Clinical Added Value of SARS-CoV-2 Antigen Detection in Blood Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Samples
2.2. N Antigen Detection by Lateral Flow Immunoassays
2.3. SARS-CoV-2 Antibody Detection by Lateral Flow Immunoassays
2.4. SARS-CoV-2 Detection from NP Samples by RT-PCR
2.5. Quantification of N Antigen Levels from Serum Samples
2.6. Data Analysis
2.7. Ethics
3. Results
3.1. LFIA Assays for SARS-CoV-2 Antigen Detection in Nasopharyngeal Specimens
3.2. LFIA Assays for SARS-CoV-2 Antigen Detection with Emerging Variants
3.3. SARS-CoV-2 Antigen Detection in Serum Samples by LFIA and ELISA Assays
3.4. Added Value of SARS-CoV-2 Antigen Detection in Serum Samples
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). Available online: https://coronavirus.jhu.edu/map.html (accessed on 5 July 2022).
- Patrick, K.; Stanbrook, M.B.; Laupacis, A. Social distancing to combat COVID-19: We are all on the front line. CMAJ 2020, 192, E516–E517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, S.; Taylor, S.N.; Cammarata, C.L.; Varnado, K.G.; Roger-Dalbert, C.; Montano, A.; Griego-Fullbright, C.; Burgard, C.; Fernandez, C.; Eckert, K.; et al. Clinical evaluation of BD Veritor SARS-CoV-2 point-of-care test performance compared to PCR-based testing and versus the Sofia 2 SARS Antigen point-of-care test. J. Clin. Microbiol. 2020, 59, e02338-20. [Google Scholar] [CrossRef]
- Tamari, A.; Braliou, G.G.; Papaefthimiou, M.; Mavriki, H.; Kontou, P.I.; Nikolopoulos, G.K.; Bagos, P.G. Performance of Antigen Detection Tests for SARS-CoV-2: A Systematic Review and Meta-Analysis. Diagnostics 2022, 12, 1388. [Google Scholar] [CrossRef]
- Wang, C.; Yang, X.; Zheng, S.; Cheng, X.; Xiao, R.; Li, Q.; Wang, W.; Liu, X.; Wang, S. Development of an ultrasensitive fluorescent immunochromatographic assay based on multilayer quantum dot nanobead for simultaneous detection of SARS-CoV-2 antigen and influenza A virus. Sens Actuators B Chem. 2021, 345, 130372. [Google Scholar] [CrossRef]
- FIND. SARS-CoV-2 Diagnostic Pipeline. Available online: https://www.finddx.org/covid-19/pipeline/?avance=all&type=Rapid+diagnostic+tests&test_target=Antigen&status=§ion=show-all&action=default (accessed on 8 March 2021).
- Scohy, A.; Anantharajah, A.; Bodéus, M.; Kabamba-Mukadi, B.; Verroken, A.; Rodriguez-Villalobos, H. Low performance of rapid antigen detection test as frontline testing for COVID-19 diagnosis. J. Clin. Virol. 2020, 12, 104455. [Google Scholar] [CrossRef]
- Mertens, P.; De Vos, N.; Martiny, D.; Jassoy, C.; Mirazimi, A.; Cuypers, L.; LHUB-ULB SARS-CoV-2 Working Diagnostic Group. Development and Potential Usefulness of the COVID-19 Ag Respi-Strip Diagnostic Assay in a Pandemic Context. Front. Med. 2020, 7, 225. [Google Scholar] [CrossRef]
- Lambert-Niclot, S.; Cuffel, A.; Le Pape, S.; Vauloup-Fellous, C.; Morand-Joubert, L.; Roque-Afonso, A.M.; Le Goff, J.; Delaugerre, C. Evaluation of a Rapid Diagnostic Assay for Detection of SARS-CoV-2 Antigen in Nasopharyngeal Swabs. J. Clin. Microbiol. 2020, 58, e00977-20. [Google Scholar] [CrossRef]
- Courtellemont, L.; Guinard, J.; Guillaume, C.; Giaché, S.; Rzepecki, V.; Seve, A.; Gubavu, C.; Baud, K.; Le Helloco, C.; Cassuto, G.N.; et al. High performance of a novel antigen detection test on nasopharyngeal specimens for diagnosing SARS-CoV-2 infection. J. Med. Virol. 2021, 93, 3152–3157. [Google Scholar] [CrossRef]
- Gitman, M.R.; Shaban, M.V.; Paniz-Mondolfi, A.E.; Sordillo, E.M. Laboratory Diagnosis of SARS-CoV-2 Pneumonia. Diagnostics 2021, 11, 1270. [Google Scholar] [CrossRef]
- Lippi, G.; Henry, B.M.; Sanchis-Gomar, F.; Lavie, C.J. Updates on laboratory investigations in coronavirus disease 2019 (COVID-19). Acta Biomed. 2020, 91, e2020030. [Google Scholar] [CrossRef] [PubMed]
- Di, B.; Hao, W.; Gao, Y.; Wang, M.; Wang, Y.D.; Qiu, L.W.; Wen, K.; Zhou, D.H.; Wu, X.W.; Lu, E.J.; et al. Monoclonal antibody-based antigen capture enzyme-linked immunosorbent assay reveals high sensitivity of the nucleocapsid protein in acute-phase sera of severe acute respiratory syndrome patients. Clin. Diagn. Lab. Immunol. 2005, 12, 135–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Wang, L.; Wang, H.; Li, X.; Zhang, S.; Xu, Y.; Wei, W. Serum SARS-COV-2 nucleocapsid protein: A sensitivity and specificity early diagnostic marker for SARS-COV-2 infection. Front Cell. Infect. Microbiol. 2020, 10, 470. [Google Scholar] [CrossRef] [PubMed]
- Hingrat, Q.L.; Visseaux, B.; Laouenan, C.; Tubiana, S.; Bouadma, L.; Yazdanpanah, Y.; Duval, X.; Burdet, C.; Ichou, H.; Damond, F.; et al. Detection of SARS-CoV-2 N-antigen in blood during acute COVID-19 provides a sensitive new marker and new testing alternatives. Clin. Microbiol. Infect. 2021, 27, 789.e1–789.e5. [Google Scholar] [CrossRef]
- Ogata, A.F.; Maley, A.M.; Wu, C.; Gilboa, T.; Norman, M.; Lazarovits, R.; Mao, C.P.; Newton, G.; Chang, M.; Nguyen, K.; et al. Ultra-sensitive serial profiling of SARSCoV- 2 antigens and antibodies in plasma to understand disease progression in COVID-19 patients with severe disease. Clin. Chem. 2020, 66, 1562–1572. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ong, C.M.; Yun, C.; Mo, W.; Whitman, J.D.; Lynch, K.L.; Wu, A.H.B. Diagnostic Value of Nucleocapsid Protein in Blood for SARS-CoV-2 Infection. Clin. Chem. 2021, 68, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Thudium, R.F.; Stoico, M.P.; Høgdall, E.; Høgh, J.; Krarup, H.B.; Larsen, M.A.H.; Madsen, P.H.; Nielsen, S.D.; Ostrowski, S.R.; Palombini, A.; et al. Early Laboratory Diagnosis of COVID-19 by Antigen Detection in Blood Samples of the SARS-CoV-2 Nucleocapsid Protein. J. Clin. Microbiol. 2021, 59, e01001-21. [Google Scholar] [CrossRef]
- Website for Statistical Computation. Available online: http://vassarstats.net/ (accessed on 15 June 2022).
- Routsias, J.G.; Mavrouli, M.; Tsoplou, P.; Dioikitopoulou, K.; Tsakris, A. Diagnostic performance of rapid antigen tests (RATs) for SARS-CoV-2 and their efficacy in monitoring the infectiousness of COVID-19 patients. Sci. Rep. 2021, 11, 22863. [Google Scholar] [CrossRef]
- Porte, L.; Legarraga, P.; Vollrath, V.; Aguilera, X.; Munita, J.M.; Araos, R.; Pizarro, G.; Vial, P.; Iruretagoyena, M.; Dittrich, S.; et al. Evaluation of a novel antigen-based rapid detection test for the diagnosis of SARS-CoV-2 in respiratory samples. Int. J. Infect. Dis. 2020, 99, 328–333. [Google Scholar] [CrossRef]
- Rouchka, E.C.; Chariker, J.H.; Chung, D. Variant analysis of 1040 SARS-CoV-2 genomes. PLoS ONE 2020, 15, e0241535. [Google Scholar] [CrossRef]
- Leung, K.; Shum, M.H.; Leung, G.M.; Lam, T.T.; Wu, J.T. Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Euro Surveill. 2021, 26, 2002106. [Google Scholar] [CrossRef] [PubMed]
- Tegally, H.; Wilkinson, E.; Giovanetti, M.; Iranzadeh, A.; Fonseca, V.; Giandhari, J.; Doolabh, D.; Pillay, S.; San, E.J.; Msomi, N.; et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. Nature 2021, 592, 438–443. [Google Scholar] [CrossRef] [PubMed]
- New Variant Strain of SARS-CoV-2 Identified in Travelers from Brazil. Available online: https://www.niid.go.jp/niid/images/epi/corona/covid19-33-en-210112.pdf (accessed on 14 December 2021).
- Zhou, D.; Dejnirattisai, W.; Supasa, P.; Liu, C.; Mentzer, A.J.; Ginn, H.M.; Zhao, Y.; Duyvesteyn, H.M.E.; Tuekprakhon, A.; Nutalai, R.; et al. Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell 2021, 184, 2348–2361.e6. [Google Scholar] [CrossRef] [PubMed]
- Arevalo-Rodriguez, I.; Buitrago-Garcia, D.; Simancas-Racines, D.; Zambrano-Achig, P.; Del Campo, R.; Ciapponi, A.; Sued, O.; Martinez-García, L.; Rutjes, A.; Low, L.; et al. False-negative results of initial RT-PCR assays for COVID-19: A systematic review. PLoS ONE 2020, 15, e0242958. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.N.; Kessel, B. False Positives in Reverse Transcription PCR Testing for SARS-CoV-2. 2020. Available online: https://www.medrxiv.org/content/10.1101/2020.04.26.20080911v1.full.pdf (accessed on 12 December 2021).
- Mayers, C.; Baker, K. Impact of False-Positives and False-Negatives in the UK’s COVID-19 RT-PCR Testing Programme. 2020. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/895843/S0519_Impact_of_false_positives_and_negatives.pdf (accessed on 12 December 2021).
- Surkova, E.; Nikolayevskyy, V.; Drobniewski, F. False-positive COVID-19 results: Hidden problems and costs. Lancet Resp. Med. 2020, 8, 1167–1168. [Google Scholar] [CrossRef]
High Viral Load (Ct < 25) | Medium Viral Load (25 ≤ Ct < 33) | Low Viral Load (33 ≤ Ct) | Global Results 11 ≤ Ct ≤ 41, (MED Ct 26.8) | Results Considering Contagious Threshold (Ct ≤ 33) a | |
---|---|---|---|---|---|
LFIA on nasopharyngeal samples | 99% n =73 (91.7–99.9) | 75% n = 85 (64.5–83.7) | 8% n = 25 (1.39−27.5) | 75% n = 183 (68.4–81.3) | 86% n = 160 (79−90.5) |
LFIA on serum samples | 67% n = 18 (41.1−85.6) | 85% n = 20 (61.1−96) | 22% n = 18 (7.37−48.1) | 59% n = 56 (45−71.6) | 76% n = 38 (59.4−88) |
ELISA N-Ag detection in Serum samples | 83% n = 18 (57.7–95.6) | 90% n = 20 (66.9–98.2) | 22% n = 18 (7.4–48.1) | 66% n = 56 (52−77.8) | 87% n = 38 (71.1–95.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oueslati, S.; Manai Bouokazi, M.; Ramdhani, I.; Escaut, L.; Pham, T.; Ouzani, S.; Anguel, N.; Bulifon, S.; Vauloup-Fellous, C.; Coilly, A.; et al. Clinical Added Value of SARS-CoV-2 Antigen Detection in Blood Samples. Diagnostics 2022, 12, 2427. https://doi.org/10.3390/diagnostics12102427
Oueslati S, Manai Bouokazi M, Ramdhani I, Escaut L, Pham T, Ouzani S, Anguel N, Bulifon S, Vauloup-Fellous C, Coilly A, et al. Clinical Added Value of SARS-CoV-2 Antigen Detection in Blood Samples. Diagnostics. 2022; 12(10):2427. https://doi.org/10.3390/diagnostics12102427
Chicago/Turabian StyleOueslati, Saoussen, Melek Manai Bouokazi, Ikrame Ramdhani, Lélia Escaut, Tài Pham, Souad Ouzani, Nadia Anguel, Sophie Bulifon, Christelle Vauloup-Fellous, Audrey Coilly, and et al. 2022. "Clinical Added Value of SARS-CoV-2 Antigen Detection in Blood Samples" Diagnostics 12, no. 10: 2427. https://doi.org/10.3390/diagnostics12102427
APA StyleOueslati, S., Manai Bouokazi, M., Ramdhani, I., Escaut, L., Pham, T., Ouzani, S., Anguel, N., Bulifon, S., Vauloup-Fellous, C., Coilly, A., Legros, L., Guichardon, M., Fortineau, N., Dortet, L., Roque-Afonso, A. -M., & Naas, T. (2022). Clinical Added Value of SARS-CoV-2 Antigen Detection in Blood Samples. Diagnostics, 12(10), 2427. https://doi.org/10.3390/diagnostics12102427