral Stimulation on Overactive Bladder in Female Rats. Int. Neurourol. J. 2015, 19, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, Y.; Takimoto, K.; Chancellor, M.B.; Erickson, K.A.; Erickson, V.L.; Kirimoto, T.; Nakano, K.; de Groat, W.C.; Yoshimura, N. Bladder hyperactivity and increased excitability of bladder afferent neurons associated with reduced expression of Kv1.4 alpha-subunit in rats with cystitis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 296, R1661–R1670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukerji, G.; Yiangou, Y.; Grogono, J.; Underwood, J.; Agarwal, S.K.; Khullar, V.; Anand, P. Localization of M2 and M3 muscarinic receptors in human bladder disorders and their clinical correlations. J. Urol. 2006, 176, 367–373. [Google Scholar] [CrossRef]
- Homma, Y.; Nomiya, A.; Tagaya, M.; Oyama, T.; Takagaki, K.; Nishimatsu, H.; Igawa, Y. Increased mRNA expression of genes involved in pronociceptive inflammatory reactions in bladder tissue of interstitial cystitis. J. Urol. 2013, 190, 1925–1931. [Google Scholar] [CrossRef] [PubMed]
- Wada, N.; Ameda, K.; Furuno, T.; Okada, H.; Date, I.; Kakizaki, H. Evaluation of prostaglandin E2 and E-series prostaglandin receptor in patients with interstitial cystitis. J. Urol. 2015, 193, 1987–1993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.T.; Tyagi, P.; Chancellor, M.B.; Kuo, H.C. Urinary nerve growth factor level is increased in patients with interstitial cystitis/bladder pain syndrome and decreased in responders to treatment. BJU Int. 2009, 104, 1476–1481. [Google Scholar] [CrossRef] [PubMed]
- Apostolidis, A.; Brady, C.M.; Yiangou, Y.; Davis, J.; Fowler, C.J.; Anand, P. Capsaicin receptor TRPV1 in urothelium of neurogenic human bladders and effect of intravesical resiniferatoxin. Urology 2005, 65, 400–405. [Google Scholar] [CrossRef]
- Sun, Y.; Chai, T.C. Up-regulation of P2X3 receptor during stretch of bladder urothelial cells from patients with interstitial cystitis. J. Urol. 2004, 171, 448–452. [Google Scholar] [CrossRef]
- Yokoyama, T.; Nozaki, K.; Fujita, O.; Nose, H.; Inoue, M.; Kumon, H. Role of C afferent fibers and monitoring of intravesical resiniferatoxin therapy for patients with idiopathic detrusor overactivity. J. Urol. 2004, 172, 596–600. [Google Scholar] [CrossRef]
- Pumroy, R.A.; Fluck, E.C., 3rd; Ahmed, T.; Moiseenkova-Bell, V.Y. Structural insights into the gating mechanisms of TRPV channels. Cell Calcium 2020, 87, 102168. [Google Scholar] [CrossRef]
- Frias, B.; Charrua, A.; Avelino, A.; Michel, M.C.; Cruz, F.; Cruz, C.D. Transient receptor potential vanilloid 1 mediates nerve growth factor-induced bladder hyperactivity and noxious input. BJU Int. 2012, 110, E422–E428. [Google Scholar] [CrossRef]
- Liu, B.L.; Yang, F.; Zhan, H.L.; Feng, Z.Y.; Zhang, Z.G.; Li, W.B.; Zhou, X.F. Increased severity of inflammation correlates with elevated expression of TRPV1 nerve fibers and nerve growth factor on interstitial cystitis/bladder pain syndrome. Urol. Int. 2014, 92, 202–208. [Google Scholar] [CrossRef]
- Chiu, B.; Tai, H.C.; Chung, S.D.; Birder, L.A. Botulinum Toxin A for Bladder Pain Syndrome/Interstitial Cystitis. Toxins 2016, 8, 201. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Qi, J.; Wu, C.; Rong, W. Emerging roles of the TRPV4 channel in bladder physiology and dysfunction. J. Physiol. 2021, 599, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Everaerts, W.; Nilius, B.; Owsianik, G. The vanilloid transient receptor potential channel TRPV4: From structure to disease. Prog. Biophys. Mol. Biol. 2010, 103, 2–17. [Google Scholar] [CrossRef]
- Everaerts, W.; Zhen, X.; Ghosh, D.; Vriens, J.; Gevaert, T.; Gilbert, J.P.; Hayward, N.J.; McNamara, C.R.; Xue, F.; Moran, M.M.; et al. Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc. Natl. Acad. Sci. USA 2010, 107, 19084–19089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akiyama, Y.; Homma, Y.; Maeda, D. Pathology and terminology of interstitial cystitis/bladder pain syndrome: A review. Histol. Histopathol. 2019, 34, 25–32. [Google Scholar] [CrossRef]
- Hanno, P.; Lin, A.; Nordling, J.; Nyberg, L.; van Ophoven, A.; Ueda, T.; Wein, A. Bladder pain syndrome international consultation on incontinence. Neurourol. Urodyn. Off. J. Int. Cont. Soc. 2010, 29, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Shie, J.H.; Kuo, H.C. Higher levels of cell apoptosis and abnormal E-cadherin expression in the urothelium are associated with inflammation in patients with interstitial cystitis/painful bladder syndrome. BJU Int. 2011, 108, E136–E141. [Google Scholar] [CrossRef]
- Liu, H.T.; Shie, J.H.; Chen, S.H.; Wang, Y.S.; Kuo, H.C. Differences in mast cell infiltration, E-cadherin, and zonula occludens-1 expression between patients with overactive bladder and interstitial cystitis/bladder pain syndrome. Urology 2012, 80, 225.e13–225.e18. [Google Scholar] [CrossRef]
- D’Amico, R.; Trovato Salinaro, A.; Cordaro, M.; Fusco, R.; Impellizzeri, D.; Interdonato, L.; Scuto, M.; Ontario, M.L.; Crea, R.; Siracusa, R.; et al. Hidrox((R)) and Chronic Cystitis: Biochemical Evaluation of Inflammation, Oxidative Stress, and Pain. Antioxidants 2021, 10, 1046. [Google Scholar] [CrossRef]
- Hauser, P.J.; Dozmorov, M.G.; Bane, B.L.; Slobodov, G.; Culkin, D.J.; Hurst, R.E. Abnormal expression of differentiation related proteins and proteoglycan core proteins in the urothelium of patients with interstitial cystitis. J. Urol. 2008, 179, 764–769. [Google Scholar] [CrossRef] [Green Version]
- Janssen, D.A.; van Wijk, X.M.; Jansen, K.C.; van Kuppevelt, T.H.; Heesakkers, J.P.; Schalken, J.A. The distribution and function of chondroitin sulfate and other sulfated glycosaminoglycans in the human bladder and their contribution to the protective bladder barrier. J. Urol. 2013, 189, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Rushmore, T.H.; Morton, M.R.; Pickett, C.B. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J. Biol. Chem. 1991, 266, 11632–11639. [Google Scholar] [CrossRef]
- Tong, K.I.; Katoh, Y.; Kusunoki, H.; Itoh, K.; Tanaka, T.; Yamamoto, M. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: Characterization of the two-site molecular recognition model. Mol. Cell Biol. 2006, 26, 2887–2900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonelli, C.; Chio, I.I.C.; Tuveson, D.A. Transcriptional Regulation by Nrf2. Antioxid. Redox Signal. 2018, 29, 1727–1745. [Google Scholar] [CrossRef] [Green Version]
- Levonen, A.L.; Landar, A.; Ramachandran, A.; Ceaser, E.K.; Dickinson, D.A.; Zanoni, G.; Morrow, J.D.; Darley-Usmar, V.M. Cellular mechanisms of redox cell signalling: Role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem. J. 2004, 378, 373–382. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Luo, M.; Wei, S. The Bioprotective Effects of Polyphenols on Metabolic Syndrome against Oxidative Stress: Evidences and Perspectives. Oxid. Med. Cell Longev. 2019, 2019, 6713194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ener, K.; Keske, M.; Aldemir, M.; Ozcan, M.F.; Okulu, E.; Ozayar, A.; Ergin, M.; Doluoglu, O.G.; Cakmak, S.; Erel, O. Evaluation of oxidative stress status and antioxidant capacity in patients with painful bladder syndrome/interstitial cystitis: Preliminary results of a randomised study. Int. Urol. Nephrol. 2015, 47, 1297–1302. [Google Scholar] [CrossRef]
- Bozzatello, P.; Garbarini, C.; Rocca, P.; Bellino, S. Borderline Personality Disorder: Risk Factors and Early Detection. Diagnostics 2021, 11, 2142. [Google Scholar] [CrossRef]
- Nguyen, T.; Nioi, P.; Pickett, C.B. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem. 2009, 284, 13291–13295. [Google Scholar] [CrossRef] [Green Version]
- Gee, E.; Milkiewicz, M.; Haas, T.L. p38 MAPK activity is stimulated by vascular endothelial growth factor receptor 2 activation and is essential for shear stress-induced angiogenesis. J. Cell. Physiol. 2010, 222, 120–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.D.; Lee, M.H. Increased expression of hypoxia-inducible factor-1alpha and vascular endothelial growth factor associated with glomerulation formation in patients with interstitial cystitis. Urology 2011, 78, 971.e11–971.e15. [Google Scholar] [CrossRef]
- Saban, R. Angiogenic factors, bladder neuroplasticity and interstitial cystitis-new pathobiological insights. Transl. Urol. 2015, 4, 555–562. [Google Scholar] [CrossRef]
- Furuta, A.; Suzuki, Y.; Igarashi, T.; Koike, Y.; Kimura, T.; Egawa, S.; Yoshimura, N. Angiogenesis in bladder tissues is strongly correlated with urinary frequency and bladder pain in patients with interstitial cystitis/bladder pain syndrome. Int. J. Urol. 2019, 26 (Suppl. 1), 35–40. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, Y.; Maeda, D.; Katoh, H.; Morikawa, T.; Niimi, A.; Nomiya, A.; Sato, Y.; Kawai, T.; Goto, A.; Fujimura, T.; et al. Molecular Taxonomy of Interstitial Cystitis/Bladder Pain Syndrome Based on Whole Transcriptome Profiling by Next-Generation RNA Sequencing of Bladder Mucosal Biopsies. J. Urol. 2019, 202, 290–300. [Google Scholar] [CrossRef]
- Peng, C.H.; Jhang, J.F.; Shie, J.H.; Kuo, H.C. Down regulation of vascular endothelial growth factor is associated with decreased inflammation after intravesical OnabotulinumtoxinA injections combined with hydrodistention for patients with interstitial cystitis—Clinical results and immunohistochemistry analysis. Urology 2013, 82, 1452.e1–1452.e6. [Google Scholar] [CrossRef]
- Jhang, J.F.; Hsu, Y.H.; Jiang, Y.H.; Kuo, H.C. Elevated serum IgE may be associated with development of ketamine cystitis. J. Urol. 2014, 192, 1249–1256. [Google Scholar] [CrossRef]
- Huang, L.K.; Wang, J.H.; Shen, S.H.; Lin, A.T.; Chang, C.Y. Evaluation of the extent of ketamine-induced uropathy: The role of CT urography. Postgrad. Med. J. 2014, 90, 185–190. [Google Scholar] [CrossRef]
- Huang, P.W.; Meng, E.; Cha, T.L.; Sun, G.H.; Yu, D.S.; Chang, S.Y. “Walking-stick ureters” in ketamine abuse. Kidney Int. 2011, 80, 895. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.L.; Jiang, Y.H.; Kuo, H.C. Increased apoptosis and suburothelial inflammation in patients with ketamine-related cystitis: A comparison with non-ulcerative interstitial cystitis and controls. BJU Int. 2013, 112, 1156–1162. [Google Scholar] [CrossRef] [PubMed]
- Jhang, J.F.; Hsu, Y.H.; Kuo, H.C. Possible pathophysiology of ketamine-related cystitis and associated treatment strategies. Int. J. Urol. 2015, 22, 816–825. [Google Scholar] [CrossRef]
- Anand, P.; Singh, B.; Jaggi, A.S.; Singh, N. Mast cells: An expanding pathophysiological role from allergy to other disorders. Naunyn-Schmiedeberg’s Arch. Pharm. 2012, 385, 657–670. [Google Scholar] [CrossRef] [PubMed]
- Gamper, M.; Regauer, S.; Welter, J.; Eberhard, J.; Viereck, V. Are mast cells still good biomarkers for bladder pain syndrome/interstitial cystitis? J. Urol. 2015, 193, 1994–2000. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, Y.; Maeda, D.; Morikawa, T.; Niimi, A.; Nomiya, A.; Yamada, Y.; Igawa, Y.; Goto, A.; Fukayama, M.; Homma, Y. Digital quantitative analysis of mast cell infiltration in interstitial cystitis. Neurourol. Urodyn. 2018, 37, 650–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, A.; Han, J.Y.; Ryu, C.M.; Yu, H.Y.; Lee, S.; Kim, Y.; Jeong, S.U.; Cho, Y.M.; Shin, D.M.; Choo, M.S. Histopathological characteristics of interstitial cystitis/bladder pain syndrome without Hunner lesion. Histopathology 2017, 71, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Theoharides, T.C.; Cochrane, D.E. Critical role of mast cells in inflammatory diseases and the effect of acute stress. J. Neuroimmunol. 2004, 146, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.D.; Liu, H.T.; Lin, H.; Kuo, H.C. Elevation of serum c-reactive protein in patients with OAB and IC/BPS implies chronic inflammation in the urinary bladder. Neurourol. Urodyn. 2011, 30, 417–420. [Google Scholar] [CrossRef]
- Liu, H.T.; Chancellor, M.B.; Kuo, H.C. Urinary nerve growth factor levels are elevated in patients with detrusor overactivity and decreased in responders to detrusor botulinum toxin-A injection. Eur. Urol. 2009, 56, 700–706. [Google Scholar] [CrossRef]
- Liu, H.T.; Kuo, H.C. Urinary nerve growth factor level could be a potential biomarker for diagnosis of overactive bladder. J. Urol. 2008, 179, 2270–2274. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.T.; Tyagi, P.; Chancellor, M.B.; Kuo, H.C. Urinary nerve growth factor but not prostaglandin E2 increases in patients with interstitial cystitis/bladder pain syndrome and detrusor overactivity. BJU Int. 2010, 106, 1681–1685. [Google Scholar] [CrossRef]
- Lowe, E.M.; Anand, P.; Terenghi, G.; Williams-Chestnut, R.E.; Sinicropi, D.V.; Osborne, J.L. Increased nerve growth factor levels in the urinary bladder of women with idiopathic sensory urgency and interstitial cystitis. Br. J. Urol. 1997, 79, 572–577. [Google Scholar] [CrossRef]
- Kim, S.H.; Oh, S.A.; Oh, S.J. Voiding diary might serve as a useful tool to understand differences between bladder pain syndrome/interstitial cystitis and overactive bladder. Int. J. Urol. 2014, 21, 179–183. [Google Scholar] [CrossRef]
- Charlanes, A.; Boudghene, F.; Chesnel, C.; Ciofu, C.; Le Breton, F.; Jousse, M.; Amarenco, G.; Manceau, P. Diffusion-Weighted Magnetic Resonance Imaging: A New Tool for the Diagnosis of Bladder Pain Syndrome/Interstitial Cystitis. Urol. Int. 2019, 102, 109–112. [Google Scholar] [CrossRef]
- Taidi, Z.; Mansfield, K.J.; Bates, L.; Sana-Ur-Rehman, H.; Liu, L. Purinergic P2X7 receptors as therapeutic targets in interstitial cystitis/bladder pain syndrome; key role of ATP signaling in inflammation. Bladder 2019, 6, e38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doiron, R.C.; Tolls, V.; Irvine-Bird, K.; Kelly, K.L.; Nickel, J.C. Clinical Phenotyping Does Not Differentiate Hunner Lesion Subtype of Interstitial Cystitis/Bladder Pain Syndrome: A Relook at the Role of Cystoscopy. J. Urol. 2016, 196, 1136–1140. [Google Scholar] [CrossRef] [PubMed]
- Homma, Y. Interstitial cystitis, bladder pain syndrome, hypersensitive bladder, and interstitial cystitis/bladder pain syndrome - clarification of definitions and relationships. Int. J. Urol. 2019, 26 (Suppl. 1), 20–24. [Google Scholar] [CrossRef] [Green Version]
- Logadottir, Y.; Fall, M.; Kabjorn-Gustafsson, C.; Peeker, R. Clinical characteristics differ considerably between phenotypes of bladder pain syndrome/interstitial cystitis. Scand. J. Urol. Nephrol. 2012, 46, 365–370. [Google Scholar] [CrossRef]
- Lee, J.E.; Yi, B.H.; Lee, H.K.; Lee, M.H.; Kim, Y.H. Correlation of cystoscopically confirmed periureterally located hunner lesion with vesicoureteral reflux: Preliminary study in patients with interstitial cystitis. AJR Am. J. Roentgenol. 2015, 204, W457–W460. [Google Scholar] [CrossRef]
- Colaco, M.; Koslov, D.S.; Keys, T.; Evans, R.J.; Badlani, G.H.; Andersson, K.E.; Walker, S.J. Correlation of gene expression with bladder capacity in interstitial cystitis/bladder pain syndrome. J. Urol. 2014, 192, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- Schachar, J.S.; Evans, R.J.; Parks, G.E.; Zambon, J.; Badlani, G.; Walker, S.J. Histological evidence supports low anesthetic bladder capacity as a marker of a bladder-centric disease subtype in interstitial cystitis/bladder pain syndrome. Int. Urogynecol. J. 2019, 30, 1863–1870. [Google Scholar] [CrossRef]
- Mazeaud, C.; Rigaud, J.; Levesque, A.; Madec, F.X.; Le Clerc, Q.C.; Wack, M.; Le Normand, L.; Riant, T.; Perrouin-Verbe, M.A. Stratification of Patients With Interstitial Cystitis/Bladder Pain Syndrome According to the Anatomical Bladder Capacity. Urology 2019, 123, 87–92. [Google Scholar] [CrossRef]
- O’Leary, M.P.; Sant, G.R.; Fowler, F.J., Jr.; Whitmore, K.E.; Spolarich-Kroll, J. The interstitial cystitis symptom index and problem index. Urology 1997, 49, 58–63. [Google Scholar] [CrossRef]
- Keller, M.L.; McCarthy, D.O.; Neider, R.S. Measurement of symptoms of interstitial cystitis. A pilot study. Urol. Clin. N. Am. 1994, 21, 67–71. [Google Scholar] [CrossRef]
- Parsons, C.L.; Dell, J.; Stanford, E.J.; Bullen, M.; Kahn, B.S.; Waxell, T.; Koziol, J.A. Increased prevalence of interstitial cystitis: Previously unrecognized urologic and gynecologic cases identified using a new symptom questionnaire and intravesical potassium sensitivity. Urology 2002, 60, 573–578. [Google Scholar] [CrossRef]
- Lubeck, D.P.; Whitmore, K.; Sant, G.R.; Alvarez-Horine, S.; Lai, C. Psychometric validation of the O’leary-Sant interstitial cystitis symptom index in a clinical trial of pentosan polysulfate sodium. Urology 2001, 57, 62–66. [Google Scholar] [CrossRef]
- Wennevik, G.E.; Meijlink, J.M.; Hanno, P.; Nordling, J. The Role of Glomerulations in Bladder Pain Syndrome: A Review. J. Urol. 2016, 195, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.T.; Jiang, Y.H.; Kuo, H.C. Alteration of Urothelial Inflammation, Apoptosis, and Junction Protein in Patients with Various Bladder Conditions and Storage Bladder Symptoms Suggest Common Pathway Involved in Underlying Pathophysiology. Low. Urin. Tract Symptoms 2015, 7, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Said, J.W.; Van de Velde, R.; Gillespie, L. Immunopathology of interstitial cystitis. Mod. Pathol. 1989, 2, 593–602. [Google Scholar]
- Pang, X.; Marchand, J.; Sant, G.R.; Kream, R.M.; Theoharides, T.C. Increased number of substance P positive nerve fibres in interstitial cystitis. Br. J. Urol. 1995, 75, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Murayama, T.; Mita, H.; Akiyama, K. Subtypes of bladder mast cells in interstitial cystitis. Int. J. Urol. 2000, 7, 292–297. [Google Scholar] [CrossRef] [Green Version]
- Charrua, A.; Mendes, P.; Cruz, C. Biomarkers for Bladder Pain Syndrome/Interstitial Cystitis. Curr. Bladder Dysfunct. Rep. 2021, 16, 12–18. [Google Scholar] [CrossRef]
- Tyagi, P.; Killinger, K.; Tyagi, V.; Nirmal, J.; Chancellor, M.; Peters, K.M. Urinary chemokines as noninvasive predictors of ulcerative interstitial cystitis. J. Urol. 2012, 187, 2243–2248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Southgate, J.; Varley, C.L.; Garthwaite, M.A.; Hinley, J.; Marsh, F.; Stahlschmidt, J.; Trejdosiewicz, L.K.; Eardley, I. Differentiation potential of urothelium from patients with benign bladder dysfunction. BJU Int. 2007, 99, 1506–1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Y.; Wu, X.X.; Homma, Y.; Yoshimura, N.; Iwaki, H.; Kageyama, S.; Yoshiki, T.; Kakehi, Y. Uroplakin III-delta4 messenger RNA as a promising marker to identify nonulcerative interstitial cystitis. J. Urol. 2007, 178, 1322–1327; discussion 1327. [Google Scholar] [CrossRef] [PubMed]
- Bicer, F.; Altuntas, C.Z.; Izgi, K.; Ozer, A.; Kavran, M.; Tuohy, V.K.; Daneshgari, F. Chronic pelvic allodynia is mediated by CCL2 through mast cells in an experimental autoimmune cystitis model. Am. J. Physiol. Ren. Physiol. 2015, 308, F103–F113. [Google Scholar] [CrossRef] [Green Version]
- Gamper, M.; Viereck, V.; Eberhard, J.; Binder, J.; Moll, C.; Welter, J.; Moser, R. Local immune response in bladder pain syndrome/interstitial cystitis ESSIC type 3C. Int. Urogynecol. J. 2013, 24, 2049–2057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Doggweiler-Wiygul, R.; Kim, S.; Hill, B.D.; Yoo, T.J. Is interstitial cystitis an allergic disorder?: A case of interstitial cystitis treated successfully with anti-IgE. Int. J. Urol. 2006, 13, 631–634. [Google Scholar] [CrossRef] [PubMed]
- Erickson, D.R.; Xie, S.X.; Bhavanandan, V.P.; Wheeler, M.A.; Hurst, R.E.; Demers, L.M.; Kushner, L.; Keay, S.K. A comparison of multiple urine markers for interstitial cystitis. J. Urol. 2002, 167, 2461–2469. [Google Scholar] [CrossRef]
- Sakthivel, S.K.; Singh, U.P.; Singh, S.; Taub, D.D.; Novakovic, K.R.; Lillard, J.W., Jr. CXCL10 blockade protects mice from cyclophosphamide-induced cystitis. J. Immune Based Vaccines 2008, 6, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamale, L.M.; Lutgendorf, S.K.; Zimmerman, M.B.; Kreder, K.J. Interleukin-6, histamine, and methylhistamine as diagnostic markers for interstitial cystitis. Urology 2006, 68, 702–706. [Google Scholar] [CrossRef]
- Offiah, I.; Didangelos, A.; Dawes, J.; Cartwright, R.; Khullar, V.; Bradbury, E.J.; O’Sullivan, S.; Williams, D.; Chessell, I.P.; Pallas, K.; et al. The Expression of Inflammatory Mediators in Bladder Pain Syndrome. Eur. Urol. 2016, 70, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Magalhaes, T.F.; Baracat, E.C.; Doumouchtsis, S.K.; Haddad, J.M. Biomarkers in the diagnosis and symptom assessment of patients with bladder pain syndrome: A systematic review. Int. Urogynecol. J. 2019, 30, 1785–1794. [Google Scholar] [CrossRef]
- Peters, K.M.; Diokno, A.C.; Steinert, B.W. Preliminary study on urinary cytokine levels in interstitial cystitis: Does intravesical bacille Calmette-Guerin treat interstitial cystitis by altering the immune profile in the bladder? Urology 1999, 54, 450–453. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Jhang, J.F.; Hsu, Y.H.; Ho, H.C.; Wu, Y.H.; Kuo, H.C. Urine biomarkers in ESSIC type 2 interstitial cystitis/bladder pain syndrome and overactive bladder with developing a novel diagnostic algorithm. Sci. Rep. 2021, 11, 914. [Google Scholar] [CrossRef]
- Jhang, J.F.; Kuo, H.C. Pathomechanism of Interstitial Cystitis/Bladder Pain Syndrome and Mapping the Heterogeneity of Disease. Int. Neurourol. J. 2016, 20, S95–S104. [Google Scholar] [CrossRef] [Green Version]
- Keay, S.; Zhang, C.O.; Marvel, R.; Chai, T. Antiproliferative factor, heparin-binding epidermal growth factor-like growth factor, and epidermal growth factor: Sensitive and specific urine markers for interstitial cystitis. Urology 2001, 57, 104. [Google Scholar] [CrossRef]
- Alleva, E.; Santucci, D. Psychosocial vs. “physical” stress situations in rodents and humans: Role of neurotrophins. Physiol. Behav. 2001, 73, 313–320. [Google Scholar] [CrossRef]
- Aloe, L.; Skaper, S.D.; Leon, A.; Levi-Montalcini, R. Nerve growth factor and autoimmune diseases. Autoimmunity 1994, 19, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Bonini, S.; Lambiase, A.; Bonini, S.; Levi-Schaffer, F.; Aloe, L. Nerve growth factor: An important molecule in allergic inflammation and tissue remodelling. Int. Arch. Allergy Immunol. 1999, 118, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Okragly, A.J.; Niles, A.L.; Saban, R.; Schmidt, D.; Hoffman, R.L.; Warner, T.F.; Moon, T.D.; Uehling, D.T.; Haak-Frendscho, M. Elevated tryptase, nerve growth factor, neurotrophin-3 and glial cell line-derived neurotrophic factor levels in the urine of interstitial cystitis and bladder cancer patients. J. Urol. 1999, 161, 438–441; discussion 441–432. [Google Scholar] [CrossRef]
- Jacobs, B.L.; Smaldone, M.C.; Tyagi, V.; Philips, B.J.; Jackman, S.V.; Leng, W.W.; Tyagi, P. Increased nerve growth factor in neurogenic overactive bladder and interstitial cystitis patients. Can. J. Urol. 2010, 17, 4989–4994. [Google Scholar]
- Liu, H.T.; Kuo, H.C. Urinary nerve growth factor levels are increased in patients with bladder outlet obstruction with overactive bladder symptoms and reduced after successful medical treatment. Urology 2008, 72, 104–108; discussion 108. [Google Scholar] [CrossRef]
- Steers, W.D.; Tuttle, J.B. Mechanisms of Disease: The role of nerve growth factor in the pathophysiology of bladder disorders. Nat. Clin. Pract. Urol. 2006, 3, 101–110. [Google Scholar] [CrossRef]
- Vizzard, M.A. Changes in urinary bladder neurotrophic factor mRNA and NGF protein following urinary bladder dysfunction. Exp. Neurol. 2000, 161, 273–284. [Google Scholar] [CrossRef]
- Yoshimura, N. Bladder afferent pathway and spinal cord injury: Possible mechanisms inducing hyperreflexia of the urinary bladder. Prog. Neurobiol. 1999, 57, 583–606. [Google Scholar] [CrossRef]
- Schnegelsberg, B.; Sun, T.T.; Cain, G.; Bhattacharya, A.; Nunn, P.A.; Ford, A.P.; Vizzard, M.A.; Cockayne, D.A. Overexpression of NGF in mouse urothelium leads to neuronal hyperinnervation, pelvic sensitivity, and changes in urinary bladder function. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 298, R534–R547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.T.; Kuo, H.C. Increased urine and serum nerve growth factor levels in interstitial cystitis suggest chronic inflammation is involved in the pathogenesis of disease. PLoS ONE 2012, 7, e44687. [Google Scholar] [CrossRef]
- Malykhina, A.P.; Lei, Q.; Erickson, C.S.; Epstein, M.L.; Saban, M.R.; Davis, C.A.; Saban, R. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity. BMC Physiol. 2012, 12, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, H.H.; Shen, B.; Vijairania, P.; Zhang, X.; Vogt, S.K.; Gereau, R.W.t. Anti-vascular endothelial growth factor treatment decreases bladder pain in cyclophosphamide cystitis: A Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network animal model study. BJU Int. 2017, 120, 576–583. [Google Scholar] [CrossRef] [Green Version]
- Dagher, A.; Curatolo, A.; Sachdev, M.; Stephens, A.J.; Mullins, C.; Landis, J.R.; van Bokhoven, A.; El-Hayek, A.; Froehlich, J.W.; Briscoe, A.C.; et al. Identification of novel non-invasive biomarkers of urinary chronic pelvic pain syndrome: Findings from the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network. BJU Int. 2017, 120, 130–142. [Google Scholar] [CrossRef] [PubMed]
- Kiuchi, H.; Tsujimura, A.; Takao, T.; Yamamoto, K.; Nakayama, J.; Miyagawa, Y.; Nonomura, N.; Takeyama, M.; Okuyama, A. Increased vascular endothelial growth factor expression in patients with bladder pain syndrome/interstitial cystitis: Its association with pain severity and glomerulations. BJU Int. 2009, 104, 826–831; discussion 831. [Google Scholar] [CrossRef] [PubMed]
- Furuta, A.; Yamamoto, T.; Suzuki, Y.; Gotoh, M.; Egawa, S.; Yoshimura, N. Comparison of inflammatory urine markers in patients with interstitial cystitis and overactive bladder. Int. Urogynecol. J. 2018, 29, 961–966. [Google Scholar] [CrossRef]
- Tamaki, M.; Saito, R.; Ogawa, O.; Yoshimura, N.; Ueda, T. Possible mechanisms inducing glomerulations in interstitial cystitis: Relationship between endoscopic findings and expression of angiogenic growth factors. J. Urol. 2004, 172, 945–948. [Google Scholar] [CrossRef]
- Shen, Y.C.; Tyagi, P.; Lee, W.C.; Chancellor, M.; Chuang, Y.C. Improves symptoms and urinary biomarkers in refractory interstitial cystitis/bladder pain syndrome patients randomized to extracorporeal shock wave therapy versus placebo. Sci. Rep. 2021, 11, 7558. [Google Scholar] [CrossRef]
- Feltis, J.T.; Perez-Marrero, R.; Emerson, L.E. Increased mast cells of the bladder in suspected cases of interstitial cystitis: A possible disease marker. J. Urol. 1987, 138, 42–43. [Google Scholar] [CrossRef]
- Larsen, S.; Thompson, S.A.; Hald, T.; Barnard, R.J.; Gilpin, C.J.; Dixon, J.S.; Gosling, J.A. Mast cells in interstitial cystitis. Br. J. Urol. 1982, 54, 283–286. [Google Scholar] [CrossRef]
- Cuevas, P.; Gutierrez-Diaz, J.A.; Reimers, D.; Dujovny, M.; Diaz, F.G.; Ausman, J.I. Adrenergic innervation of human middle cerebral artery. Ultrastructural observations. Surg. Neurol. 1987, 27, 113–116. [Google Scholar] [CrossRef]
- Kastrup, J.; Hald, T.; Larsen, S.; Nielsen, V.G. Histamine content and mast cell count of detrusor muscle in patients with interstitial cystitis and other types of chronic cystitis. Br. J. Urol. 1983, 55, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Aldenborg, F.; Fall, M.; Enerback, L. Proliferation and transepithelial migration of mucosal mast cells in interstitial cystitis. Immunology 1986, 58, 411–416. [Google Scholar] [PubMed]
- Chuang, Y.-C.; Tyagi, V.; Liu, R.-T.; Chancellor, M.B.; Tyagi, P. Urine and Serum C-Reactive Protein Levels as Potential Biomarkers of Lower Urinary Tract Symptoms. Urol. Sci. 2010, 21, 132–136. [Google Scholar] [CrossRef] [Green Version]
- Sui, G.P.; Wu, C.; Fry, C.H. Characterization of the purinergic receptor subtype on guinea-pig suburothelial myofibroblasts. BJU Int. 2006, 97, 1327–1331. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Keay, S.; De Deyne, P.G.; Chai, T.C. Augmented stretch activated adenosine triphosphate release from bladder uroepithelial cells in patients with interstitial cystitis. J. Urol. 2001, 166, 1951–1956. [Google Scholar] [CrossRef]
- Birder, L.A.; Barrick, S.R.; Roppolo, J.R.; Kanai, A.J.; de Groat, W.C.; Kiss, S.; Buffington, C.A. Feline interstitial cystitis results in mechanical hypersensitivity and altered ATP release from bladder urothelium. Am. J. Physiol. Ren. Physiol. 2003, 285, F423–F429. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.P.; Vemulakonda, V.M.; Kiss, S.; Boone, T.B.; Somogyi, G.T. Enhanced ATP release from rat bladder urothelium during chronic bladder inflammation: Effect of botulinum toxin A. Neurochem. Int. 2005, 47, 291–297. [Google Scholar] [CrossRef]
- Lawrence, G.W.; Aoki, K.R.; Dolly, J.O. Excitatory cholinergic and purinergic signaling in bladder are equally susceptible to botulinum neurotoxin a consistent with co-release of transmitters from efferent fibers. J. Pharm. Exp. 2010, 334, 1080–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Chai, T.C. Augmented extracellular ATP signaling in bladder urothelial cells from patients with interstitial cystitis. Am. J. Physiol. Cell Physiol. 2006, 290, C27–C34. [Google Scholar] [CrossRef] [Green Version]
- Conrads, T.P.; Tocci, G.M.; Hood, B.L.; Zhang, C.O.; Guo, L.; Koch, K.R.; Michejda, C.J.; Veenstra, T.D.; Keay, S.K. CKAP4/p63 is a receptor for the frizzled-8 protein-related antiproliferative factor from interstitial cystitis patients. J. Biol. Chem. 2006, 281, 37836–37843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keay, S.K.; Szekely, Z.; Conrads, T.P.; Veenstra, T.D.; Barchi, J.J., Jr.; Zhang, C.O.; Koch, K.R.; Michejda, C.J. An antiproliferative factor from interstitial cystitis patients is a frizzled 8 protein-related sialoglycopeptide. Proc. Natl. Acad. Sci. USA 2004, 101, 11803–11808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keay, S.K.; Zhang, C.O.; Shoenfelt, J.; Erickson, D.R.; Whitmore, K.; Warren, J.W.; Marvel, R.; Chai, T. Sensitivity and specificity of antiproliferative factor, heparin-binding epidermal growth factor-like growth factor, and epidermal growth factor as urine markers for interstitial cystitis. Urology 2001, 57, 9–14. [Google Scholar] [CrossRef]
- Kim, J.; Keay, S.K.; Dimitrakov, J.D.; Freeman, M.R. p53 mediates interstitial cystitis antiproliferative factor (APF)-induced growth inhibition of human urothelial cells. FEBS Lett. 2007, 581, 3795–3799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keay, S.; Kaczmarek, P.; Zhang, C.O.; Koch, K.; Szekely, Z.; Barchi, J.J., Jr.; Michejda, C. Normalization of proliferation and tight junction formation in bladder epithelial cells from patients with interstitial cystitis/painful bladder syndrome by d-proline and d-pipecolic acid derivatives of antiproliferative factor. Chem. Biol. Drug Des. 2011, 77, 421–430. [Google Scholar] [CrossRef]
- Tseng-Rogenski, S.; Liebert, M. Interleukin-8 is essential for normal urothelial cell survival. Am. J. Physiol. Ren. Physiol. 2009, 297, F816–F821. [Google Scholar] [CrossRef] [Green Version]
- Huan, S.K.; Wang, K.T.; Yeh, S.D.; Lee, C.J.; Lin, L.C.; Liu, D.Z.; Wang, C.C. Scutellaria baicalensis alleviates cantharidin-induced rat hemorrhagic cystitis through inhibition of cyclooxygenase-2 overexpression. Molecules 2012, 17, 6277–6289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.C.; Park, E.Y.; Seo, S.I.; Park, Y.H.; Hwang, T.K. Nerve growth factor and prostaglandins in the urine of female patients with overactive bladder. J. Urol. 2006, 175, 1773–1776; discussion 1776. [Google Scholar] [CrossRef]
- Galli, S.J.; Wedemeyer, J.; Tsai, M. Analyzing the roles of mast cells and basophils in host defense and other biological responses. Int. J. Hematol. 2002, 75, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Fagerli, J.; Fraser, M.O.; deGroat, W.C.; Chancellor, M.B.; Flood, H.D.; Smith, D.; Jordan, M.L. Intravesical capsaicin for the treatment of interstitial cystitis: A pilot study. Can. J. Urol. 1999, 6, 737–744. [Google Scholar] [PubMed]
- Byrne, D.S.; Sedor, J.F.; Estojak, J.; Fitzpatrick, K.J.; Chiura, A.N.; Mulholland, S.G. The urinary glycoprotein GP51 as a clinical marker for interstitial cystitis. J. Urol. 1999, 161, 1786–1790. [Google Scholar] [CrossRef]
- Shie, J.H.; Liu, H.T.; Kuo, H.C. Increased cell apoptosis of urothelium mediated by inflammation in interstitial cystitis/painful bladder syndrome. Urology 2012, 79, 484.e7–484.e13. [Google Scholar] [CrossRef] [PubMed]
- Bouchelouche, K.; Andresen, L.; Alvarez, S.; Nordling, J.; Nielsen, O.H.; Bouchelouche, P. Interleukin-4 and 13 induce the expression and release of monocyte chemoattractant protein 1, interleukin-6 and stem cell factor from human detrusor smooth muscle cells: Synergy with interleukin-1beta and tumor necrosis factor-alpha. J. Urol. 2006, 175, 760–765. [Google Scholar] [CrossRef]
- Dupont, M.C.; Spitsbergen, J.M.; Kim, K.B.; Tuttle, J.B.; Steers, W.D. Histological and neurotrophic changes triggered by varying models of bladder inflammation. J. Urol. 2001, 166, 1111–1118. [Google Scholar] [CrossRef]
- Kuo, H.C.; Liu, H.T.; Tyagi, P.; Chancellor, M.B. Urinary Nerve Growth Factor Levels in Urinary Tract Diseases With or Without Frequency Urgency Symptoms. Low. Urin. Tract Symptoms 2010, 2, 88–94. [Google Scholar] [CrossRef]
- Zhang, C.O.; Li, Z.L.; Kong, C.Z. APF, HB-EGF, and EGF biomarkers in patients with ulcerative vs. non-ulcerative interstitial cystitis. BMC Urol. 2005, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Slobodov, G.; Feloney, M.; Gran, C.; Kyker, K.D.; Hurst, R.E.; Culkin, D.J. Abnormal expression of molecular markers for bladder impermeability and differentiation in the urothelium of patients with interstitial cystitis. J. Urol. 2004, 171, 1554–1558. [Google Scholar] [CrossRef] [Green Version]
- Hurst, R.E.; Moldwin, R.M.; Mulholland, S.G. Bladder defense molecules, urothelial differentiation, urinary biomarkers, and interstitial cystitis. Urology 2007, 69, 17–23. [Google Scholar] [CrossRef]
- Parsons, C.L.; Boychuk, D.; Jones, S.; Hurst, R.; Callahan, H. Bladder surface glycosaminoglycans: An epithelial permeability barrier. J. Urol. 1990, 143, 139–142. [Google Scholar] [CrossRef]
- Reitinger, S.; Lepperdinger, G. Hyaluronan, a ready choice to fuel regeneration: A mini-review. Gerontology 2013, 59, 71–76. [Google Scholar] [CrossRef]
- Chen, W.Y.; Abatangelo, G. Functions of hyaluronan in wound repair. Wound Repair Regen. 1999, 7, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Croce, M.A.; Dyne, K.; Boraldi, F.; Quaglino, D., Jr.; Cetta, G.; Tiozzo, R.; Pasquali Ronchetti, I. Hyaluronan affects protein and collagen synthesis by in vitro human skin fibroblasts. Tissue Cell 2001, 33, 326–331. [Google Scholar] [CrossRef]
- Meng, E.; Hsu, Y.C.; Chuang, Y.C. Advances in intravesical therapy for bladder pain syndrome (BPS)/interstitial cystitis (IC). Low. Urin. Tract Symptoms 2018, 10, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Daha, L.K.; Riedl, C.R.; Lazar, D.; Hohlbrugger, G.; Pfluger, H. Do cystometric findings predict the results of intravesical hyaluronic acid in women with interstitial cystitis? Eur. Urol. 2005, 47, 393–397; discussion 397. [Google Scholar] [CrossRef]
- Riedl, C.R.; Engelhardt, P.F.; Daha, K.L.; Morakis, N.; Pfluger, H. Hyaluronan treatment of interstitial cystitis/painful bladder syndrome. Int. Urogynecol. J. Pelvic Floor Dysfunct. 2008, 19, 717–721. [Google Scholar] [CrossRef]
- Engelhardt, P.F.; Morakis, N.; Daha, L.K.; Esterbauer, B.; Riedl, C.R. Long-term results of intravesical hyaluronan therapy in bladder pain syndrome/interstitial cystitis. Int. Urogynecol. J. 2011, 22, 401–405. [Google Scholar] [CrossRef]
- Hung, M.J.; Su, T.H.; Lin, Y.H.; Huang, W.C.; Lin, T.Y.; Hsu, C.S.; Chuang, F.C.; Tsai, C.P.; Shen, P.S.; Chen, G.D. Changes in sexual function of women with refractory interstitial cystitis/bladder pain syndrome after intravesical therapy with a hyaluronic acid solution. J. Sex. Med. 2014, 11, 2256–2263. [Google Scholar] [CrossRef] [PubMed]
- Morales, A.; Emerson, L.; Nickel, J.C.; Lundie, M. Intravesical hyaluronic acid in the treatment of refractory interstitial cystitis. J. Urol. 1996, 156, 45–48. [Google Scholar] [CrossRef]
- Porru, D.; Campus, G.; Tudino, D.; Valdes, E.; Vespa, A.; Scarpa, R.M.; Usai, E. Results of treatment of refractory interstitial cystitis with intravesical hyaluronic acid. Urol. Int. 1997, 59, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Kallestrup, E.B.; Jorgensen, S.S.; Nordling, J.; Hald, T. Treatment of interstitial cystitis with Cystistat: A hyaluronic acid product. Scand. J. Urol. Nephrol. 2005, 39, 143–147. [Google Scholar] [CrossRef]
- Lai, M.C.; Kuo, Y.C.; Kuo, H.C. Intravesical hyaluronic acid for interstitial cystitis/painful bladder syndrome: A comparative randomized assessment of different regimens. Int. J. Urol. 2013, 20, 203–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, A.; Hoe, K.O.; Shin, J.H.; Choo, M.S. Evaluation of the incidence and risk factors associated with persistent frequency in interstitial cystitis/bladder pain syndrome and the efficacy of antimuscarinic treatment. Investig. Clin. Urol. 2017, 58, 353–358. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Liu, H.T.; Kuo, H.C. Decrease of urinary nerve growth factor but not brain-derived neurotrophic factor in patients with interstitial cystitis/bladder pain syndrome treated with hyaluronic acid. PLoS ONE 2014, 9, e91609. [Google Scholar] [CrossRef] [Green Version]
- Ozkidik, M. Assessment of long-term intravesical hyaluronic acid, chondroitin sulfate and combination therapy for patients with bladder pain syndrome. Cent. Eur. J. Urol. 2019, 72, 270–275. [Google Scholar] [CrossRef]
- Kuo, H.C. Repeated intravesical onabotulinumtoxinA injections are effective in treatment of refractory interstitial cystitis/bladder pain syndrome. Int. J. Clin. Pract. 2013, 67, 427–434. [Google Scholar] [CrossRef]
- Wang, H.J.; Yu, W.R.; Ong, H.L.; Kuo, H.C. Predictive Factors for a Satisfactory Treatment Outcome with Intravesical Botulinum Toxin A Injection in Patients with Interstitial Cystitis/Bladder Pain Syndrome. Toxins 2019, 11, 676. [Google Scholar] [CrossRef] [Green Version]
- Schulte-Baukloh, H.; Weiss, C.; Stolze, T.; Sturzebecher, B.; Knispel, H.H. Botulinum-A toxin for treatment of overactive bladder without detrusor overactivity: Urodynamic outcome and patient satisfaction. Urology 2005, 66, 82–87. [Google Scholar] [CrossRef]
- Kuo, H.C. Urodynamic evidence of effectiveness of botulinum A toxin injection in treatment of detrusor overactivity refractory to anticholinergic agents. Urology 2004, 63, 868–872. [Google Scholar] [CrossRef]
- Apostolidis, A.; Popat, R.; Yiangou, Y.; Cockayne, D.; Ford, A.P.; Davis, J.B.; Dasgupta, P.; Fowler, C.J.; Anand, P. Decreased sensory receptors P2X3 and TRPV1 in suburothelial nerve fibers following intradetrusor injections of botulinum toxin for human detrusor overactivity. J. Urol. 2005, 174, 977–982; discussion 982–973. [Google Scholar] [CrossRef]
- Kuo, H.C.; Chancellor, M.B. Comparison of intravesical botulinum toxin type A injections plus hydrodistention with hydrodistention alone for the treatment of refractory interstitial cystitis/painful bladder syndrome. BJU Int. 2009, 104, 657–661. [Google Scholar] [CrossRef]
- Pinto, R.; Lopes, T.; Silva, J.; Silva, C.; Dinis, P.; Cruz, F. Persistent therapeutic effect of repeated injections of onabotulinum toxin a in refractory bladder pain syndrome/interstitial cystitis. J. Urol. 2013, 189, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.T.; Kuo, H.C. Intravesical botulinum toxin A injections plus hydrodistension can reduce nerve growth factor production and control bladder pain in interstitial cystitis. Urology 2007, 70, 463–468. [Google Scholar] [CrossRef]
- Marcelissen, T.; Cornu, J.N.; Antunes-Lopes, T.; Geavlete, B.; Delongchamps, N.B.; Rashid, T.; Rieken, M.; Rahnama’i, M.S. Management of Idiopathic Overactive Bladder Syndrome: What Is the Optimal Strategy After Failure of Conservative Treatment? Eur. Urol. Focus 2018, 4, 760–767. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Cheng, J.; Zhuang, Y.; Qu, W.; Muir, J.; Liang, H.; Zhang, D. Botulinum toxin type A reduces hyperalgesia and TRPV1 expression in rats with neuropathic pain. Pain Med. 2013, 14, 276–286. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Deng, X.; Liu, C.; Wang, X. Intravesical treatment for interstitial cystitis/painful bladder syndrome: A network meta-analysis. Int. Urogynecol. J. 2017, 28, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.P.; Radziszewski, P.; Borkowski, A.; Somogyi, G.T.; Boone, T.B.; Chancellor, M.B. Botulinum toxin a has antinociceptive effects in treating interstitial cystitis. Urology 2004, 64, 871–875; discussion 875. [Google Scholar] [CrossRef]
- Jhang, J.F.; Kuo, H.C. Novel Treatment of Chronic Bladder Pain Syndrome and Other Pelvic Pain Disorders by OnabotulinumtoxinA Injection. Toxins 2015, 7, 2232–2250. [Google Scholar] [CrossRef] [Green Version]
- Kuo, H.C. Preliminary results of suburothelial injection of botulinum a toxin in the treatment of chronic interstitial cystitis. Urol. Int. 2005, 75, 170–174. [Google Scholar] [CrossRef]
- Sun, C.K.; Shao, P.L.; Wang, C.J.; Yip, H.K. Study of vascular injuries using endothelial denudation model and the therapeutic application of shock wave: A review. Am. J. Transl. Res. 2011, 3, 259–268. [Google Scholar] [PubMed]
- Shao, P.L.; Chiu, C.C.; Yuen, C.M.; Chua, S.; Chang, L.T.; Sheu, J.J.; Sun, C.K.; Wu, C.J.; Wang, C.J.; Yip, H.K. Shock wave therapy effectively attenuates inflammation in rat carotid artery following endothelial denudation by balloon catheter. Cardiology 2010, 115, 130–144. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.J.; Lee, W.C.; Tyagi, P.; Huang, C.C.; Chuang, Y.C. Effects of low energy shock wave therapy on inflammatory moleculars, bladder pain, and bladder function in a rat cystitis model. Neurourol. Urodyn. 2017, 36, 1440–1447. [Google Scholar] [CrossRef]
- Chen, Y.T.; Yang, C.C.; Sun, C.K.; Chiang, H.J.; Chen, Y.L.; Sung, P.H.; Zhen, Y.Y.; Huang, T.H.; Chang, C.L.; Chen, H.H.; et al. Extracorporeal shock wave therapy ameliorates cyclophosphamide-induced rat acute interstitial cystitis though inhibiting inflammation and oxidative stress-in vitro and in vivo experiment studies. Am. J. Transl. Res. 2014, 6, 631–648. [Google Scholar] [PubMed]
- Chuang, Y.C.; Meng, E.; Chancellor, M.; Kuo, H.C. Pain reduction realized with extracorporeal shock wave therapy for the treatment of symptoms associated with interstitial cystitis/bladder pain syndrome-A prospective, multicenter, randomized, double-blind, placebo-controlled study. Neurourol. Urodyn. 2020, 39, 1505–1514. [Google Scholar] [CrossRef]
- Ikumi, A.; Hara, Y.; Yoshioka, T.; Kanamori, A.; Yamazaki, M. Effect of local administration of platelet-rich plasma (PRP) on peripheral nerve regeneration: An experimental study in the rabbit model. Microsurgery 2018, 38, 300–309. [Google Scholar] [CrossRef]
- Huang, S.H.; Wu, S.H.; Lee, S.S.; Lin, Y.N.; Chai, C.Y.; Lai, C.S.; Wang, H.D. Platelet-Rich Plasma Injection in Burn Scar Areas Alleviates Neuropathic Scar Pain. Int. J. Med. Sci. 2018, 15, 238–247. [Google Scholar] [CrossRef] [Green Version]
- Calvo, M.; Dawes, J.M.; Bennett, D.L. The role of the immune system in the generation of neuropathic pain. Lancet Neurol. 2012, 11, 629–642. [Google Scholar] [CrossRef]
- Mirzaei, M.; Daneshpajooh, A.; Farsinezhad, A.; Jafarian, Z.; Ebadzadeh, M.R.; Saberi, N.; Teimorian, M. The Therapeutic Effect of Intravesical Instillation of Platelet Rich Plasma on Recurrent Bacterial Cystitis in Women: A Randomized Clinical Trial. Urol. J. 2019, 16, 609–613. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Kuo, Y.C.; Jhang, J.F.; Lee, C.L.; Hsu, Y.H.; Ho, H.C.; Kuo, H.C. Repeated intravesical injections of platelet-rich plasma improve symptoms and alter urinary functional proteins in patients with refractory interstitial cystitis. Sci. Rep. 2020, 10, 15218. [Google Scholar] [CrossRef] [PubMed]
- Donmez, M.I.; Inci, K.; Zeybek, N.D.; Dogan, H.S.; Ergen, A. The Early Histological Effects of Intravesical Instillation of Platelet-Rich Plasma in Cystitis Models. Int. Neurourol. J. 2016, 20, 188–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.C.; Huang, Y.C.; Lee, W.C.; Chuang, Y.C. New Frontiers or the Treatment of Interstitial Cystitis/Bladder Pain Syndrome—Focused on Stem Cells, Platelet-Rich Plasma, and Low-Energy Shock Wave. Int. Neurourol. J. 2020, 24, 211–221. [Google Scholar] [CrossRef]
- Jhang, J.F.; Wu, S.Y.; Lin, T.Y.; Kuo, H.C. Repeated intravesical injections of platelet-rich plasma are effective in the treatment of interstitial cystitis: A case control pilot study. Low. Urin. Tract Symptoms 2019, 11, O42–O47. [Google Scholar] [CrossRef]
- Jhang, J.F.; Lin, T.Y.; Kuo, H.C. Intravesical injections of platelet-rich plasma is effective and safe in treatment of interstitial cystitis refractory to conventional treatment-A prospective clinical trial. Neurourol. Urodyn. 2019, 38, 703–709. [Google Scholar] [CrossRef]
- Akiyama, Y.; Nomiya, A.; Niimi, A.; Yamada, Y.; Fujimura, T.; Nakagawa, T.; Fukuhara, H.; Kume, H.; Igawa, Y.; Homma, Y. Botulinum toxin type A injection for refractory interstitial cystitis: A randomized comparative study and predictors of treatment response. Int. J. Urol. 2015, 22, 835–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulpinar, O.; Kayis, A.; Suer, E.; Gokce, M.I.; Guclu, A.G.; Arikan, N. Clinical comparision of intravesical hyaluronic acid and hyaluronic acid-chondroitin sulphate therapy for patients with bladder pain syndrome/interstitital cystitis. Can. Urol. Assoc. J. 2014, 8, E610. [Google Scholar] [CrossRef] [Green Version]
Item | HIC/BPS | NHIC/BPS | |
---|---|---|---|
Definition | IC/BPS with Hunner lesions | IC/BPS without Hunner lesions | |
Classification | Hunner-type (Ulcerative) type | Non-Hunner-type (Unulcerative) type | |
Histopathology | Subepithelial chronic inflammation | Present | Absent or minimal |
Types of infiltrating inflammatory cells | Lymphocytes and plasma cells are dominant. | Plasma cells are few. | |
Lymphoid follicles | Often present | Extremely rare | |
Urothelium | Frequently denuded | Full layer is preserved | |
Mast cell | Often present | Extremely rare | |
Diagnosis | Cystoscopy | Hunner lesions: presence | Hunner lesions: absence |
Bladder capacity | Low | Low | |
Bladder biopsy | Dense inflammatory infiltration and epithelial denudation | Slight inflammation | |
Treatment | Fulguration/Distension | Fulguration/Distension | Distension |
Intravesical instillation | HA, chondroitin sulfate, Botulinum toxin, steroid | HA, chondroitin sulfate, Botulinum toxin, steroid | |
Medicine | Necessary | Necessary |
Item | IC/PBS | OAB |
---|---|---|
Clinical symptom | Bladder pain (suprapubic pain), urinary frequency, nocturia, and urgency | Daytime frequency of micturition ≥8 times, nocturia ≥1 times, urgency ≥1 time, or urgency incontinence ≥1 time. |
Histopathology | Mast cell infiltration | |
Urothelial defects | Present in Hunner-type IC/PBS | Absent or minimal |
Biomarkers | The levels of NGF in urine and bladder tissue, serum cytokines, and serum CRP were elevated. | |
Diagnosis | Cystoscopy, bladder capacity, 3-day urinary diary | Uroflowmetry, bladder capacity, 3-day urinary diary, |
Symptom score | O’Leary–Sant Problem Index (ICSI and ICPI), VAS | OABSS, ICIQ-SF, UDI-6, and IIQ-7 |
Medical therapy | BoNT-A intravesical injection, LiESWT, PRP | ß3 agonist, BoNT-A intravesical injection, LiESWT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.-Y.; Lu, J.-H.; Chuang, S.-M.; Chueh, K.-S.; Juan, T.-J.; Liu, Y.-C.; Juan, Y.-S. Urinary Biomarkers in Interstitial Cystitis/Bladder Pain Syndrome and Its Impact on Therapeutic Outcome. Diagnostics 2022, 12, 75. https://doi.org/10.3390/diagnostics12010075
Lin H-Y, Lu J-H, Chuang S-M, Chueh K-S, Juan T-J, Liu Y-C, Juan Y-S. Urinary Biomarkers in Interstitial Cystitis/Bladder Pain Syndrome and Its Impact on Therapeutic Outcome. Diagnostics. 2022; 12(1):75. https://doi.org/10.3390/diagnostics12010075
Chicago/Turabian StyleLin, Hung-Yu, Jian-He Lu, Shu-Mien Chuang, Kuang-Shun Chueh, Tai-Jui Juan, Yi-Chang Liu, and Yung-Shun Juan. 2022. "Urinary Biomarkers in Interstitial Cystitis/Bladder Pain Syndrome and Its Impact on Therapeutic Outcome" Diagnostics 12, no. 1: 75. https://doi.org/10.3390/diagnostics12010075
APA StyleLin, H. -Y., Lu, J. -H., Chuang, S. -M., Chueh, K. -S., Juan, T. -J., Liu, Y. -C., & Juan, Y. -S. (2022). Urinary Biomarkers in Interstitial Cystitis/Bladder Pain Syndrome and Its Impact on Therapeutic Outcome. Diagnostics, 12(1), 75. https://doi.org/10.3390/diagnostics12010075