Prognostic Role of Cell Blood Count in Chronic Myeloid Neoplasm and Acute Myeloid Leukemia and Its Possible Implications in Hematopoietic Stem Cell Transplantation
Abstract
:1. Introduction
2. Bone Marrow Microenvironment
3. Myeloid Malignancies
3.1. Chronic Myeloid Leukemia
3.2. Myeloproliferative Neoplasm
3.3. Myelodysplastic Syndrome
3.4. Acute Myeloid Leukemia
4. Hematopoietic Stem Cell Transplantation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Coltro, G.; Loscocco, G.G.; Vannucchi, A.M. Classical Philadelphia-negative myeloproliferative neoplasms (MPNs): A continuum of different disease entities. Int. Rev. Cell Mol. Biol. 2021, 365, 1–69. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef] [PubMed]
- Torlakovic, E.E.; Brynes, R.K.; Hyjek, E.; Lee, S.-H.; Kreipe, H.; Kremer, M.; McKenna, R.; Sadahira, Y.; Tzankov, A.; Reis, M.; et al. ICSH guidelines for the standardization of bone marrow immunohistochemistry. Int. J. Lab. Hematol. 2015, 37, 431–449. [Google Scholar] [CrossRef] [PubMed]
- Russell, C.D.; Parajuli, A.; Gale, H.J.; Bulteel, N.S.; Schuetz, P.; de Jager, C.P.C.; Loonen, A.J.M.; Merekoulias, G.I.; Baillie, J.K. The utility of peripheral blood leucocyte ratios as biomarkers in infectious diseases: A systematic review and meta-analysis. J. Infect. 2019, 78, 339–348. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Huang, Z.; Tang, S.; Wei, S.; Zhang, Z. An evaluation of homocysteine, C-reactive protein, lipid levels, neutrophils to lymphocyte ratio in postmenopausal osteopenic women. Gynecol. Endocrinol. 2016, 32, 446–448. [Google Scholar] [CrossRef]
- Hajibandeh, S.; Hajibandeh, S.; Hobbs, N.; Mansour, M. Neutrophil-to-lymphocyte ratio predicts acute appendicitis and distinguishes between complicated and uncomplicated appendicitis: A systematic review and meta-analysis. Am. J. Surg. 2020, 219, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Wen, M.; Zhan, S.; He, J.; Chen, W. An increased neutrophil/lymphocyte ratio is an early warning signal of severe COVID-19. Nan Fang Yi Ke Da Xue Xue Bao 2020, 40, 333–336. [Google Scholar] [CrossRef]
- Dong, C.-H.; Wang, Z.-M.; Chen, S.-Y. Neutrophil to lymphocyte ratio predict mortality and major adverse cardiac events in acute coronary syndrome: A systematic review and meta-analysis. Clin. Biochem. 2018, 52, 131–136. [Google Scholar] [CrossRef]
- Templeton, A.J.; McNamara, M.G.; Šeruga, B.; Vera-Badillo, F.E.; Aneja, P.; Ocaña, A.; Leibowitz-Amit, R.; Sonpavde, G.; Knox, J.J.; Tran, B.; et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2014, 106, dju124. [Google Scholar] [CrossRef] [Green Version]
- Stefaniuk, P.; Szymczyk, A.; Podhorecka, M. The Neutrophil to Lymphocyte and Lymphocyte to Monocyte Ratios as New Prognostic Factors in Hematological Malignancies—A Narrative Review. Cancer Manag. Res. 2020, 12, 2961–2977. [Google Scholar] [CrossRef]
- Schmitt-Graeff, A.H.; Nitschke, R.; Zeiser, R. The Hematopoietic Niche in Myeloproliferative Neoplasms. Mediat. Inflamm. 2015, 2015, 347270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ethier, J.-L.; Desautels, D.; Templeton, A.; Shah, P.S.; Amir, E. Prognostic role of neutrophil-to-lymphocyte ratio in breast cancer: A systematic review and meta-analysis. Breast Cancer Res. 2017, 19, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinshaw, D.C.; Shevde, L.A. The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Res. 2019, 79, 4557–4566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef]
- Fleischman, A.G. Inflammation as a Driver of Clonal Evolution in Myeloproliferative Neoplasm. Mediat. Inflamm. 2015, 2015, 606819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.; Wu, B.; Ji, L.; Zhan, Y.; Li, F.; Cheng, L.; Cao, J.; Chen, H.; Ke, Y.; Min, Z.; et al. Cytokine Consistency Between Bone Marrow and Peripheral Blood in Patients with Philadelphia-Negative Myeloproliferative Neoplasms. Front. Med. 2021, 8, 598182. [Google Scholar] [CrossRef]
- Seshadri, M.; Qu, C.-K. Microenvironmental regulation of hematopoietic stem cells and its implications in leukemogenesis. Curr. Opin. Hematol. 2016, 23, 339–345. [Google Scholar] [CrossRef] [Green Version]
- Mitroulis, I.; Kalafati, L.; Bornhäuser, M.; Hajishengallis, G.; Chavakis, T. Regulation of the Bone Marrow Niche by Inflammation. Front. Immunol. 2020, 11, 1540. [Google Scholar] [CrossRef]
- Dave, S.S.; Wright, G.; Tan, B.; Rosenwald, A.; Gascoyne, R.D.; Chan, W.C.; Fisher, R.I.; Braziel, R.M.; Rimsza, L.M.; Grogan, T.M.; et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N. Engl. J. Med. 2004, 351, 2159–2169. [Google Scholar] [CrossRef] [Green Version]
- Wahlin, B.E.; Sander, B.; Christensson, B.; Ostenstad, B.; Holte, H.; Brown, P.D.; Sundström, C.; Kimby, E. Entourage: The immune microenvironment following follicular lymphoma. Blood Cancer J. 2012, 2, e52. [Google Scholar] [CrossRef]
- Ansell, S.M.; Vonderheide, R.H. Cellular composition of the tumor microenvironment. Am. Soc. Clin. Oncol. Educ. Book 2013, 33, e91–e97. [Google Scholar] [CrossRef]
- Wang, J.; Gao, K.; Lei, W.; Dong, L.; Xuan, Q.; Feng, M.; Wang, J.; Ye, X.; Jin, T.; Zhang, Z.; et al. Lymphocyte-to-monocyte ratio is associated with prognosis of diffuse large B-cell lymphoma: Correlation with CD163 positive M2 type tumor-associated macrophages, not PD-1 positive tumor-infiltrating lymphocytes. Oncotarget 2017, 8, 5414–5425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gooden, M.J.M.; de Bock, G.H.; Leffers, N.; Daemen, T.; Nijman, H.W. The prognostic influence of tumour-infiltrating lymphocytes in cancer: A systematic review with meta-analysis. Br. J. Cancer 2011, 105, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Geng, X.; Hou, J.; Wu, G. New insights into M1/M2 macrophages: Key modulators in cancer progression. Cancer Cell Int. 2021, 21, 389. [Google Scholar] [CrossRef] [PubMed]
- Dobrenis, K.; Gauthier, L.R.; Barroca, V.; Magnon, C. Granulocyte colony-stimulating factor off-target effect on nerve outgrowth promotes prostate cancer development. Int. J. Cancer 2015, 136, 982–988. [Google Scholar] [CrossRef]
- He, K.; Liu, X.; Hoffman, R.D.; Shi, R.-Z.; Lv, G.-Y.; Gao, J.-L. G-CSF/GM-CSF-induced hematopoietic dysregulation in the progression of solid tumors. FEBS Open Bio 2022, 12, 1268–1285. [Google Scholar] [CrossRef] [PubMed]
- Marković, D.; Maslovarić, I.; Djikić, D.; Čokić, V.P. Neutrophil Death in Myeloproliferative Neoplasms: Shedding More Light on Neutrophils as a Pathogenic Link to Chronic Inflammation. Int. J. Mol. Sci. 2022, 23, 1490. [Google Scholar] [CrossRef] [PubMed]
- Kleppe, M.; Kwak, M.; Koppikar, P.; Riester, M.; Keller, M.; Bastian, L.; Hricik, T.; Bhagwat, N.; McKenney, A.S.; Papalexi, E.; et al. JAK-STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response. Cancer Discov. 2015, 5, 316–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wautier, M.-P.; El Nemer, W.; Gane, P.; Rain, J.-D.; Cartron, J.-P.; Colin, Y.; Le Van Kim, C.; Wautier, J.-L. Increased adhesion to endothelial cells of erythrocytes from patients with polycythemia vera is mediated by laminin alpha5 chain and Lu/BCAM. Blood 2007, 110, 894–901. [Google Scholar] [CrossRef] [Green Version]
- Leiva, O.; Hobbs, G.; Ravid, K.; Libby, P. Cardiovascular Disease in Myeloproliferative Neoplasms. JACC CardioOncol. 2022, 4, 166–182. [Google Scholar] [CrossRef]
- Faderl, S.; Talpaz, M.; Estrov, Z.; O’Brien, S.; Kurzrock, R.; Kantarjian, H.M. The biology of chronic myeloid leukemia. N. Engl. J. Med. 1999, 341, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Hehlmann, R. Chronic Myeloid Leukemia in 2020. Hemasphere 2020, 4, e468. [Google Scholar] [CrossRef] [PubMed]
- Sokal, J.E.; Cox, E.B.; Baccarani, M.; Tura, S.; Gomez, G.A.; Robertson, J.E.; Tso, C.Y.; Braun, T.J.; Clarkson, B.D.; Cervantes, F. Prognostic discrimination in “good-risk” chronic granulocytic leukemia. Blood 1984, 63, 789–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasford, J.; Baccarani, M.; Hoffmann, V.; Guilhot, J.; Saussele, S.; Rosti, G.; Guilhot, F.; Porkka, K.; Ossenkoppele, G.; Lindoerfer, D.; et al. Predicting complete cytogenetic response and subsequent progression-free survival in 2060 patients with CML on imatinib treatment: The EUTOS score. Blood 2011, 118, 686–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfirrmann, M.; Baccarani, M.; Saussele, S.; Guilhot, J.; Cervantes, F.; Ossenkoppele, G.; Hoffmann, V.S.; Castagnetti, F.; Hasford, J.; Hehlmann, R.; et al. Prognosis of long-term survival considering disease-specific death in patients with chronic myeloid leukemia. Leukemia 2016, 30, 48–56. [Google Scholar] [CrossRef]
- Specchia, G.; Pregno, P.; Breccia, M.; Castagnetti, F.; Monagheddu, C.; Bonifacio, M.; Tiribelli, M.; Stagno, F.; Caocci, G.; Martino, B.; et al. Prognostic Factors for Overall Survival in Chronic Myeloid Leukemia Patients: A Multicentric Cohort Study by the Italian CML GIMEMA Network. Front. Oncol. 2021, 11, 739171. [Google Scholar] [CrossRef]
- Sasaki, K.; Rodriguez-Rivera, I.I.; Kantarjian, H.M.; O’Brien, S.; Jabbour, E.; Borthakur, G.; Ravandi, F.; Burke, M.J.; Zweidler-McKay, P.A.; Cortes, J.E. Correlation of Lymphocyte Count with Treatment Response to Tyrosine Kinase Inhibitors in Newly Diagnosed Chronic Myeloid Leukemia in Chronic Phase. Blood 2014, 124, 4538. [Google Scholar] [CrossRef]
- Paydas, S. Dasatinib, large granular lymphocytosis, and pleural effusion: Useful or adverse effect? Crit. Rev. Oncol. Hematol. 2014, 89, 242–247. [Google Scholar] [CrossRef]
- Pepedil-Tanrikulu, F.; Buyukkurt, N.; Korur, A.; Sariturk, C.; Aytan, P.; Boga, C.; Ozdogu, H.; Kozanoglu, I. Significance of Lymphocyte Count, Monocyte Count, and Lymphocyte-To-Monocyte Ratio in Predicting Molecular Response in Patients with Chronic Myeloid Leukemia: A Single-Centre Experience. Clin. Lab. 2020, 66, 319–324. [Google Scholar] [CrossRef]
- Tremblay, D.; Yacoub, A.; Hoffman, R. Overview of Myeloproliferative Neoplasms: History, Pathogenesis, Diagnostic Criteria, and Complications. Hematol. Oncol. Clin. North Am. 2021, 35, 159–176. [Google Scholar] [CrossRef]
- Loscocco, G.G.; Guglielmelli, P.; Vannucchi, A.M. Impact of Mutational Profile on the Management of Myeloproliferative Neoplasms: A Short Review of the Emerging Data. OncoTargets Ther. 2020, 13, 12367–12382. [Google Scholar] [CrossRef] [PubMed]
- Barbui, T.; Tefferi, A.; Vannucchi, A.M.; Passamonti, F.; Silver, R.T.; Hoffman, R.; Verstovsek, S.; Mesa, R.; Kiladjian, J.-J.; Hehlmann, R.; et al. Philadelphia chromosome-negative classical myeloproliferative neoplasms: Revised management recommendations from European LeukemiaNet. Leukemia 2018, 32, 1057–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tefferi, A.; Barbui, T. Polycythemia vera and essential thrombocythemia: 2021 update on diagnosis, risk-stratification and management. Am. J. Hematol. 2020, 95, 1599–1613. [Google Scholar] [CrossRef] [PubMed]
- Dunbar, A.J.; Rampal, R.K.; Levine, R. Leukemia secondary to myeloproliferative neoplasms. Blood 2020, 136, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Schafer, A.I. Thrombotic, Vascular, and Bleeding Complications of the Myeloproliferative Neoplasms. Hematol. Oncol. Clin. North Am. 2021, 35, 305–324. [Google Scholar] [CrossRef] [PubMed]
- Marchioli, R.; Finazzi, G.; Landolfi, R.; Kutti, J.; Gisslinger, H.; Patrono, C.; Marilus, R.; Villegas, A.; Tognoni, G.; Barbui, T. Vascular and Neoplastic Risk in a Large Cohort of Patients with Polycythemia Vera. J. Clin. Oncol. 2016, 23, 2224–2232. [Google Scholar] [CrossRef] [PubMed]
- Passamonti, F.; Thiele, J.; Girodon, F.; Rumi, E.; Carobbio, A.; Gisslinger, H.; Kvasnicka, H.M.; Ruggeri, M.; Randi, M.L.; Gangat, N.; et al. A prognostic model to predict survival in 867 World Health Organization–defined essential thrombocythemia at diagnosis: A study by the International Working Group on Myelofibrosis Research and Treatment. Blood 2012, 120, 1197–1201. [Google Scholar] [CrossRef]
- Hacibekiroglu, T.; Akinci, S.; Basturk, A.; Inal, B.; Guney, T.; Bakanay, S.M.; Dilek, I. Evaluation of Inflammation Parameters in Philadelphia Negative Chronic Myeloproliferative Neoplasia Patients. Asian Pac. J. Cancer Prev. 2015, 16, 5159–5162. [Google Scholar] [CrossRef] [Green Version]
- Kocak, M.Z.; Dagli, M.; Ünlü, A. The ratio of platelet/lymphocyte, the ratio of neutrophil/lymphocyte and some haemogram parameters related to thrombosis in essential thrombocytosis and polycythaemia vera. Biomed Res. 2017, 28, 3036–3039. [Google Scholar]
- Zhou, D.; Chen, W.; Cheng, H.; Qiao, J.; Zhu, L.; Li, Z.; Xu, K. Clinico-hematological profile and thrombotic/hemorrhagic events in 150 chinese patients with essential thrombocythemia. Leuk. Res. 2018, 69, 1–6. [Google Scholar] [CrossRef]
- Landolfi, R.; Di Gennaro, L.; Barbui, T.; De Stefano, V.; Finazzi, G.; Marfisi, R.; Tognoni, G.; Marchioli, R. Leukocytosis as a major thrombotic risk factor in patients with polycythemia vera. Blood 2007, 109, 2446–2452. [Google Scholar] [CrossRef] [PubMed]
- Gangat, N.; Strand, J.; Li, C.-Y.; Wu, W.; Pardanani, A.; Tefferi, A. Leucocytosis in polycythaemia vera predicts both inferior survival and leukaemic transformation. Br. J. Haematol. 2007, 138, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Bonicelli, G.; Abdulkarim, K.; Mounier, M.; Johansson, P.; Rossi, C.; Jooste, V.; Andreasson, B.; Maynadié, M.; Girodon, F. Leucocytosis and thrombosis at diagnosis are associated with poor survival in polycythaemia vera: A population-based study of 327 patients. Br. J. Haematol. 2013, 160, 251–254. [Google Scholar] [CrossRef] [Green Version]
- Boiocchi, L.; Gianelli, U.; Iurlo, A.; Fend, F.; Bonzheim, I.; Cattaneo, D.; Knowles, D.M.; Orazi, A. Neutrophilic leukocytosis in advanced stage polycythemia vera: Hematopathologic features and prognostic implications. Mod. Pathol. 2015, 28, 1448–1457. [Google Scholar] [CrossRef] [Green Version]
- Ronner, L.; Podoltsev, N.; Gotlib, J.; Heaney, M.L.; Kuykendall, A.T.; O’Connell, C.; Shammo, J.; Fleischman, A.G.; Scherber, R.M.; Mesa, R.; et al. Persistent leukocytosis in polycythemia vera is associated with disease evolution but not thrombosis. Blood 2020, 135, 1696–1703. [Google Scholar] [CrossRef] [PubMed]
- Krečak, I.; Holik, H.; Morić Perić, M.; Zekanović, I.; Coha, B.; Valovičić Krečak, M.; Gverić-Krečak, V.; Lucijanić, M. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios as prognostic biomarkers in polycythemia vera. Int. J. Lab. Hematol. 2022, 44, e145–e148. [Google Scholar] [CrossRef]
- Carobbio, A.; Vannucchi, A.M.; Guglielmelli, P.; Loscocco, G.G. Neutrophil-to-Lymphocyte Ratio (NLR) Is a Risk Factor for Venous Thrombosis in Polycythemia Vera—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0006497121034698 (accessed on 31 July 2022).
- Farrukh, F.; Guglielmelli, P.; Loscocco, G.G.; Pardanani, A.; Hanson, C.A.; De Stefano, V.; Barbui, T.; Gangat, N.; Vannucchi, A.M.; Tefferi, A. Deciphering the individual contribution of absolute neutrophil and monocyte counts to thrombosis risk in polycythemia vera and essential thrombocythemia. Am. J. Hematol. 2022, 97, E35–E37. [Google Scholar] [CrossRef] [PubMed]
- Teng, G.; Zhou, Y.; Zhang, Y.; Hu, N.; Liu, T.; Han, Y.; Gao, C.; Zhang, L.; Bai, J. Thrombosis in patients with post-polycythemia vera myelofibrosis: Incidence and risk factors. Thromb. Res. 2022, 212, 38–43. [Google Scholar] [CrossRef]
- Tefferi, A. Primary myelofibrosis: 2021 update on diagnosis, risk-stratification and management. Am. J. Hematol. 2021, 96, 145–162. [Google Scholar] [CrossRef]
- Passamonti, F.; Rumi, E.; Caramella, M.; Elena, C.; Arcaini, L.; Boveri, E.; Del Curto, C.; Pietra, D.; Vanelli, L.; Bernasconi, P.; et al. A dynamic prognostic model to predict survival in post-polycythemia vera myelofibrosis. Blood 2008, 111, 3383–3387. [Google Scholar] [CrossRef] [Green Version]
- Gangat, N.; Caramazza, D.; Vaidya, R.; George, G.; Begna, K.; Schwager, S.; Van Dyke, D.; Hanson, C.; Wu, W.; Pardanani, A.; et al. DIPSS plus: A refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J. Clin. Oncol. 2011, 29, 392–397. [Google Scholar] [CrossRef]
- Cervantes, F.; Dupriez, B.; Pereira, A.; Passamonti, F.; Reilly, J.T.; Morra, E.; Vannucchi, A.M.; Mesa, R.A.; Demory, J.-L.; Barosi, G.; et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 2009, 113, 2895–2901. [Google Scholar] [CrossRef] [PubMed]
- Lucijanic, M.; Cicic, D.; Stoos-Veic, T.; Pejsa, V.; Lucijanic, J.; Fazlic Dzankic, A.; Vlasac Glasnovic, J.; Soric, E.; Skelin, M.; Kusec, R. Elevated Neutrophil-to-Lymphocyte-ratio and Platelet-to-Lymphocyte Ratio in Myelofibrosis: Inflammatory Biomarkers or Representatives of Myeloproliferation Itself? Anticancer Res. 2018, 38, 3157–3163. [Google Scholar] [CrossRef] [PubMed]
- Lucijanic, M.; Veletic, I.; Rahelic, D.; Pejsa, V.; Cicic, D.; Skelin, M.; Livun, A.; Tupek, K.M.; Stoos-Veic, T.; Lucijanic, T.; et al. Assessing serum albumin concentration, lymphocyte count and prognostic nutritional index might improve prognostication in patients with myelofibrosis. Wien. Klin. Wochenschr. 2018, 130, 126–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Manero, G.; Chien, K.S.; Montalban-Bravo, G. Myelodysplastic syndromes: 2021 update on diagnosis, risk stratification and management. Am. J. Hematol. 2020, 95, 1399–1420. [Google Scholar] [CrossRef]
- Greenberg, P.L.; Tuechler, H.; Schanz, J.; Sanz, G.; Garcia-Manero, G.; Solé, F.; Bennett, J.M.; Bowen, D.; Fenaux, P.; Dreyfus, F.; et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood 2012, 120, 2454–2465. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, P.; Cox, C.; LeBeau, M.M.; Fenaux, P.; Morel, P.; Sanz, G.; Sanz, M.; Vallespi, T.; Hamblin, T.; Oscier, D.; et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 1997, 89, 2079–2088. [Google Scholar] [CrossRef]
- Silzle, T.; Blum, S.; Schuler, E.; Kaivers, J.; Rudelius, M.; Hildebrande, B.; Gattermann, N.; Haas, R.; Germing, U. Lymphopenia at diagnosis is highly prevalent in myelodysplastic syndromes and has an independent negative prognostic value in IPSS-R-low-risk patients. Blood Cancer J. 2019, 9, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yikilmaz, A.S.; Akinci, S.; Bakanay, S.M.; Dilek, I. Does the platelet-to-lymphocyte ratio have a prognostic effect in patients with myelodysplastic syndrome? Bratisl. Med. J. Bratisl. Lek. Listy 2020, 121, 422–427. [Google Scholar] [CrossRef]
- Jacobs, N.L.; Holtan, S.G.; Porrata, L.F.; Markovic, S.N.; Tefferi, A.; Steensma, D.P. Host immunity affects survival in myelodysplastic syndromes: Independent prognostic value of the absolute lymphocyte count. Am. J. Hematol. 2010, 85, 160–163. [Google Scholar] [CrossRef]
- Saeed, L.; Patnaik, M.M.; Begna, K.H.; Al-Kali, A.; Litzow, M.R.; Hanson, C.A.; Ketterling, R.P.; Porrata, L.F.; Pardanani, A.; Gangat, N.; et al. Prognostic relevance of lymphocytopenia, monocytopenia and lymphocyte-to-monocyte ratio in primary myelodysplastic syndromes: A single center experience in 889 patients. Blood Cancer J. 2017, 7, e550. [Google Scholar] [CrossRef]
- Saeed, L.; Patnaik, M.M.; Begna, K.H.; Al-Kali, A.; Hanson, C.A.; Litzow, M.R.; Ketterling, R.P.; Porrata, L.; Pardanani, A.; Gangat, N.; et al. Subnormal Lymphocyte Count Predicts Inferior Survival in Myelodysplastic Syndromes: A Single Center Experience in 889 Patients. Blood 2016, 128, 5534. [Google Scholar] [CrossRef]
- Buckley, S.A.; Othus, M.; Vainstein, V.; Abkowitz, J.L.; Estey, E.H.; Walter, R.B. Prediction of adverse events during intensive induction chemotherapy for acute myeloid leukemia or high-grade myelodysplastic syndromes. Am. J. Hematol. 2014, 89, 423–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Newell, L.F.; Xie, H.; Walter, R.B.; Pagel, J.M.; Sandhu, V.K.; Becker, P.S.; Hendrie, P.C.; Abkowitz, J.L.; Appelbaum, F.R.; et al. Low platelet count reduces subsequent complete remission rate despite marrow with <5% blasts after AML induction therapy. Leukemia 2015, 29, 1779–1780. [Google Scholar] [CrossRef] [PubMed]
- De Kouchkovsky, I.; Abdul-Hay, M. Acute myeloid leukemia: A comprehensive review and 2016 update. Blood Cancer J. 2016, 6, e441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estey, E.H. Acute myeloid leukemia: 2019 update on risk-stratification and management. Am. J. Hematol. 2018, 93, 1267–1291. [Google Scholar] [CrossRef] [Green Version]
- Mrózek, K.; Marcucci, G.; Nicolet, D.; Maharry, K.S.; Becker, H.; Whitman, S.P.; Metzeler, K.H.; Schwind, S.; Wu, Y.-Z.; Kohlschmidt, J.; et al. Prognostic significance of the European LeukemiaNet standardized system for reporting cytogenetic and molecular alterations in adults with acute myeloid leukemia. J. Clin. Oncol. 2012, 30, 4515–4523. [Google Scholar] [CrossRef]
- Zhang, Q.; Dai, K.; Bi, L.; Jiang, S.; Han, Y.; Yu, K.; Zhang, S. Pretreatment platelet count predicts survival outcome of patients with de novo non-M3 acute myeloid leukemia. PeerJ 2017, 5, e4139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Zhao, H.; Hong, M.; Zhu, H.; Zhu, Y.; Lian, Y.; Li, S.; Li, J.; Qian, S. Early recovery of the platelet count after decitabine-based induction chemotherapy is a prognostic marker of superior response in elderly patients with newly diagnosed acute myeloid leukaemia. Bmc Cancer 2018, 18, 1269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Gu, H.; Chen, Q.; Zhang, Y.; Cheng, H.; Yang, J.; Wang, J.; Hu, X. Low Platelet Counts at Diagnosis Predict Better Survival for Patients with Intermediate-Risk Acute Myeloid Leukemia. Acta Haematol. 2020, 143, 9–18. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, W.; Wu, J.; Gao, S.; Ye, H.; Sun, L.; Chen, Y.; Yu, K.; Xing, C.-Y. Effect of initial absolute monocyte count on survival outcome of patients with de novo non-M3 acute myeloid leukemia. Leuk. Lymphoma 2016, 57, 2548–2554. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.M.; Abdulateef, N.A.B. Absolute Monocyte Count is Superior than Absolute Lymphocyte Count at Day 28 as an Independent Prognostic Factor in Acute Myeloid Leukemia. Indian J. Hematol. Blood Transfus. 2019, 35, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yang, Q.; Weng, Y.; Huang, Z.; Chen, R.; Zhu, Y.; Dai, K.; Zhang, S.; Jiang, S.; Yu, K. Neutrophil-to-lymphocyte ratio correlates with prognosis and response to chemotherapy in patients with non-M3 de novo acute myeloid leukemia. Transl. Cancer Res. 2021, 10, 1013–1024. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, M.U.; Chaudhary, S.G.; Murthy, G.S.G.; Hall, A.C.; Atallah, E.L.; Mattison, R.J. Prognostic Significance of Neutrophil-to-Lymphocyte Ratio in Relapsed/Refractory Acute Myeloid Leukemia. Blood 2018, 132, 5246. [Google Scholar] [CrossRef]
- Lobanova, T.I.; Parovichnikova, E.N.; Galtseva, I.V.; Davydova, J.O.; Kapranov, N.M.; Fidarova, Z.T.; Gavrilina, O.A.; Troitskaya, V.V.; Savchenko, V. Absolute Lymphocyte Count after First Induction Is Associated with Relapse Free Survival in Acute Myeloid Leukemia. Blood 2017, 130, 5087. [Google Scholar]
- Jang, J.; Kim, Y.R.; Cho, H.; Chung, H.; Kim, S.-J.; Kim, J.S.; Cheong, J.-W.; Min, Y.H. Peripheral Blood Absolute Lymphocyte Count at Diagnosis As a New Prognostic Factor in Acute Myeloid Leukemia with t(8;21) Patients. Blood 2019, 134, 5178. [Google Scholar] [CrossRef]
- Le Jeune, C.; Bertoli, S.; Elhamri, M.; Vergez, F.; Borel, C.; Huguet, F.; Michallet, M.; Dumontet, C.; Recher, C.; Thomas, X. Initial absolute lymphocyte count as a prognostic factor for outcome in acute myeloid leukemia. Leuk. Lymphoma 2014, 55, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Bar, M.; Othus, M.; Park, H.M.; Sandhu, V.; Chen, X.; Wood, B.L.; Estey, E. Elevated lymphocyte count at time of acute myeloid leukemia diagnosis is associated with shorter remission. Leuk. Lymphoma 2015, 56, 3109–3115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keenan, R.; Williamson, R.; Caswell, M.; Salim, R.; Campbell, H.J. Early Absolute Lymphocyte Count Is a Strong Predictor of Long-Term Improved Survival in Childhood Acute Myeloid Leukaemia. Blood 2012, 120, 3553. [Google Scholar] [CrossRef]
- Bumma, N.; Ai, J.; Jia, X.; Hobson, S.; Abounader, D.; Sekeres, M.A.; Kalaycio, M.E.; Sobecks, R.; Gerds, A.; Hamilton, B.K.; et al. Impact of Day 28 Absolute Lymphocyte Count on Outcome of Adult Patients with Acute Myeloid Leukemia. Blood 2014, 124, 1472. [Google Scholar] [CrossRef]
- Bazinet, A.; Popradi, G. A general practitioner’s guide to hematopoietic stem-cell transplantation. Curr. Oncol. Tor. Ont 2019, 26, 187–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hochhaus, A.; Baccarani, M.; Silver, R.T.; Schiffer, C.; Apperley, J.F.; Cervantes, F.; Clark, R.E.; Cortes, J.E.; Deininger, M.W.; Guilhot, F.; et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia 2020, 34, 966–984. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Bacigalupo, A. 2021 Update on Allogeneic Hematopoietic Stem Cell Transplant for Myelofibrosis: A Review of Current Data and Applications on risk Stratification and Management. Am. J. Hematol. 2021, 96, 1532–1538. [Google Scholar] [CrossRef] [PubMed]
- Passamonti, F. Stem cell transplant in MF: It’s time to personalize. Blood 2019, 133, 2118–2120. [Google Scholar] [CrossRef] [Green Version]
- Masouridi-Levrat, S.; Olavarria, E.; Iacobelli, S.; Aljurf, M.; Morozova, E.; Niittyvuopio, R.; Sengeloev, H.; Reményi, P.; Helbig, G.; Browne, P.; et al. Outcomes and toxicity of allogeneic hematopoietic cell transplantation in chronic myeloid leukemia patients previously treated with second-generation tyrosine kinase inhibitors: A prospective non-interventional study from the Chronic Malignancy Working Party of the EBMT. Bone Marrow Transplant. 2022, 57, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Killick, S.B.; Ingram, W.; Culligan, D.; Enright, H.; Kell, J.; Payne, E.M.; Krishnamurthy, P.; Kulasekararaj, A.; Raghavan, M.; Stanworth, S.J.; et al. British Society for Haematology guidelines for the management of adult myelodysplastic syndromes. Br. J. Haematol. 2021, 194, 267–281. [Google Scholar] [CrossRef] [PubMed]
- Pelcovits, A.; Niroula, R. Acute Myeloid Leukemia: A Review. Rhode Isl. Med. J. 2020, 103, 38–40. [Google Scholar]
- Barrett, J.; Craddock, C. Bone marrow transplantation in the United Kingdom—Past, present and future. Br. J. Haematol. 2020, 191, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Cluzeau, T.; Lambert, J.; Raus, N.; Dessaux, K.; Absi, L.; Delbos, F.; Devys, A.; De Matteis, M.; Dubois, V.; Filloux, M.; et al. Risk factors and outcome of graft failure after HLA matched and mismatched unrelated donor hematopoietic stem cell transplantation: A study on behalf of SFGM-TC and SFHI. Bone Marrow Transplant. 2016, 51, 687–691. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, C.; Vyas, P. The Graft-Versus-Leukemia Effect in AML. Front. Oncol. 2019, 9, 1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thoma, M.D.; Huneke, T.J.; DeCook, L.J.; Johnson, N.D.; Wiegand, R.A.; Litzow, M.R.; Hogan, W.J.; Porrata, L.F.; Holton, S.G. Peripheral Blood Lymphocyte and Monocyte Recovery and Survival in Acute Leukemia Postmyeloablative Allogeneic Hematopoietic Stem Cell Transplant. Biol. Blood Marrow Transplant. 2012, 18, 600–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, L.; Wang, N.; Xing, C.; Zhuang, Q.; Liang, B.; Sun, L.; Chen, Y.; Qian, Y.; Shen, Z.; Jiang, S.; et al. Effect of absolute monocyte count post-transplant on the outcome of patients with acute myeloid leukemia undergoing myeloablative allogeneic hematopoietic stem cell transplant with busulfan and cyclophosphamide conditioning. Leuk. Res. 2018, 69, 60–65. [Google Scholar] [CrossRef]
- Chang, Y.-J.; Zhao, X.-Y.; Xu, L.-P.; Liu, D.-H.; Liu, K.-Y.; Chen, Y.-H.; Wang, Y.; Zhang, X.-H.; Zhao, X.-S.; Han, W.; et al. Early lymphocyte recovery predicts superior overall survival after unmanipulated haploidentical blood and marrow transplant for myelodysplastic syndrome and acute myeloid leukemia evolving from myelodysplastic syndrome. Leuk. Lymphoma 2013, 54, 2671–2677. [Google Scholar] [CrossRef] [PubMed]
- Bayraktar, U.D.; Milton, D.R.; Guindani, M.; Rondon, G.; Chen, J.; Al-Atrash, G.; Rezvani, K.; Champlin, R.; Ciurea, S.O. Optimal Threshold and Time of Absolute Lymphocyte Count Assessment for Outcome Prediction after Bone Marrow Transplantation. Biol. Blood Marrow Transplant. 2016, 22, 505–513. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, S.; Brown, J.; Guttridge, M.; Pamphilon, D.H.; Lankester, A.; Marks, D.I. Early lymphocyte recovery is an important determinant of outcome following allogeneic transplantation with CD34+selected graft and limited T-cell addback. Bone Marrow Transplant. 2003, 32, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Fu, Q.; Xu, L.-P.; Zhang, X.-H.; Wang, Y.; Chang, Y.-J.; Huang, X.-J. Early lymphocyte recovery predicts superior outcomes after unmanipulated haploidentical blood and marrow transplant for acute myeloid leukemia. Clin. Transplant. 2016, 30, 954–958. [Google Scholar] [CrossRef] [PubMed]
- Gul, Z.; Van Meter, E.; Abidi, M.; Ditah, I.; Abdul-Hussein, M.; Deol, A.; Ayash, L.; Lum, L.G.; Waller, E.K.; Ratanatharathorn, V.; et al. Low blood lymphocyte count at 30 days post transplant predicts worse acute GVHD and survival but not relapse in a large retrospective cohort. Bone Marrow Transplant. 2015, 50, 432–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, D.K.; Baek, H.J.; Kim, S.Y.; Hwang, T.J.; Kook, H. Implication of Early Lymphocyte Recovery after Allogeneic Hematopoietic Stem Cell Transplantation in Children with Leukemia. Yonsei Med. J. 2013, 54, 62–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porrata, L.F.; Litzow, M.R.; Tefferi, A.; Letendre, L.; Kumar, S.; Geyer, S.M.; Markovic, S.N. Early lymphocyte recovery is a predictive factor for prolonged survival after autologous hematopoietic stem cell transplantation for acute myelogenous leukemia. Leukemia 2002, 16, 1311–1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Bourgeois, A.; Peterlin, P.; Guillaume, T.; Delaunay, J.; Duquesne, A.; Le Gouill, S.; Moreau, P.; Mohty, M.; Campion, L.; Chevallier, P. Higher Early Monocyte and Total Lymphocyte Counts Are Associated with Better Overall Survival after Standard Total Body Irradiation, Cyclophosphamide, and Fludarabine Reduced-Intensity Conditioning Double Umbilical Cord Blood Allogeneic Stem Cell Transplantation in Adults. Biol. Blood Marrow Transplant. 2016, 22, 1473–1479. [Google Scholar] [CrossRef] [Green Version]
- Hill, G.R.; Betts, B.C.; Tkachev, V.; Kean, L.S.; Blazar, B.R. Current Concepts and Advances in Graft-Versus-Host Disease Immunology. Annu. Rev. Immunol. 2021, 39, 19–49. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.H.; Hamad, N.; Sohn, S.K.; Uhm, J.; Alam, N.; Gupta, V.; Lipton, J.H.; Messner, H.A.; Seftel, M.; Kuruvilla, J.; et al. Improved prognostic stratification power of CIBMTR risk score with the addition of absolute lymphocyte and eosinophil counts at the onset of chronic GVHD. Ann. Hematol. 2017, 96, 805–815. [Google Scholar] [CrossRef]
- Sheth, V.; Kennedy, V.; de Llavallade, H.; Mclornan, D.; Potter, V.; Engelhardt, B.G.; Savani, B.; Chinratanalab, W.; Goodman, S.; Greer, J.; et al. Differential Interaction of Peripheral Blood Lymphocyte Counts (ALC) With Different in vivo Depletion Strategies in Predicting Outcomes of Allogeneic Transplant: An International 2 Center Experience. Front. Oncol. 2019, 9, 623. [Google Scholar] [CrossRef]
- Kennedy, V.E.; Chen, H.; Savani, B.N.; Greer, J.; Kassim, A.A.; Engelhardt, B.G.; Goodman, S.; Sengsayadeth, S.; Chinratanalab, W.; Jagasia, M. Optimizing Antithymocyte Globulin Dosing for Unrelated Donor Allogeneic Hematopoietic Cell Transplantation Based on Recipient Absolute Lymphocyte Count. Biol. Blood Marrow Transplant. 2018, 24, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.; Shin, D.-Y.; Koh, Y.; Kim, I.; Yoon, S.-S.; Byun, J.M.; Hong, J. Association between preconditioning absolute lymphocyte count and transplant outcomes in patients undergoing matched unrelated donor allogeneic hematopoietic stem cell transplantation with reduced-intensity conditioning and anti-thymocyte globulin. Ther. Adv. Hematol. 2021, 12, 20406207211063784. [Google Scholar] [CrossRef] [PubMed]
- Shiratori, S.; Ohigashi, H.; Ara, T.; Yasumoto, A.; Goto, H.; Nakagawa, M.; Sugita, J.; Onozawa, M.; Kahata, K.; Endo, T.; et al. High lymphocyte counts before antithymocyte globulin administration predict acute graft-versus-host disease. Ann. Hematol. 2021, 100, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Chen, M.G.; Gastineau, D.A.; Gertz, M.A.; Inwards, D.J.; Lacy, M.Q.; Tefferi, A.; Litzow, M.R. Effect of slow lymphocyte recovery and type of graft-versus-host disease prophylaxis on relapse after allogeneic bone marrow transplantation for acute myelogenous leukemia. Bone Marrow Transplant. 2001, 28, 951–956. [Google Scholar] [CrossRef] [Green Version]
- Powles, R.; Singhal, S.; Treleaven, J.; Kulkarni, S.; Horton, C.; Mehta, J. Identification of patients who may benefit from prophylactic immunotherapy after bone marrow transplantation for acute myeloid leukemia on the basis of lymphocyte recovery early after transplantation. Blood 1998, 91, 3481–3486. [Google Scholar] [CrossRef]
- Michelis, F.V.; Messner, H.A.; Loach, D.; Uhm, J.; Gupta, V.; Lipton, J.H.; Seftel, M.D.; Kuruvilla, J.; Kim, D.D. Early lymphocyte recovery at 28 d post-transplant is predictive of reduced risk of relapse in patients with acute myeloid leukemia transplanted with peripheral blood stem cell grafts. Eur. J. Haematol. 2014, 93, 273–280. [Google Scholar] [CrossRef]
- Afzal, S.; Ishaqi, M.K.; Dupuis, A.; Doyle, J.; Gassas, A. Early lymphocyte recovery after allogeneic hematopoietic SCT is associated with significant GVL effect in pediatric ALL but not acute myelogenous leukemia-Update study. Bone Marrow Transplant. 2009, 44, 799–804. [Google Scholar] [CrossRef] [Green Version]
- Niederwieser, D.; Gastl, G.; Rumpold, H.; Marth, C.; Kraft, D.; Huber, C. Rapid reappearance of large granular lymphocytes (LGL) with concomitant reconstitution of natural killer (NK) activity after human bone marrow transplantation (BMT). Br. J. Haematol. 1987, 65, 301–305. [Google Scholar] [CrossRef]
- Jiang, Y.Z.; Barrett, A.J.; Goldman, J.M.; Mavroudis, D.A. Association of natural killer cell immune recovery with a graft-versus-leukemia effect independent of graft-versus-host disease following allogeneic bone marrow transplantation. Ann. Hematol. 1997, 74, 1–6. [Google Scholar] [CrossRef]
- Huttunen, P.; Taskinen, M.; Siitonen, S.; Saarinen-Pihkala, U.M. Impact of Very Early CD4(+)/CD8(+) T Cell Counts on the Occurrence of Acute Graft-Versus-Host Disease and NK Cell Counts on Outcome After Pediatric Allogeneic Hematopoietic Stem Cell Transplantation. Pediatr. Blood Cancer 2015, 62, 522–528. [Google Scholar] [CrossRef]
- Minculescu, L.; Marquart, H.V.; Friis, L.S.; Petersen, S.L.; Schiodt, I.; Ryder, L.P.; Andersen, N.S.; Sengeloev, H. Early Natural Killer Cell Reconstitution Predicts Overall Survival in T Cell-Replete Allogeneic Hematopoietic Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2016, 22, 2187–2193. [Google Scholar] [CrossRef]
- Aksu, K.; Donmez, A.; Keser, G. Inflammation-induced thrombosis: Mechanisms, disease associations and management. Curr. Pharm. Des. 2012, 18, 1478–1493. [Google Scholar] [CrossRef]
- Iba, T.; Levy, J.H. Inflammation and thrombosis: Roles of neutrophils, platelets and endothelial cells and their interactions in thrombus formation during sepsis. J. Thromb. Haemost. JTH 2018, 16, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Vinay, D.S.; Ryan, E.P.; Pawelec, G.; Talib, W.H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W.K.; Whelan, R.L.; Kumara, H.M.C.S.; et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin. Cancer Biol. 2015, 35, S185–S198. [Google Scholar] [CrossRef]
- Ménétrier-Caux, C.; Ray-Coquard, I.; Blay, J.-Y.; Caux, C. Lymphopenia in Cancer Patients and its Effects on Response to Immunotherapy: An opportunity for combination with Cytokines? J. Immunother. Cancer 2019, 7, 85. [Google Scholar] [CrossRef] [Green Version]
- Fridman, W.H.; Pagès, F.; Sautès-Fridman, C.; Galon, J. The immune contexture in human tumours: Impact on clinical outcome. Nat. Rev. Cancer 2012, 12, 298–306. [Google Scholar] [CrossRef]
- Jacobs, N.L.; Holtan, S.G.; Porrata, L.F.; Markovic, S.N.; Tefferi, A.; Steensma, D.P. Low Absolute Lymphocyte Count (ALC) at Diagnosis Is An IPSS-Independent Predictor of Poorer Survival in Myelodysplastic Syndromes (MDS). Blood 2008, 112, 3633. [Google Scholar] [CrossRef]
- Mehta, R.S.; Rezvani, K. Immune reconstitution post allogeneic transplant and the impact of immune recovery on the risk of infection. Virulence 2016, 7, 901–916. [Google Scholar] [CrossRef]
Authors | Years | Diseases | No. of Pts | Outcomes | Comments |
---|---|---|---|---|---|
Sasaki [37] | 2014 | CML | 483 | OS | ALC ≥ 4 × 109/L at 3 or 6 months of TKI start was associated with lower OS |
Pepedil-Tanrikulu [39] | 2020 | CML | 95 | Response | ALC, AMC, and LMR did not predict the molecular response |
Hacibekiroglu [48] | 2015 | ET | 99 | Thrombosis | No differences in CRP, NLR, RDW, MPV, and sedimentation levels |
Kocak [49] | 2017 | ET | 70 | Thrombosis | No differences in NLR and PLR in patients with or without thrombosis |
Zhou [50] | 2018 | ET | 150 | Thrombosis | Higher NLR in Jak2 positive and in patients at high-risk stratification of thrombosis |
Boiocchi [54] | 2015 | PV | 10 | Evolution | Persistent hyperleukocytosis is associated with poor prognosis in MF-post-PV pts |
Ronner [55] | 2020 | PV | 520 | Evolution, thrombosis | Persistently elevated leukocyte was associated with an increased hazard of disease evolution but not of thrombotic events |
Krečak [56] | 2021 | PV | 109 | OS, thrombosis | Higher NRL and PLR are associated with a high risk of disease, shorter TTT |
Carobbio [57] | 2021 | PV | 1508 | Thrombosis | High NLR is an independent predictor of venous thrombosis |
Farruk [58] | 2022 | PV, TE | 487 | Thrombosis | ANC and AMC associated with venous thrombosis |
Teng [59] | 2022 | Post-PV MF | 163 | Thrombosis | Patients with V617F% ≥ 75% or AMC ≥ 1.5 × 109/L had a higher risk for venous thrombosis |
Lucijanic [64] | 2018 | MF | 102 | OS | Higher NLR and Jak2 mutation; High NLR and low PLR poor prognosis |
Lucijanic [65] | 2018 | MF | 83 | OS | Low ALC associated with poor prognosis |
Authors | Years | Diseases | No. of Pts | Outcomes | Comments |
---|---|---|---|---|---|
Silzle [58] | 2019 | MDS | 1023 | OS | Low ALC and lower OS, most apparent in lower-risk patients |
Yikilmaz [70] | 2020 | MDS | 63 | Classification | Low PLR and multilinear dysplasia |
Jacobs [71] | 2010 | MDS | 503 | OS | ALC > 1.2 × 109/L better OS |
Saeed [72] | 2017 | MDS | 889 | OS | Low ALC, low AMC, inferior OS. ALC, AMC, and LMR are not influenced by LFS |
Saeed [73] | 2016 | MDS | 889 | OS, LFS | Low ALC lower OS but not lower LFS, most apparent in lower-risk patients |
Buckley [74] | 2014 | MDS/AML | 205 | Complication | Low AMC and ALC at induction treatment high risk of infection or bacteremia |
Chen [75] | 2015 | AML/MDS | 343 | Response | Low PLT counts at 21 after induction was associated with no response |
Zhang [79] | 2017 | AML | 209 | OS, DFS | PLT between 50 and 120 × 109/L better OS and DFS |
Huang [80] | 2018 | AML | 117 | Prognosis | PLT count recovery on day 14 after D-CAG IC is associated with the response |
Zhang [81] | 2020 | AML | 291 | OS and DFS | Low platelets levels at diagnosis predict better OS and DFS |
Feng [82] | 2016 | AML | 193 | OS | High AMC appeared as a poor prognostic factor for OS |
Ismail [83] | 2019 | AML | 83 | OS, DFS | AMC ≥ 0.8 × 109/L + 28 shorter OS and LFS, ALC > 0.35 × 109/L higher OS and LFS |
Zhang [84] | 2021 | AML | 181 | OS, DFS | NLR < 2 at diagnosis better OS and DFS |
Mushtaq [85] | 2018 | AML | 63 | OS | High NLR independently predicts poor OS in RR-AML patients. |
Lobanova [86] | 2017 | AML | 35 | DFS | ALC more than 0.8 × 109/L poor DFS |
Jang [87] | 2019 | AML | 65 | LFS, OS | Higher ALC poor LFS and OS |
Le Jeune [88] | 2013 | AML | 1702 | OS, DFS | Initial ALC < 1 × 109/L poor DFS and OS, ALC > 4.5 × 109/L lower response rate IC |
Bar [89] | 2015 | AML | 259 | OS | Higher ALC lower remission and poor RFS and OS |
Keenan [90] | 2012 | AML | 59 | OS | At +28 days post IC ALC > 1.35 × 109/L better OS |
Bumma [91] | 2014 | AML | 180 | OS | ALC < 0.5 × 109/L poor outcome in IC |
Authors | Years | No. of Pts | Outcomes | Comments |
---|---|---|---|---|
Thoma [102] | 2012 | 135 | OS | ALC and AMC > 0.3 × 109/L from +30 +60 and +100 from HSCT had better OS |
Tang [103] | 2018 | 59 | OS | AMC > 0.57 × 109/L +15 from HSCT had better OS |
Chang [104] | 2013 | 78 | OS, TRM | ALC > 0.3 × 109/L lower relapse rates and lower infections. Better OS, LFS, and low TRM |
Bayraktar [105] | 2015 | 518 | OS, NRM | ALC > 0.3 × 109/L at +60 better OS and NRM after HSCT |
Chakrbarti [106] | 2003 | 29 | OS, NRM | ALC > 0.3 × 109/L at +30 was the strongest predictor of NRM and OS |
Fu [107] | 2016 | 134 | OS, LFS | ALC > 0.294 × 109/L at +30 better OS and LFS, but was not related to relapse |
Gul [108] | 2015 | 381 | OS, NRM | ALC < 0.4 × 109/L lower OS and increased NRM. No association with relapse |
Han [109] | 2013 | 69 | OS, EFS | ALC > 0.5 × 109/L at +21 and +30 better engraftment. High ALC at 30 days had better OS and EFS. There were no differences in the GVHD or relapse rates. |
Porrata [110] | 2002 | 45 | OS | ALC > 0.5 × 109/L at day +15 had better OS |
Le Bourgeois [111] | 2016 | 47 | OS | +30 ALC > 2.76 × 109/L and +42 ALC > 4.25 × 109/L had better OS. |
Moon [113] | 2017 | 307 | cGVHD | ALC < 1 × 109/L and eosinophil count < 0.5 × 109/L relate to lower OS and helped improve the risk stratification power of CIBMTR |
Sheth [114] | 2019 | 364 | OS, DFS | ALC > 0.08 × 109/L in 2 days of alemtuzumab infusion had poor DFS and OS |
Kennedy [115] | 2018 | 135 | OS | High ALC in higher recipient ATG dose had a lower risk of death |
Seo [116] | 2021 | 64 | OS | PC ALC < 0.5 × 109/L shorter OS and higher infectious mortality in patients receiving ATG |
Shiratori [117] | 2021 | 53 | GVHD | ALC > 0.15 × 109/L before ATG predicts GVHD requiring systemic steroids |
Kumar [118] | 2001 | 87 | OS, relapse | ALC < 0.15 × 109/L at +30 lower OS and higher relapse rates. |
Powles [119] | 1998 | 201 | Relapse | ALC > 0.2 × 109/L associated with lower relapse rates |
Michelis [120] | 2014 | 191 | OS, relapse | ALC > 0.5 × 109/L +28 is associated with lower relapse |
Afzal [121] | 2009 | 71 | EFS relapse | ALC does not correlate to GVL and was not predictive of relapse in AML children |
Jiang [123] | 1997 | 15 | GVHD | No correlation between CD4c, CD8c, or NK cells and the development of GVHD |
Huttunen [124] | 2015 | 83 | GVHD, EFS | CD4/CD8 higher in patients with GVHD, NK > 0.12 × 109/L at +32 had better TRM and EFS |
Minculescu [125] | 2016 | 298 | OS, relapse | NK > 0.15 × 109/L on +30 had better OS less TRM and infections. No link to relapse. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mulas, O.; Mola, B.; Madeddu, C.; Caocci, G.; Macciò, A.; Nasa, G.L. Prognostic Role of Cell Blood Count in Chronic Myeloid Neoplasm and Acute Myeloid Leukemia and Its Possible Implications in Hematopoietic Stem Cell Transplantation. Diagnostics 2022, 12, 2493. https://doi.org/10.3390/diagnostics12102493
Mulas O, Mola B, Madeddu C, Caocci G, Macciò A, Nasa GL. Prognostic Role of Cell Blood Count in Chronic Myeloid Neoplasm and Acute Myeloid Leukemia and Its Possible Implications in Hematopoietic Stem Cell Transplantation. Diagnostics. 2022; 12(10):2493. https://doi.org/10.3390/diagnostics12102493
Chicago/Turabian StyleMulas, Olga, Brunella Mola, Clelia Madeddu, Giovanni Caocci, Antonio Macciò, and Giorgio La Nasa. 2022. "Prognostic Role of Cell Blood Count in Chronic Myeloid Neoplasm and Acute Myeloid Leukemia and Its Possible Implications in Hematopoietic Stem Cell Transplantation" Diagnostics 12, no. 10: 2493. https://doi.org/10.3390/diagnostics12102493
APA StyleMulas, O., Mola, B., Madeddu, C., Caocci, G., Macciò, A., & Nasa, G. L. (2022). Prognostic Role of Cell Blood Count in Chronic Myeloid Neoplasm and Acute Myeloid Leukemia and Its Possible Implications in Hematopoietic Stem Cell Transplantation. Diagnostics, 12(10), 2493. https://doi.org/10.3390/diagnostics12102493